Saarland University
Department 6.2 — Computer Science

Dr. M. A. Hillebrand
Prof. Dr. W.J. Paul

JUD N
U yygyy U
Juut i suut

uv uuL
U uu
suuuuuy
uuuuuy
vuuuuuy
l/ \|

u

Computer Architecture I — WS 06/07

Exercise Sheet 4 (due: 20.11.06)

Exercise 1: (protocol design and control) (44+4+4+44+4+4=20 points)

Consider two circuits, a master and a slave, with the master posing requests to the slave and the
slave responding to the requests. Master and slave are connected with the following interface signals:

e a request signal req € B controlled by the master.

e a busy signal busy € B controlled by the slave.

e a data input in[n — 1 : 0] € B" controlled by the master.

e a data output out[n — 1 : 0] € B™ controlled by the slave.
The protocol itself is specified informally in the following way:

In order to start a request, the master raises the req signal. The slave will lower the busy signal
eventually to acknowledge the end of the request. During a request, the request signal req and the
input bus in have to be kept stable. At the end of the request, the slave will return certain data on
the output bus out.

1. Formalize these protocol conditions for the master and for the slave separately.
2. Arbiter with Priority:

Design a clocked circuit A, which allows to connect two masters m; and ms to a single
slave s. The interface of circuit A consists of a set of interface signals for all modules, i.e., for
x € {m1,ma, s} we have signals z.req, z.busy, x.in[n — 1 : 0], and z.out[m — 1 : 0]. In case
that both master start a request simultaneously, the request of master m; should be preferred.
Moreover, the circuit should not delay a request, i.e. 0-cycle or 1-cycle requests (depending
on the slave) should still be possible.

3. Prove that your circuit guarantees that all protocol conditions are satisfied at all interface
x € {m1,ma, s}, given that the master fulfill the master protocol conditions (they keep certain
inputs stable) and the slave fulfills the slave protocol conditions (it responds eventually). For
your proof you will need the additional assumption, that the request signal of master my is not
always activated. Additionally, prove that request of master mq have priority over master mo.

4. Fair Arbiter:

In the arbiter with priority it is possible, that a request of master ms is never serviced, if
master m; always poses a requests. Construct a fair arbiter, which guarantees that any request
by master m; for i € {1,2} is serviced after at most one intervening request of master ms_;.
Again your construction should not delay requests.

5. Prove the correctness of your construction.



Exercise 2: (general purpose register) (10 points)

In class we have seen the informal specification of the general purpose register (GPR) for the DLX
processor. In this exercise you are asked to construct a general purpose register. Hence, construct
a circuit that fullfils the following properties:

e The GPR should be based on a 3-Port RAM, i. e. your construction should have inputs w € B,
Din, Aad, Bad, and Cad as well as outputs DoA and DoB.

e The address width should be 5, i.e. the three addresses Aad, Bad, Cad are in B®.
e The data width is 32-bit, i.e. Din, DoA, and DoB are in B3?

e At read address 0 the data word 032 is returned at the output and the address 0 cannot be
written.

Hence your construction should suffice the following semantics:

032 if (Aad' = 0°)
DoA! = < gprt(Aad') if (Aad! # Cad?) vV (w' = 0)
unspecified otherwise
032 if (Bad' = 0°)
DoB' = { gprt(Bad') if (Bad' # Cad') Vv (w' = 0)
unspecified otherwise
gpr'™ = gprt if (w' = 0)

ifwl =1

Dint T t t £ (5
a1 (a) { in if (a = Cad") A (Cad" # 0°)

gprt(a) otherwise



