
Saarland University
Department 6.2 - Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08
Exercise Sheet 3

Excercise 1: (warm up)
Prove:

1. ∀n ∈ N+ : 〈1n〉 = 2n − 1.

2. A binary tree of depth m has at most 2m leaves.

3. In the lecture we have defined the generation and propagation bits in the following way:

gi,i(a, b) = ai ∧ bi

pi,i(a, b) = ai ⊕ bi

Define this bits for i = 0.

Excercise 2: (cost and delay computation)

1. Compute the cost and delay of the carry lookahead adder as a closed formula.

2. Recall the carry chain adder construction from the exercise 2.6. Compute the cost and delay
of it as a closed formula.

3. An n-bit decoder is a circuit which takes an input a[n − 1 : 0] and computes an output
y[2n − 1 : 0] with the following property:

unary(y) ∧ 〈a〉 = 〈y〉u

(a) Construct an n-bit decoder and prove its correctness.

(b) Compute the delay and the cost of your construction as a closed formula in n.

Excercise 3: (parallel-prefix computation, carry-lookahead adder)
In the construction of the carry-lookahead adder, we have computed the prefix over the following
function ◦ : M ×M →M for M = B2 in a parallel prefix circuit:

(g1, p1) ◦ (g2, p2) = (g2 ∨ g1 ∧ p2, p1 ∧ p2)

Show that ◦ is associative, i.e., (x ◦ (y ◦ z)) = ((x ◦ y) ◦ z) for all x, y, z ∈M .

Excercise 4: (parallel-prefix computation)
Let u2hu : Bn → Bn be a function that assigns each input bit vector a with unary(a) its half-unary
representation. Hence,

u2hu(a) = b such that unary(a) ∧ 〈a〉u = 〈b〉hu

1. Construct a simple circuit with cost and delay in O(n) that computes the function u2hu.
Prove the correctness of your construction.

2. Construct a parallel-prefix circuit that computes u2hu and prove its correctness. Furthermore,
compute the delay and the cost of your construction as a closed formula.

3. Draw the PP-circuit for n = 8.



Saarland University
Department 6.2 - Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08
Exercise Sheet 3

Excercise 5: (optimization of an 4/2-adder)
The 4/2 adder presented in class has a delay of two full adders.

1. Analyse the output paths and try to optimize the delay of your construction.

2. Prove that your construction is still correct.

Appendix

Let a ∈ Bn be a bitvector. We define two predicates on it:

unary(a[n− 1 : 0]) = (a[n− 1 : 0] = 0n−i−110i) for some i ∈ {0, ..., n− 1}
halfunary(a[n− 1 : 0]) = (a[n− 1 : 0] = 0n−i1i) for some i ∈ {0, ..., n}

That is, unary(a) indicates that exactly one bit of a is set, and halfunary(a) indicates that all
bits of a from some position i are ones to the right and zeros to the left. Moreover, we introduce
two functions 〈·〉u and 〈·〉hu which interpret unary and halfunary bitstrings as natural numbers in
the following way:

unary(a[n− 1 : 0]) ⇒ a[n− 1 : 0] = 0n−i−110i ⇒ 〈a[n− 1 : 0]〉u = i
halfunary(a[n− 1 : 0]) ⇒ a[n− 1 : 0] = 0n−i1i ⇒ 〈a[n− 1 : 0]〉hu = i

Examples:
〈000001〉u = 0
〈001000〉u = 3
〈000000〉hu = 0
〈001111〉hu = 4


