## Saarland University

Department 6.2-Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

## Computer Architecture I - WS 07/08

Exercise Sheet 2

## Organizational stuff

Important! To receive credit points for this course, students of CS and CuK must register for it in the HISPOS ${ }^{1}$ system of the examination office by December 1, 2007.

## Excercise 1: (circuit definition, graph theory)

1. Get familiar with the formal definition of a graph. ${ }^{2}$
2. Consider the following circuit $S$ consisting of an inverter, of an AND, NAND and of a NOR gate.


Let $a, b, c$ be inputs and $d, e$ outputs of $S$. Describe $S$ formally as a graph, i.e. show the set of its edges, nodes, etc.
3. Give the in/out-degree numbers of each node.

## Excercise 2: (circuit definition)

The depth $d e(g)$ of a gate $g$ in a circuit $S$ is defined as follows:

$$
d e(g)= \begin{cases}0 & : g \text { is an input of } S \\ \max \{l(p) \mid p \text { is a path into } g \text { in } S\} & : \text { otherwise }\end{cases}
$$

Where $l(p)$ is the length of a path $p$ defined over the number of gates in $p$. Prove that into a gate of depth $u$ there are at most $3^{u}$ paths.

## Excercise 3: (decomposition lemma)

Let $a \in \mathbb{B}^{n}$ and $\langle a\rangle$ its binary representation. For $k \in\{0, \ldots, n-1\}$ prove:

$$
\langle a[n-1: 0]\rangle=\langle a[n-1: k]\rangle \cdot 2^{k}+\langle a[k-1: 0]\rangle
$$

[^0]
## Saarland University

Department 6.2-Computer Science
Prof. Dr. W. J. Paul
M. Sc. Christian Müller

## Computer Architecture I - WS 07/08

Exercise Sheet 2

## Excercise 4: (sign extension)

Let $a \in \mathbb{B}^{n}$ and $\langle a\rangle$ its binary representation. Prove that $\langle a\rangle=\left\langle 0^{n} a\right\rangle$ for $n \in \mathbb{N}$.

## Excercise 5: (full adder)

Full adder is a circuit computing the sum of three input bits:

$$
f a: \mathbb{B}^{3} \rightarrow \mathbb{B}^{2}, f a(a, b, c)=\left(s_{1}, s_{0}\right)
$$

with $\langle a\rangle+\langle b\rangle+\langle c\rangle=\left\langle s_{1} s_{0}\right\rangle$. E.g., $f(0,0,0)=(0,0), f(0,1,0)=f(1,0,0)=(0,1), f(1,0,1)=(1,0)$, etc. Implement this circuit using logical gates.

## Excercise 6: (carry chain adder)

Consider the implementation of a carry chain adder. ${ }^{3}$ Prove that the carry chain adder computes the following function $c c a$ :

$$
\begin{aligned}
& c c a: \mathbb{B}^{n} \times \mathbb{B}^{n} \times \mathbb{B} \rightarrow \mathbb{B}^{n+1} \\
& c c a\left(a[n-1: 0], b[n-1: 0], c_{\text {in }}\right)=c_{\text {out }} s[n-1: 0]
\end{aligned}
$$

with $\langle a[n-1: 0]\rangle+\langle b[n-1: 0]\rangle+\left\langle c_{\text {in }}\right\rangle=\left\langle c_{\text {out }} s[n-1: 0]\right\rangle$ where $c_{\text {out }} s[n-1: 0]$ is just a concatenation of bit $c_{o u t}$ and bitvector $s[n-1: 0]$.

Excercise 7: (carry save (or 3/2) adder)
Carry Save Adder ${ }^{4}$ (or also called " $3 / 2$ adder") is a circuit computing the following function:

$$
\begin{aligned}
& c s a: \mathbb{B}^{n} \times \mathbb{B}^{n} \times \mathbb{B}^{n} \rightarrow \mathbb{B}^{n+1} \times \mathbb{B}^{n+1} \\
& \operatorname{csa}(a[n-1: 0], b[n-1: 0], c[n-1: 0])=(s[n: 0], t[n: 0])
\end{aligned}
$$

with $\langle a[n-1: 0]\rangle+\langle b[n-1: 0]\rangle+\langle c[n-1: 0]\rangle=\langle s[n: 0]\rangle+\langle t[n: 0]\rangle$. Prove this.
Hint: use the decomposition lemma (exercise 3) in order to transform the sum of three bitvectors into a sum of two bitvectors. Argue that the carry save adder realizes the same transformation.

## Excercise 8: (O-notation)

1. Get familiar with the O-notation.
2. Give the definitions of sets $\mathcal{O}(f), o(f), \Omega(f), \omega(f), \Theta(f)$ for some function $f$.
3. Which of the following statements are true and which are not. Explain!
(a) $n^{2} \cdot \log (n) \in o\left(n \cdot \log (n)^{3}\right)$
(b) $\frac{n^{2}-n}{4} \in \mathcal{O}\left(n^{2}\right)$
(c) $n^{10!} \in \omega\left(2^{n}\right)$
(d) $\forall f: \mathcal{O}(f) \cap \Omega(f)=\Theta(f)$
[^1]
[^0]:    ${ }^{1}$ https://www.lsf.uni-saarland.de
    ${ }^{2}$ You can use, e.g., Wikipedia or a lot of computer science books.

[^1]:    ${ }^{3}$ Take a look into your lecture notes or into [MP00] (Figure 2.11).
    ${ }^{4}$ Figure 2.26 in [MP00] or your lecture notes.

