Saarland University Department 6.2 – Computer Science

Dr. M. A. Hillebrand Prof. Dr. W. J. Paul

Computer Architecture I – WS 06/07

Exercise Sheet 3 (due: 13.11.06)

Exercise 1: (Wallace Tree; Exact Costs)

(5 points)

In class, we have seen Wallace trees constructed as balanced 'binary' trees of 4/2 adders. Compute the exact cost of such a tree for the case that $m = 2^k$.

Exercise 2: (Wallace Tree; Optimization)

(5 points)

The 4/2 adder presented in class has a delay of two full adders.

- 1. Analyse the output paths and try to optimize the delay of your construction.
- 2. Prove that your construction is still correct.

Exercise 3: (Wallace Tree)

(8 points)

Construct a Wallace tree from 3/2 adders only, i.e., construct a balanced tree of 3/2 adders (this is *not* a binary tree). Specify for each node of that tree the partial sum $S_{i,k}$ that it computes. Compute the delay of your construction and compare the result with the delay of the construction from class.

Exercise 4: (Optimization)

(5 points)

In our delay model, some inverting gates (nand and nor) are faster than their non-inverting counterparts.

1. Use this fact to construct a delay-optimized or-tree, which computes for an input $a \in \mathbb{B}^n$ for $n = 2^k$ the output

$$b = a[n-1] \lor \cdots \lor a[1] \lor a[0] .$$

- 2. Compute the delay and cost of your construction as a closed formula.
- 3. Prove the correctness of your construction rigorously.

Exercise 5: (Binary Comparison)

$$(3+2+2+2=9 \text{ points})$$

Within the ALU construction in the lecture notes, the binary comparison for two two's complement values $a, b \in \mathbb{B}^n$ defined as

$$[a] \circ [b] \text{ for } \circ \in \{<,>,\leq,\geq,=,\neq\}$$

is implemented by a subtractor and an equality tester.

In this exercise you are asked to construct an different, special circuit for this binary comparison applied to two binary values. Hence, you should construct a circuit that calculates

$$\langle a \rangle \circ \langle b \rangle$$
 for $\circ \in \{<,>,\leq,\geq,=,\neq\}$

Since your construction should be a special purpose circuit, do not use the construction from the lecture notes in the following.

- 1. Construct a circuit that computes the output $c \in \mathbb{B}$ with $c = (\langle a \rangle < \langle b \rangle)$ from the inputs a, $b \in \mathbb{B}^n$.
- 2. Extend your construction from 1. to compute the six comparisons from above.
- 3. Compute the delay and cost of your construction as a closed formula and compare those with the construction in the lecture.
- 4. The ALU constructions from the lecture and the MP00 book differ in the following way: Instead of using an equality tester directly on inputs a and b, a zero tester is used which checks against the output s[n-1:0] being 0^{32} .

Proof or falsify: If sub = 1, then $a = b \Leftrightarrow s = 0^{32}$.

Note: $[a] - [b] \in T_n$ may not be assumed.