Saarland University

Department 6.2-Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08

Exercise Sheet 3

Excercise 1: (warm up)

Prove:

1. $\forall n \in \mathbb{N}^{+}:\left\langle 1^{n}\right\rangle=2^{n}-1$.
2. A binary tree of depth m has at most 2^{m} leaves.
3. In the lecture we have defined the generation and propagation bits in the following way:

$$
\begin{aligned}
& g_{i, i}(a, b)=a_{i} \wedge b_{i} \\
& p_{i, i}(a, b)=a_{i} \oplus b_{i}
\end{aligned}
$$

Define this bits for $i=0$.

Excercise 2: (cost and delay computation)

1. Compute the cost and delay of the carry lookahead adder as a closed formula.
2. Recall the carry chain adder construction from the exercise 2.6. Compute the cost and delay of it as a closed formula.
3. An n-bit decoder is a circuit which takes an input $a[n-1: 0]$ and computes an output $y\left[2^{n}-1: 0\right]$ with the following property:

$$
\operatorname{unary}(y) \wedge\langle a\rangle=\langle y\rangle_{u}
$$

(a) Construct an n-bit decoder and prove its correctness.
(b) Compute the delay and the cost of your construction as a closed formula in n.

Excercise 3: (parallel-prefix computation, carry-lookahead adder)

In the construction of the carry-lookahead adder, we have computed the prefix over the following function $\circ: M \times M \rightarrow M$ for $M=\mathbb{B}^{2}$ in a parallel prefix circuit:

$$
(g 1, p 1) \circ(g 2, p 2)=(g 2 \vee g 1 \wedge p 2, p 1 \wedge p 2)
$$

Show that \circ is associative, i.e., $(x \circ(y \circ z))=((x \circ y) \circ z)$ for all $x, y, z \in M$.

Excercise 4: (parallel-prefix computation)

Let $u 2 h u: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ be a function that assigns each input bit vector a with unary (a) its half-unary representation. Hence,

$$
u 2 h u(a)=b \text { such that unary }(a) \wedge\langle a\rangle_{u}=\langle b\rangle_{h u}
$$

1. Construct a simple circuit with cost and delay in $O(n)$ that computes the function $u 2 h u$. Prove the correctness of your construction.
2. Construct a parallel-prefix circuit that computes $u 2 h u$ and prove its correctness. Furthermore, compute the delay and the cost of your construction as a closed formula.
3. Draw the PP-circuit for $n=8$.

Saarland University

Department 6.2-Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

Computer Architecture I - WS 07/08

Exercise Sheet 3

Excercise 5: (optimization of an 4/2-adder)

The $4 / 2$ adder presented in class has a delay of two full adders.

1. Analyse the output paths and try to optimize the delay of your construction.
2. Prove that your construction is still correct.

Appendix

Let $a \in \mathbb{B}^{n}$ be a bitvector. We define two predicates on it:

$$
\begin{array}{ll}
\operatorname{unary}(a[n-1: 0]) & =\left(a[n-1: 0]=0^{n-i-1} 10^{i}\right) \text { for some } i \in\{0, \ldots, n-1\} \\
\text { halfunary }(a[n-1: 0]) & =\left(a[n-1: 0]=0^{n-i} 1^{i}\right) \text { for some } i \in\{0, \ldots, n\}
\end{array}
$$

That is, $\operatorname{unary}(a)$ indicates that exactly one bit of a is set, and halfunary (a) indicates that all bits of a from some position i are ones to the right and zeros to the left. Moreover, we introduce two functions $\langle\cdot\rangle_{u}$ and $\langle\cdot\rangle_{h u}$ which interpret unary and halfunary bitstrings as natural numbers in the following way:

$$
\begin{aligned}
\operatorname{unary}(a[n-1: 0]) & \Rightarrow a[n-1: 0]=0^{n-i-1} 10^{i}
\end{aligned} \quad \Rightarrow\langle a[n-1: 0]\rangle_{u}=i,
$$

Examples:

$$
\begin{aligned}
\langle 000001\rangle_{u} & =0 \\
\langle 001000\rangle_{u} & =3 \\
\langle 000000\rangle_{h u} & =0 \\
\langle 001111\rangle_{h u} & =4
\end{aligned}
$$

