
Saarland University

U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Department 6.2 – Computer Science

Dr. M. A. Hillebrand
Prof. Dr. W. J. Paul

Computer Architecture I – WS 06/07

Exercise Sheet 7 (due: 18.12.06)

Exercise 1: (stabilizer circuit for instruction fetch) (9 points)

Recall that our memory protocol required the master to keep its input stable during the whole
request. If the master does not guarantee this, it is necessary to construct an intermediate circuit,
which we call stabilizer, that guarantees this condition.

In this exercise, you have to construct a circuit that stabilizes the memory inputs for instruction
fetch. These inputs are the fetch signal imr and the fetch program counter pc.

Construct a circuit which is placed between the processor and the instruction memory with the
following inputs and outputs:

• an input p.pc ∈ B30 which denotes the pc address from the processor.

• an input p.imr ∈ B which denotes the instruction memory read signal.

• an input m.ibusy ∈ B which denotes the busy signal from the memory.

• an output p.ibusy ∈ B which denotes the busy signal to the processor.

• an output m.pc ∈ B30 which denotes the pc address to the memory.

• an output m.imr ∈ B which denotes the memory read signal to the memory.

Your construction should fulfill the property that once a request to the memory is started (m.imr =
1), the outputs m.pc and m.imr are kept stable during the whole request. Furthermore, in case
the p.pc input changes during request, there should start a new request to the memory after the
first one has finished. The processor should not notice the second request. Hence, if p.imr = 1 and
p.ibusy = 0 then the correct data has to be provided according to the p.pc of the same cycle.

1



Exercise 2: (program execution) (7 points)

Consider the algorithm from the last exercise sheet slightly modified to fulfill the software conven-
tions:

0: beqz(R1, 16)
4: add(R2, R2, R1)
8: subi(R1, R1, 1)

12: nop
16: j(−20)
20: nop

Execute the program on the pipelined processor without forwarding and list the content of each
register in each state for 10 execution cycles. The datapaths were presented in the lecture from
november 27th. Assume the simple stalling engine presented in the lecture from december 4th (uet

k

always enabled except at the beginning after reset). Hence, there are no busy signals from the
memories (IM and DM).

Exercise 3: (stalling engine and scheduling function) (3+3+3=9 points)

Consider the construction of the stalling engine in the lecture notes from Lecture 11 (November
22nd) and the update enable signals from class defined as

uet
k = ¬stalltk ∧ fulltk

where
stalltk = stallInt

k ∨ genStalltk

Furthermore, consider the scheduling function as defined in lecture

sI(0, 0) = 0

sI(0, t + 1) =

{
sI(0, t) + 1 if uet

0

sI(0, t) if ¬uet
0

sI(k, t + 1) =

{
sI(k − 1, t) if uet

0

sI(k, t) if ¬uet
0

for k > 0

Prove the following properties which we used in the correctness proof of the pipelined implementa-
tion:

• fulltk ∧ uet
k−1 ⇒ uet

k

• sI(k, t + 1) = sI(k, t) + if uet
k then 1 else 0

• sI(k, t) = sI(k + 1, t) + if fulltk+1 then 1 else 0

2


