Saarland University<br>Department 6.2 - Computer Science<br>Dr. M. A. Hillebrand<br>Prof. Dr. W. J. Paul

## Computer Architecture I - WS 06/07

Exercise Sheet 2

(due: 06.11.06)

## Exercise 1: (parallel-prefix computation)

Let $u 2 h u: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ be a function that assigns each input bit vector $a$ with unary $(a)$ its half-unary representation. Hence,

$$
u 2 h u(a)=b \text { such that unary }(a) \wedge\langle a\rangle_{u}=\langle b\rangle_{h u}
$$

1. Construct a simple circuit with cost and delay in $O(n)$ that computes the function $u 2 h u$. Prove the correctness of your construction.
2. Construct a parallel-prefix circuit that computes $u 2 h u$ and prove its correctness. Furthermore, compute the delay and the cost of your construction as a closed formula.
3. Draw the PP-circuit for $n=8$.
4. In the real world, gates may only drive a limited small number of other gates. The fan-out of a gate is defined as the number of gates that are driven by the output of this gate. The fan-out of a circuit is the maximum fan-out of any gate in it.
Characterize and compare the fan-outs of the circuits that you have designed in 1 . and 2. above.
5. Is there an additional purpose of the function $u 2 h u$, i.e., what happens in case unary (a) does not hold for the input?

## Exercise 2: (parallel-prefix computation; carry-lookahead adder)

In the construction of the carry-lookahead adder, we have computed the prefix over the following function $\circ: M \times M \rightarrow M$ for $M=\mathbb{B}^{2}$ in a parallel prefix circuit:

$$
\left(g_{1}, p_{1}\right) \circ\left(g_{2}, p_{2}\right)=\left(g_{2} \vee g_{1} \wedge p_{2}, p_{1} \wedge p_{2}\right)
$$

Show that $\circ$ is associative, i.e., $(x \circ(y \circ z))=((x \circ y) \circ z)$ for all $x, y, z \in M$.

## Exercise 3: (conditional sum incrementer)

(9 points)
In class, an incrementer was defined as a circuit that computes

$$
s=a+{ }_{n} 0^{n-1} c_{\mathrm{in}}
$$

Let $m=\lceil n / 2\rceil$ for any $n>1$.

The high order sum bits $(s[n-1: m])$ of an $n$-bit incrementer with inputs $a[n-1: 0]$ and $c_{\text {in }}$ can be expressed as

$$
\begin{aligned}
\langle s[n-1: m]\rangle & =\langle a[n-1: m]\rangle+c_{m-1} \\
& = \begin{cases}\langle a[n-1: m]\rangle & \text { for } c_{m-1}=0 \\
\langle a[n-1: m]\rangle+1 & \text { for } c_{m-1}=1\end{cases}
\end{aligned}
$$

where $c_{m-1}$ denotes the carry bit from position $m-1$ to $m$.

1. Use this to construct an $n$-bit conditional sum incrementer.
2. Compute the delay and the cost of your construction as a closed formula in $n$.
3. Prove the correctness of your construction.

## Exercise 4: (shifter)

1. Prove the correctness of the $n$-bit cyclic left shifter presented in class.
2. Prove the following shift properties:

- $\langle l l s(a, i)\rangle \equiv\langle a\rangle \cdot 2^{i} \bmod 2^{n}$
- $\langle\operatorname{lr} s(a, i)\rangle \equiv\left\lfloor\langle a\rangle / 2^{i}\right\rfloor$
- $\operatorname{ars}(a, i)] \equiv\left\lfloor[a] / 2^{i}\right\rfloor$

