
Saarland University
Department 6.2 - Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08
Exercise Sheet 8

Excercise 1: (warm up)

1. Assume you are writing an assembler program and want to store a 32-bit constant into one
of the GPR registers. How would you do this?1

2. What is ghost hardware and what is it used for?

3. Explain the idea of forwarding.

4. In our pipelined processor with the forwarding mechanism we use for some stages additional
boolean flags – valid bits. Why do we need them?

Excercise 2: (self-modifying code)
At the moment, the DLX can not execute a self-modifying code correctly for several reasons.
However, assume it is already possible. Write an ISA program that writes into each memory cell
from address 1024 to address 32767 its address modulo 28. That is, write into memory address
1024 the number 0, into memory address 23444 the number 148, etc. Thereby, fulfill the following
constraints:

1. You are only allowed to use absolute addresses, i.e. on a memory access the effective address
ea(c) has to be computed as (R0 + imm).

2. Your code consists of eight or less instructions (it is possible with 6).

You may assume that your code starts at memory address 0.

Excercise 3: (fast forwarding circuit)
In class, we have seen a forwarding circuit capable of forwarding data from 3 stages. This con-
struction can be generalized to an s-stage forwarding, with s > 3, where the data selection is then
performed by s cascaded multiplexers. Each multiplexer is controlled by a signal top.j. The delay
of this realization is in O(s). Construct an alternative circuit, which forwards the requested data
from s stages with a delay in O(log(s)).

1From now on you can test all your assembler programs with SDS; see the webpage news for more information.



Saarland University
Department 6.2 - Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08
Exercise Sheet 8

Excercise 4: (forwarding and hardware interlock: deadlock)
Assume, we have an interlock engine that stalls the stages IF and ID in case of a data hazard, i.e.
in case the forwarding engine cannot deliver the right data. However, if the data is available, the
forwarding circuit signals a hit in a stage j ∈ {2, 3, 4} by

hit[j] = full.j ∧ gprw.j ∧ (Cadr.j = adr) ∧ (adr 6= 05)

These hit signals are used to generate the top signals. These are then used to compute the data
hazard signals dhazA (dhazB analogously) as

dhazA = topA.2 ∧ ¬v[2].2 ∨ topA.3 ∧ ¬v[3].3

In this exercise, you will show that the check whether stage j is full (i. e. full.j = 1) is essential
for the correctness of the interlock mechanism. Thus, show that if we simplify the hit signal
computation to

hit[j] = gprw.j ∧ (Cadr.j = adr) ∧ (adr 6= 05)

then some instructions could also activate the hazard flag, and that the interlock engine could run
into a deadlock.


