
On the Verification of

Memory Management Mechanisms

Iakov Dalinger∗ Mark Hillebrand∗ Wolfgang Paul

January 2005
Id: verificationmm.tex,v 1.42 2005/02/18 17:10:17 mah Exp

Abstract

We define physical machines as processors with physical memory and
swap memory; in user mode physical machines support address trans-
lation. We report about the formal verification of a complex processor
supporting address translation by means of a memory management unit
(MMU). We give a paper and pencil proof that physical machines together
with appropriate page fault handlers simulate virtual machines.

Contents

1 Introduction 2
1.1 The challenge of verifying entire systems 2
1.2 Overview of this paper . 3
1.3 Related work . 3

2 Virtual machines 3
2.1 Notation . 3
2.2 Specifying the instruction set architecture 4
2.3 Interrupts . 6

3 Physical machines 7
3.1 Address translation . 8
3.2 Modeling an I/O device . 9

4 Construction and local correctness of MMUs 9
4.1 Notation . 9
4.2 Memory interface . 9
4.3 MMU construction and operating conditions 11
4.4 Local MMU correctness . 12

5 Guaranteeing the operating conditions 13
5.1 Software Synchronization Convention 14
5.2 Hardware mechanisms for synchronization 14

∗Work partially funded by the German Federal Ministry of Education, Science, Research
and Technology (BMBF) in the framework of the Verisoft project under grant 01 IS C38.
Work of the second author was also partially funded by IBM Entwicklung GmbH Boeblingen.
The responsibility for this article lies with the authors.

1

1 INTRODUCTION 2

6 Processor correctness 15
6.1 Correctness criteria . 15
6.2 Correctness proof with external interrupt signals 17
6.3 Correctness proof . 17

7 Virtual machine simulation 19
7.1 Memory map of the physical machine 19
7.2 Simulation relation . 20
7.3 Page fault handler and software conditions 21
7.4 Simulation theorem . 22

8 Summary and further work 23

1 Introduction

1.1 The challenge of verifying entire systems

In the spirit of the famous CLI stack [Boy89] the research of this paper
aims at the formal verification of entire computer systems consisting of
hardware, compiler, operating system, communication system, and ap-
plications. Working with the Boyer-Moore theorem prover [BM88] the
researchers of the CLI stack project succeeded as early as 1989 to prove
formally the correctness of a system which contained among others the
following components: (i) a non pipelined processor [Hun89], (ii) an as-
sembler [Moo89], (iii) a compiler for an imperative language [You89] with
the only data type int, assignments, if then else, while loops, and func-
tion calls, (iv) a rudimentary operating system kernel [Bev89] written in
machine language. This kernel provides scheduling for a fixed number of
processes; each process has the right to access a fixed interval of addresses
in the processors physical memory. An attempt to access memory out-
side these bounds leads to an interrupt. Interprocess communication and
system calls apparently were not provided.

In the years from 1989 to 2002 to the best of our knowledge no verifica-
tion project aiming at the formal verification of entire computer systems
was started anywhere. In [Moo03] the principal investigator of the CLI
stack project J S. Moore declares the design and formal verification of
practical embedded systems ‘from the transistor level to the software’ a
grand challenge problem. A central goal of the Verisoft project [Ver03],
funded by the federal German Government and started in 2003, is to solve
this grand challenge problem.

This paper makes two necessary steps towards the verification of entire
complex systems. (i) We report about the formal verification of a proces-
sor with memory management units (MMUs). MMUs provide hardware
support for address translation; address translation is needed for the im-
plementation of address spaces provided by modern operating systems.
(ii) We present a paper and pencil correctness proof for a virtual memory
emulation based on a very simple page fault handler. As the formal treat-
ment of I/O-devices is an open problem we have to state the correctness
of a driver for the swap memory as an axiom.

In subsequent papers we will address the verification of a compiler for
a C-like language with in-line assembler code and of an operating system
kernel. For preliminary versions of these results see [?, ?, ?].

2 VIRTUAL MACHINES 3

1.2 Overview of this paper

In Section 2 we briefly review the standard formal definition of the DLX
instruction set architecture (ISA) for virtual machines. We put emphasis
on the handling of internal and external interrupts. In Section 3 on physi-
cal machines we enrich the ISA by the standard mechanisms for operating
system support: (i) user mode / system mode and (ii) address translation
in user mode. In Section 4 we present a (non-optimized) construction of
an MMU and prove its correctness under nontrivial operating conditions.
Note that in pipelined processors separate MMUs are used for instruction
fetch and load / store. In Section 5 we show how the operating condi-
tions for both MMUs can be guaranteed by a combination of hardware
mechanisms and software conventions. Section 6 gives the main new ar-
guments of the processor correctness proof assuming that the software
conventions are met. In Section 7 we present a simple page fault handler
which obeys the software convention. We show that a physical machine
with this page fault handler emulates a virtual machine. In Section 8 we
present conclusions and further work.

1.3 Related work

The processor verification presented here extends work on the VAMP
processor presented in [BJK+03, Bey04]. The treatment of external inter-
rupts is in the spirit of [SH98, MP00]. Formal proofs are in PVS [OSR92]
and—except for some limited use of PVS’s model checker—interactive.
We stress that some central lemmas in [SH98, BJK+03] (e.g. correctness
of Tomasulo schedulers) have similar counterparts, which can be proven
using the very rich set of automatic methods for hardware verification (e.g.
[?]). How to profit from these automatic methods in correctness proofs of
entire processors continues to be an amazingly difficult topic of research.
Some recent progress is reported in [ACHK04].

As for the new results of this paper: we are not aware of previous
work on the verification of MMUs. We are also not aware of previous
theoretical work on the correctness of virtual memory emulations.

2 Virtual machines

2.1 Notation

We denote the concatenation of bit strings a ∈ {0, 1}n and b ∈ {0, 1}m

by a ◦ b. For bits x ∈ {0, 1} and nonnegative natural numbers n ∈ N
+

we define inductively x1 = x and xn = xn−1 ◦ x. Thus, for instance
05 = 00000 and 12 = 11.

Overloading symbols like +, ·, and < we will allow arithmetic on bit
strings a ∈ {0, 1}n. In these cases arithmetic is binary modulo 2n. We
will consider n = 32 for addresses / register contents and n = 20 for page
indices.

We model memories m as mappings from addresses a to values m(a).
For natural numbers d we denote by md(a) the content of d consecutive
memory cells starting at address a:

md(a) = m(a + d − 1) ◦ · · · ◦ m(a)

Page size will be 4K = 212. We split virtual addresses va = va[31 : 0]
into page index va.px = va[31 : 12] and byte index va.bx = va[11 : 0].

2 VIRTUAL MACHINES 4

Address Synonym Meaning

00000 SR Status register
00001 ESR Exception status register
00010 ECA Exception cause register
00011 EPC Exception PC
00100 EDPC Exception DPC
00101 Edata Exception data
00110 RM Rounding mode
00111 IEEEf IEEE flags
01000 FCC Floating point condition code
01001 pto Page table origin
01010 ptl Page table length
01011 EMODE Exception mode
10000 MODE Mode

Table 1: Special purpose registers. Indices 01100 to 01111 are not assigned.

Thus, va = va.px ◦ va.bx.

2.2 Specifying the instruction set architecture

Virtual machines are the hardware model visible for user processes. Im-
portant parameters of such a machine are the following:

• The number V of pages of accessible virtual memory. This defines
the set of accessible virtual addresses

V A = {a | 0 ≤ a < V · 4K}

• The number e ∈ N of external interrupt signals.

• The status register SR ∈ {0, 1}32. This is the vector of mask bits
for the interrupts. In physical machines it comes from the status
register.

• The set V SA ⊆ {0, 1}5 of addresses of user visible special purpose
registers. Table 1 shows the entire set of special purpose registers,
that will be visible for a physical machine. For the virtual machine
only the registers RM , IEEEf , and FCC will be visible. Hence
V SA = {00110, 00111, 01000}.

Formally, the configurations of a virtual machine is a 6-tuple

cV = (cV .PC, cV .DPC, cV .GPR, cV .SPR, cV .vm, cV .p) .

The individual components are:

• the program counter cV .PC ∈ {0, 1}32 and the delayed program
counter cV .DPC ∈ {0, 1}32. Both are used to implement the delayed
branch mechanism (see Chapter 4 in [MP00] for details);

• The general purpose register file cV .GPR : {0, 1}5 → {0, 1}32. Reg-
isters are 32 bits long, register 0 always contains 032.

• The special purpose register file cV .SPR : V SA → {0, 1}32. We also
refer to special purpose register by cV .x = cV .SPR[x] where x is one
of the synonyms from Table 1.

2 VIRTUAL MACHINES 5

• The byte addressable virtual memory cV .vm : V A → {0, 1}8.

• The write protection function cV .p : {va.px | va ∈ V A} → {0, 1}.
Virtual addresses on the same page have the same protection bit.

Let CV be the set of virtual machine configurations. An instruction set
architecture (ISA) is formally specified as a transition function δV : CV ×
{0, 1}e → CV mapping configurations cV ∈ CV and a vector of external
event signals eev ∈ {0, 1}e to a next configuration c′V = δV (cV , eev). For
the DLX instruction set we outline the formal definition of this function
with an emphasis on the treatment of interrupts.

The instruction to be executed in configuration cV is found in the four
bytes in virtual memory starting at the address of the delayed PC

I(cV) = cV .vm4(cV .DPC)

The opcode consists of the leading six bits of the instruction

opc(cV) = I(cV)[31 : 26]

The type of an instruction determines, how the bits outside the opcode
are interpreted. If the opcode consists of all zeros we have for instance an
R-type instruction

R-type(cV) = (opc(cV) = 000000)

Other instruction types are defined in a similar way. Many instruc-
tions can be decoded just from the opcode, e.g. a load word instruction is
recognized by

lw(cV) = (opc(cV) = 100011)

For R-type instructions one has to refer to a secondary opcode. De-
pending on the instruction type the register destination address is found
at different positions in the instruction

RD(cV) =

(

I(cV)[15 : 11] if R-type(cV)

I(cV)[20 : 16] otherwise

In a similar way one can define register source addresses RS1(cV), RS2(cV),
the sign extended immediate constant simm(cV), etc. The effective ad-
dress of a load or store instruction is computed as the sum of the general
purpose register addressed by RS1(cV) and the sign extended immediate
constant

ea(cV) = cV .GPR(RS1(cV)) + simm(cV)

A load word instruction stores four bytes of virtual memory starting
at address ea(cV) into the general purpose register addressed by RS1(cV).
This can be expressed by equations like

lw(cV) → (c′V .GPR(RS1(cV)) = cV .vm4(ea(cV))) .

Components of the configuration that are not mentioned on the right-
hand side of the implication are meant to be unchanged. This definition
however ignores both internal and external interrupts; therefore even for
virtual machines it is an oversimplification.

2 VIRTUAL MACHINES 6

Index j Symbol Meaning Maskable External

0 reset Reset No Yes
1 ill Illegal instruction No No
2 mal Misaligned access No No
3 pff Page fault during fetch No No
4 pfls Page fault during load / store No No
5 trap Trap No No
6 xovf Fixed point overflow Yes No
7 fovf floating point (FP) overflow Yes No
8 funf FP underflow Yes No
9 finx FP inexact result Yes No
10 fdbz FP division by zero Yes No
11 finv FP invalid operation Yes No
12 ufop Unimplemented FP operation No No
13 timer Timer No No
j > 13 io[j] Interrupt from I/O device j − 13 Yes Yes

Table 2: Interrupts

2.3 Interrupts

We define below a predicate JISR(cV , eev) (jump to interrupt service
routine) depending on both the current configuration cV and the current
values eev ∈ {0, 1}e of the external interrupt event signals. Only if this
signal stays inactive does the above equation hold

(¬JISR(cV , eev) ∧ lw(cV)) → (c′V .GPR(RS1(cV)) = cV .vm4(ea(cV)))

An activation of the JISR signal has for physical machines a well
defined effect on the program counters and on the special purpose regis-
ters. The effect on virtual machine computations however is that control
is handed over to the operating system kernel. This effect can only be
defined in a model, which includes the operating system kernel too.1 For
the same reason rfe-instructions (return from interrupt) are illegal for
virtual machines.

For the definition of signal JISR(cV , eev) for physical machines, we
consider the 32 interrupts from Table 2 with indices j ∈ IP = {0, . . . , 31}.
For virtual machines we ignore page fault interrupts, thus we only consider
j ∈ IV = IP \ {3, 4}.

The activation of signal JISR(cV , eev) can be caused by the activa-
tion of external interrupt lines eev[j] or by internal interrupt event signal
iev(cV)[j]. We define the cause vector by

ca(cV , eev)[j] =

8

>

<

>

:

eev[0] if j = 0 ;

eev[j − 13] if j external, j 6= 0 ;

iev(cV)[j] otherwise.

Formally, external interrupts lines are external input signals for the next
state computation. Internal interrupt event signals can be defined as
functions of the current configuration. A straightforward definition of the

1See the lecture notes [SysArch04] (in German) for details.

3 PHYSICAL MACHINES 7

misalignment signal would for instance include terms like

mal(cV) = iev(cV)[2] = (cV .DPC[1 : 0] 6= 00) ∨

(lw(cV) ∧ (ea(cV)[1 : 0] 6= 00)) ∨ · · ·

For virtual machines, but not for physical machines, an attempt to
read or write special purpose registers other than RM , IEEEf , FCC
is illegal. Reading or writing these registers is achieved with commands
movi2s or movs2i; special purpose registers are addressed with instruction
field SA(cV) = I(cV)[10 : 6]. Thus a straightforward formal definition of
the illegal instruction signal would include a term like

ill(cV) = iev(cV)[1]

= ((movi2s(cV) ∨ (movs2i(cV)) ∧ (SA(cV) /∈ V SA) ∨ · · ·

The cause vector ca(cV , eev) is ANDed bit wise with a mask vector

mask(cV)[j] =

(

SR[j] if j maskable

1 otherwise

in order to obtain the masked cause vector:

mca(cV , eev)[j] = ca(cV , eev) ∧ mask(cV)[j]

The interrupt occurs if at least one masked cause bit is on

JISR(cV , eev) =
_

j∈IV

mca(cV , eev)[j]

Thus, although a virtual machine cannot read or write the status reg-
ister SR, this register is nevertheless visible via the masked cause vector
and the JISR-signal.

3 Physical machines

Physical machines are the sequential programming model of the hardware
as seen by the programmer of an operating system kernel. Compared with
the ISA of the virtual machine, more details are visible in configurations
cP ∈ CP of physical machines.

• All special purpose registers from Table 1 are visible. Formally
cP .SPR : PSA → {0, 1}32 with PSA = {bin5(a) : a ≤ 13} where
binn(a) ∈ {0, 1}n is the bitvector of length n such that 〈binn(a)〉 = a.

The mode register cP .SPR[10000] = cP .mode distinguishes between
system mode (cP .mode[0] = 0) and user mode. In system mode
reading and writing any special purpose register is legal.

• Page faults are visible, thus in the definition of the JISR-signal the
full set of indices IP is used instead of IV .

• For physical machines the next state δP (cP , eev) is defined in the case
of an active signal JISR(cP , eev). See [MP00] for details. Similarly,
in system mode physical machines can legally execute an rfe (return
from exception) instruction.

• Instead of a uniform virtual memory the user now sees two memories:
physical memory cP .pm and swap memory cP .sm. The number of
pages of available physical memory is specified by a parameter P .

3 PHYSICAL MACHINES 8

31 0

ppx[19 : 0]

12

pv · · ·

11 10 9

Figure 1: Page Table Entry

• In user mode accesses to physical memory are translated.

In the remainder of this section we first specify a 1-level translation
mechanism and the corresponding internal interrupt event signals pff(cP)
and pfls(cP). Then we model I/O operations with the swap memory.

3.1 Address translation

In user mode, i.e. if cP .mode = 1, virtual addresses va = va.px ◦ va.bx
are transformed into three signals pma(cP , va), pff(cP), pfls(cP), where
pff and pfls are interrupt event signals and pma is the physical mem-
ory address in case the page fault signals stay inactive. Memory region
cP .pmcP .ptl·4+4(cP .pto · 4K) is interpreted as the current page table. The
page table entry address for virtual address va is defined as

ptea(cP , va) = cP .pto · 4K + 4 · va.px

and the corresponding page table entry is

pte(cP , va) = cP .pm4(ptea(cP , va)) .

These functions are only defined if there is no page table length ex-
ception

ptlexcp(cP , va) = (〈va.px〉 > 〈cP .ptl〉)

From the page table entry we extract the physical page index ppx, the
valid bit v, and the protection bit p as suggested in Figure 1 by

ppx(cP , va) = pte(cP , va)[31 : 12]

v(cP , va) = pte(cP , va)[11]

p(cP , va) = pte(cP , va)[10]

In case the valid bit is on, the physical memory address pma is obtained
by concatenation of the physical page index with the byte index va.bx:

pma(cP , va) = ppx(cP , va) ◦ va.bx

A page fault on fetch occurs, if page table length exception or invalid
access occurs with virtual address dpc

pff(cP) = ptlexcp(cP , cP .DPC) ∨ ¬v(cP , cP .DPC)

In the absence of page faults on fetch we have in user mode now

I(cP) = cP .pm4(pma(cP , cP .DPC))

In the absence of page faults on fetch a page fault on load store con-
cerns virtual address ea(cP). Besides page table length exceptions and
invalid access there might also be an attempt to perform a store opera-
tion, indicated by predicate s(cP), to a write protected page

pfls(cP) = ptlexcp(cP , ea(cP)) ∨ ¬v(cP , ea(cP)) ∨ s(cP) ∧ p(ea(cP))

It is not difficult to specify multi-level translation can be formally
specified in a similar way, see e.g. [Hil05, Chapter 5].

4 CONSTRUCTION AND LOCAL CORRECTNESS OF MMUS 9

3.2 Modeling an I/O device

In order to handle page faults, one clearly has to be able to exchange pages
between the physical memory cP .pm and the swap memory cP .sm. For a
(minimal) detailed treatment of this process one has to do four things:

1. Define I/O-ports as a portion of memory shared between the CPU
and the I/O device holding the swap memory.

2. Specify the detailed protocol of the I/O-devices.

3. Construct a driver program say with the following three parameters
passed on fixed addresses a1, a2, a3 in physical memory: a physi-
cal page index parameter ppxp(cP) = cP .pm4(a1), a swap memory
page index parameter spxp(cP) = cP .pm4(a2), and a physical-to-
swap flag p2s(cP) = cP .pm(a3) indicating, whether a page is to be
transferred from physical to swap memory (p2s = 1) or vice versa.

4. Show (among other things):2 if the driver is started in configuration
cP and never interrupted, then it eventually terminates in configu-
ration c′P with

c′P .sm4K(spxp(cP) · 4K) = cP .pm4K(ppxp(cP) · 4K) if p2s(cP) = 1

c′P .pm4K(ppxp(cP) · 4K) = cP .sm4K(spxp(cP) · 4K) if p2s(cP) = 0

Without this detailed treatment of I/O devices we have to assume the
existence of a correct driver program as an axiom.

4 Construction and local correctness of

MMUs

4.1 Notation

For cycles t and hardware signals or register contents x we denote by xt

the value of x during cycle t. We will refer to the hardware configuration
by h. The components of this configuration are registers h.R or memories
h.mem. We often abbreviate h.x by x.

4.2 Memory interface

We construct MMUs for processors with two first level caches, an instruc-
tion cache CI for fetches and a data cache CD for load / store instructions.
Therefore the CPU communicates with the memory system via two sets
of busses: one connecting the CPU with the instruction cache and the
other one with the data cache (see Figure 2). We assume that the same
protocol is used on both busses. Examples of the protocol are shown
in Figure 3 for an instruction fetch with and without a cache hit. The
essential properties of the bus protocol and the memory system are the
following:

1. Accesses last from the activation of a read or write request signal (in
the example mr) until one cycle after the busy signal is turned off;
if the busy signal is not turned on at all, accesses last a single cycle.

2These are: (i) prove that program control returns (e.g. in case a jump and link instruc-
tion was used to call the driver c′

P
.DPC = cP .GPR[11111], c′

P
.PC = cP .GPR[11111] + 4),

(ii) prove that except for appropriately defined book keeping information no other parts of the
configuration changed, and (iii) the driver never leaves its own code region (needed to prove
the correctness of the driver arguing only about the code of the driver).

4 CONSTRUCTION AND LOCAL CORRECTNESS OF MMUS 10

8 · B

a

8 · B

8 · B

a

CD.dout

CI.dout

CD.din

CI.addr

CD.addr

CPU MI

Figure 2: Old Memory Interface without MMUs

Cache Hit Cache Miss

XI.dout

XI.addr

XI.mr

XI.clk

XI.busy

Figure 3: Timing Diagrams for Fetch Operations

2. Read and write requests are not allowed to be given simultaneously.

3. For the duration of an access, inputs from the CPU to the memory
system must be held constant.

4. Liveness: if Conditions 2 and 3 are fulfilled, every access eventually
ends.

5. Shared memory semantics: for cycles t and addresses a define last(a, t)
as the last cycle t′ before t, when a write access to address a (nec-
essarily on the data cache via bus CD.din) ended. Now assume a
read access to cache X ∈ {CI, CD} with address a ends in cycle t.
Then the result on bus X.dout is

X.doutt = CD.dinlast(a,t)

The definition permits to define the state of the two port memory
system memory system m(h) at time t by

m(h)t(a) = CD.dintlast(a, t)

For a formal and complete version of this definition3 see pages of
[Bey04]. For a construction of a split cache system and a transcript of a
formal proof, that it satisfies this specification, see [Bey04], pages 1–110.
Guaranteeing that the CPU keeps inputs constant (Condition 3) during all
accesses requires the construction of so-called stabilizer circuits, both for
the instruction port and for the data port of the memory system. These
circuits are needed for instance, if a fetch is in progress and simultaneously

3last does not always exist

4 CONSTRUCTION AND LOCAL CORRECTNESS OF MMUS 11

1 0

+<
1 0

0 1

[2 : 0]

m.addr[31 : 2]

[31 : 2]

arce

(r, w, v)

pte[31 : 0]

drce

m.dout[63 : 0]

[11 : 0]

(p.addr[31 : 2], 02)

ptl[19 : 0]

[31 : 12]

[31 : 0] 02

pto[19 : 0]

[31 : 0]lexcp

[31 : 12]

add

[31:0]

p.dout[63 : 0]

[63:32]

012

p.t

ar[2]

ar[31 : 0]

dr[63 : 0]

Figure 4: MMU Datapaths.

special addresses are forced into the PC and DPC due to an interrupt
recognized deeper down in the pipeline. In this case the started access is
completed with latched versions of the PC and DPC. If this precaution
is not taken, liveness (Condition 4) is not guaranteed. For details see
Chapter 4.4 of [Bey04].

4.3 MMU construction and operating conditions

Figures 4 and 5 show datapaths and control automaton of a straightfor-
ward non optimized construction of an MMU. Two copies of this MMU
are placed between the CPU and the two caches as shown in Figure 6.
Note that the interface to the memory system is eight bytes wide and the
address width is only 29 bits.

In system mode this MMU will only perform address translation under
non trivial operating conditions. Consider an access of the CPU to the
MMU lasting from a start cycle ts to an end cycle te > ts. We have to
require that no signal or register content x from the four groups listed
below changes its value during the access, so for all ∈ {ts, . . . , te} we have
xt = xts.

G1. Inputs from the CPU to the interface busses of the MMU; these are
p.dout, p.addr, p.mr, and p.mw.

G2. The CPU registers h.mode, h.pto, and h.ptl relevant for translation.

G3. In case of a translated accessing the page table entry used for trans-
lation, the shared memory content m(h)4(ptea) with ptea = h.pto ·
4096 + 4 · p.addrts.px.

4 CONSTRUCTION AND LOCAL CORRECTNESS OF MMUS 12

idle

add:
arce,add

p.req &
p.t

seta:
arce

p.req &
/p.t

lexcp

readpte:
m.mr,drce

/lexcp

m.busy

comppa:
arce

/m.busy

pteexcp

read:
m.mr,drce

/pteexcp &
p.mr

write:
m.mw

/pteexcp &
p.mw

/m.busy

m.busy

/m.busy

m.busy

p.mr p.mw

Figure 5: MMU Control Automaton. The signal p.req = p.mw∨p.mr indicates
an ongoing request.

SM

IMMU

DMMU

I/O
PM

ICache

DCache

CPU

CI

CD

PI

PD

Figure 6: Processor and MMUs

G4. In case of read access with physical address pa, the shared memory
content m(h)8(pa).

Using definitions analogous to Section 3.1 one can define for hard-
ware configurations h and virtual addresses va a page table entry address
ptea(h, va) a page table entry pte(h, va) and a physical memory address
pma(h, va). Note that under the operating conditions the virtual address
va, the translation pma(h, va) and in case of a read the data read from
the shared memory stay the same during the whole access.

Assuming these operating conditions, we outline a fairly straightfor-
ward correctness proof for the MMU in the next subsection. Guaranteeing
the operating conditions will be a considerably tougher issue.

4.4 Local MMU correctness

There is an obvious case split on the kind of access (i) read / write
(ii) translated / untranslated (iii) with / without exception. We treat

5 GUARANTEEING THE OPERATING CONDITIONS 13

here only the case of a translated read access without exception.
First we identify the sequence of states in the control automaton for

such a request. For states s we denote by s+ the fact that control stays
in state s until the busy signal is taken away from the memory interface.

Lemma 1 (Path lemma) In a translated read without exception the path
through the control automaton is

idle → add → readpte+ → comppa → read+ → idle .

Lemma 2 (Local correctness) The result p.dinte of a translated read
without exception to a virtual address supplied as va = p.addrts is

p.dinte = m(hts)8(pma(hts, va ◦ 03))) .

Proof. In cycle ts + 1 control is in state add. Hence in cycle ts + 2 we
have in the MMU’s address register ar the address of the required page
table entry

arts+2 = h.ptots+1 + 4 · p.addrts+1.px

= h.ptots + 4 · p.addrts.px

by G1 and G2. Consider the cycle t′ ≥ ts + 3 when control is in state
readpte and the busy signal from the memory interface is zero. Using G3
one argues that the MMU’s data register dr contains in cycle t′ + 1 the
page table entry needed for the translation of va. If ptea(hts, va)[2] = 1,
it is in the upper half of the data register. Otherwise, it is in the lower
half.

pte(hts, va) =

(

drt′+1[63 : 32] if ptea(hts, va)[2] = 1 ;

drt′+1[31 : 0] otherwise.

One cycle later the MMU’s address register ar contains the translated
address

art′+2 = pma(hts, va)

Consider the cycle t′′ ≥ t′ + 2 when control is in state read and the
busy signal from the memory interface is zero. Using G4 one argues that
the memory output mdout contains in cycle te = t′′+1 the required result
of the translated read access

p.doutte = m.doutte = m(hts)8(pma(hts, va ◦ 03)))

5 Guaranteeing the operating conditions

Stable inputs from the CPU to the MMU’s (Condition G1) can be guar-
anteed by using the stabilizer circuits mentioned in Section 4.2 with very
modest enhancements. Condition G4 for loads can be guaranteed, if loads
and stores are performed in order by the memory unit. Guaranteeing the
remaining operating conditions (Conditions G2, G3, and G4 for fetch)
requires a software convention and a hardware construction.

5 GUARANTEEING THE OPERATING CONDITIONS 14

5.1 Software Synchronization Convention

We consider sequential computations of the physical machine (c0
P , c1

P , . . .);
formally this means that we have for all steps i:

ci
P = δP (ci−1

P , eevi)

Recall that for physical machines the address iaddr(cP) from which
an instruction is fetched depends on cP .mode:

iaddr(cP) =

(

cP .DPC if cP .mode = 0 ;

pma(cP , cP .DPC) otherwise.

The instruction I(cP) executed in configuration cP is then

I(cP) = cP .pm4(iaddr(cP))

We define an instruction as synchronizing if it is completed and the
pipeline of the processor is drained before the (translation of the) fetch
of the sequentially next instruction starts. The VAMP processor has
already a synchronizing instruction, namely a movs2i instruction with
IEEEf as a source register.4 We now also define the rfe instruction to
be synchronizing. With the help of function I(cP) one defines a predicate
syncing(cP) stating that the instruction executed in configuration cP is
synchronizing. The software sync-convention now has two parts:

1. Let t < t′. Assume I(ct
P) writes to iaddr(ct′

P). Then for some

t′′ between t and t′ instruction I(ct′′

P) must be synchronizing, i.e.

we have syncing(ct′′

P). The corresponding condition is also needed
without address translation in order to prevent the modification of
an instruction in pipelined machines after it has been (pre-) fetched
[SH98, BJK+03].

2. Let t < t′. Assume instruction I(ct′

P) is in user mode (ct′

P .mode = 1)
and instruction I(ct

P) writes a page table entry read during the fetch

of I(ct′

P); the address of this entry is ptea(ct
P .DPC) for fetch. Then

we also require syncing(ct′′

P) for an instruction t′′ between t and t′.

Clearly, the first sync-convention addresses operating conditions G4 in
case of a fetch, whereas sync Condition 2 addresses G3. In the hardware
one has to address operating condition G2 and one has to implement the
flushing of the processor once a synchronizing instruction is decoded.

5.2 Hardware mechanisms for synchronization

The VAMP processor has a two stage pipeline for instruction fetch and
instruction decode, followed by a Tomasulo scheduler. For details see
[BJK+03, Kro01, Bey04]. Thus, there are many register stages S, e.g. IF
for instruction fetch, PCs with PC and DPC, ID for instruction decode,
RS(rs) for reservation station rs, ROB(tag) for the content of the reorder
buffer with address tag, RF for the register files, etc. In particular the
instruction register I belongs to stage ID.

The clocking and stalling of individual stages is achieved by a so-called
stall engine. For an introduction to stall engines see [MP00]; for better
stall engines see [Kro01, Bey04]. We enhance here the stall engine from
[Bey04].

4This instruction reads out the floating point interrupts accumulated so far.

6 PROCESSOR CORRECTNESS 15

Three crucial data structures resp. signals are associated with each
stage S in the stalling engine:

1. The full bit fullS . It is on, if stage S has meaningful data. Clearing
the bit fullS flushes the stage. Here we will only be concerned with
bit fullID of the instruction decode stage.

2. The local busy signal busyS. If this signal is on in cycle t, then the
circuits with inputs from register stage S do not produce meaningful
data at the end of cycle t. Here we will only be concerned with the
busy signal busyIF of the instruction fetch stage.

3. The update enable signals ueS. It is like a clock enable signal. If
ueS is active in cycle t, the stage S has new data in cycle t + 1. We
will use these signals in Section 6.1 for the definition of scheduling
functions.

Let busy′

IF be the busy signal of the instruction fetch stage of a ma-
chine without memory management units. We define a new busy signal
by

busyIF (h) = busy′

IF (h) ∨ ¬fetch(h)

where signal fetch(h) is almost the read signal for the instruction MMU
of the CPU.5

Signal fetch is turned on, if (i) no instruction changing registers pto,
ptl and mode is in progress and (ii) no synchronizing instruction is in
progress. Instructions in progress can be in the instruction decode stage,
i.e. in the instruction register IR, or they are issued but not completed,
thus they are in the Tomasulo scheduler and its data structures. In a
Tomasulo scheduler an instruction in progress which changes a register r
from a register file is easily recognized by an inactive valid bit r.v. Thus
we define

fetch(h) = h.pto.v ∧ h.ptl.v ∧ h.mode.v ∧ fetch′(h)

where function fetch′(h) has to take care of instructions in the decode
stage. Using predicates like rfe() which are already defined for configu-
rations also for the contents of the instruction register, we set

fetch′(h) = ¬(h.fullID ∧ (syncing(IR)∨ movi2s(IR) ∨ rfe(IR))) .

In the VAMP processor synchronizing instructions stay in the instruc-
tion decode stage until the can immediately proceed to the write-back
stage.

6 Processor correctness

6.1 Correctness criteria

We are using correctness criteria based on scheduling functions from [MP00,
Kro01, Bey04, SH98]. Register stages S of the hardware come in three
flavours:

• Visible stages (with respect to the physical machine): these stages
are (i) PCs with the program counters h.PC, h.DPC, (ii) RF with
the register files and h.GPR, h.SPR, and h.FPR (iii) stage mem′

5It is latched for the completion of an interrupted access

6 PROCESSOR CORRECTNESS 16

with the user visible memory. This latter stage does not exist di-
rectly as a hardware component; instead it is simulated by the mem-
ory system (main memory and caches) and its state in hardware
configuration h is encoded in function m(h) (cf. Section 4.2).

• Invisible stages: the registers of these stages store values of auxiliary
functions used in the definition of the sequential semantics of the
physical machines. E.g. stage ID with the instruction register stores
values I(cP), stage mem with the input registers to the memory
system for load / store operations stores ea(cP), and so on.

• Stages from the data structures of the Tomasulo scheduler.

We map hardware stages S and hardware cycles t to instruction num-
bers i by means of scheduling functions: sI(S, t) = i. The intention is
to relate configurations ht of the hardware with configurations ci

P of the
specification machines in the following way:

1. For visible registers R from stages S 6= mem′:

ht.R = c
sI(t,S)
P .R

Thus the specified value of visible hardware register R is the same
as the value of R in the specification machine before execution of
the i’th instruction, where i = sI(S, t) is the instruction scheduled
in stage S during cycle t.

The next two condition differ purely by notation:

2. For stage mem′:

m(ht) = c
sI(mem′ ,t)
P .pm

3. For invisible registers R in stage S:

ht.R = R(c
sI(S,T)
P)

4. Specific correctness criteria are used for the data structures of the
Tomasulo scheduler. For details see [Kro01].

The three main definitions for scheduling functions which make this
work are the following:

1. In order fetch: The fetch scheduling function is incremented if in-
struction decode stage receives a new instruction. Recall that ueID

is the update enable function of the instruction register:

sI(fetch, t + 1) =

(

sI(fetch, t) + 1 if uet
ID ;

sI(fetch, t) otherwise.

2. The scheduling of a stage S′ that is not updated does not change:

uet
S′ = 0 → sI(S′, t + 1) = sI(S′, t)

3. If data are clocked in cycle t from stage S′ to S (a formal defini-
tion depends on update enable signals, mux select signals, or driver
enable signals during cycle t) then

sI(S′, t + 1) =

(

sI(S, t) + 1 if S′ invisible;

sI(fetch, t) if S′ visible.

Thus intuitively an instruction number i = sI(S, t) moves together
with the data through the datapath; upon reaching a register in a
visible stage S′ however, the register receives the value after the i-th
instruction, i.e. before instruction (i + 1)-th instruction.

6 PROCESSOR CORRECTNESS 17

6.2 Correctness proof with external interrupt sig-
nals

In general the hardware of a pipelined processor does not complete one
instruction per cycle. As there are more cycles t than instructions i there
are necessarily more external interrupt events signals eevt

h ‘seen’ by the
hardware than event signals eevi seen by the sequential specification ma-
chine. As the computation of the sequential machine is defined by

ci+1
P = δP (ci

P , eevi)

one has to define the interrupt signal eevi seen by the specification ma-
chine from the signals eevt

h seen by the hardware and the processor. This
has already been observed in [SH98, MP00].

The VAMP processor samples external interrupt signals only during
the write-back stage WB (i.e. it does not sample them all). Every in-
struction i is only for one cycle t in the write-back stage. Call this cycle
t = WB(i). The correctness proof then works with

eevi = eev
WB(i)
h .

That no harm is done by the external interrupts signals, which are
ignored both by the sampling of the hardware and the sequential pro-
gramming model, is a problem that has to be solved by the protocol
between the processor and the I/O devices.

6.3 Correctness proof

We give the new part of the processor correctness proof for a translated
instruction fetch without exceptions. The other new cases are handled
by similar arguments. Thus consider a translated read access on the
instruction port of the CPU which lasts from cycle ts to cycle te, let
i = sI(fetch, ts) and let t ∈ {ts, . . . , te} be any cycle of the access. From
the correctness proof for the processor hardware we conclude, that on the
address bus of the instruction MMU PI.addr we have observed during
cycle t the correct delayed PC,

PI.addr(ht) = ci
P .DPC[31 : 2] .

Let i′(t) = sI(RF, t) < i be the instruction in the register stage during
cycle t. Also by processor correctness we have for all registers R of the
register files

ht.R = c
i′(t)
P .R

In particular this holds for registers R ∈ {pto, ptl,mode}. By the
construction of the fetch signal all instructions x < i that update special
purpose register pto, ptl, or mode have already left the pipe already at
cycle ts (and, because we fetch in order no instructions x > i can enter the
pipe while instruction i is in the fetch stage). We conclude for registers
R ∈ {pto, ptl, mode} and all cycles t ∈ {te, . . . , ts} that

ci
P .R = c

i′(t)
P .R = ht.R .

Let i′′(t) = sI(mem′, t). From processor correctness we get

m(ht) = c
i′′(t)
P .pm

6 PROCESSOR CORRECTNESS 18

By the second part of the software sync-convention all instructions
x < i which write the page table entry address ptea(ci

P , ci
P .DPC) have

left the pipe already at cycle ts. We conclude

pte(ci
P , ci

P .DPC) = ci
P .pm4(ptea(ci

P , ci
P .DPC))

= c
i′′(t)
P .pm4(ptea(ci

P , ci
P .DPC))

= m(ht)4(ptea(ci
P , ci

P .DPC))

By the first part of the software sync-convention all instructions which
write the physical memory address pma(ci

P , ci
P .DPC) have also left the

pipe already at cycle ts. As above we conclude

I(ci
P) = ci

P .pm4(pma(ci
P , ci

P .DPC))

= c
i′′(t)
P .pm4(pma(ci

P , ci
P .DPC))

= m(ht)4(pma(ci
P , ci

P .DPC))

Hence the operating conditions for the MMU are fulfilled, and we get
from the local correctness lemma:

PI.dout(hte) = m(hts)8(pma(hts, P I.addr(hts) ◦ 03))

The rest is lengthy but trivial. Specializing the equations above for
t = ts gives

PI.addr(hts) = ci
P .DPC[31 : 2]

hts.pto = ci
P .pto

pte(ci
P , ci

P .DPC) = m(hts)4(ptea(ci
P , ci

P .DPC))

I(ci
P) = m(hts)4(pma(ci

P , ci
P .DPC))

Using the definition of functions ptea, pte and pma for hardware ma-
chines we conclude successively

ptea(hts, ci
P .DPC) = hts.pto + 4 · ci

P .DPC.px

= ci
P .pto + 4 · ci

P .DPC.px

= ptea(ci
P , ci

P .DPC)

pte(hts, ci
P .DPC) = m(hts)4(ptea(hts, ci

P .DPC))

= m(hts)4(ptea(ci
P , ci

P .DPC))

= pte(ci
P , ci

P .DPC)

pma(hts, ci
P .DPC) = pte(hts, ci

P .DPC).px ◦ ci
P .DPC.bx

= pte(ci
P , ci

P .DPC).px ◦ ci
P .DPC.bx

= pma(ci
P , ci

P .DPC)

PI.dout(hte) = m(hts)8(pma(hts, P I.addr(hts) ◦ 03))

= m(hts)8(pma(hts, ci
P .DPC[31 : 2] ◦ 03))

= m(hts)8(pma(ci
P , ci

P .DPC[31 : 2] ◦ 03))

= ci
P .pm8(pma(ci

P , ci
P .DPC[31 : 2] ◦ 03))

I(ci
P) = ci

P .pm4(pma(ci
P , ci

P .DPC))

=

(

PI.dout(hts)[63 : 32] if ci
P .DPC[2] ;

PI.dout(hts)[31 : 0] otherwise.

Thus, by selecting the right half in the double word PI.dout(hte) using
bit 2 of the delayed program counter, in cycle te+1 we clock I(ci

P) in the

7 VIRTUAL MACHINE SIMULATION 19

cP .pm

abase + a

abase

Swap driver
and page

fault handler

User pages

0

Figure 7: Memory Map with addresses given as page indices.

instruction register I. We have sI(ID, te + 1) = i. Thus for a translated
fetch without exceptions lasting from cycle ts to cycle te we have shown
the required hardware correctness statement

Lemma 3 hte+1.I = I(ci
P) = I(c

sI(ID,te+1)
P)

7 Virtual machine simulation

In this section we outline an informal proof that a physical machine with
an appropriate page fault handler can simulate a virtual machine. We
will use pseudo code as well as C like data structures in order to describe
the handler and we will argue in the style of an efficient algorithms paper.
Making these arguments precise is not trivial; we give some details in the
section on further work.

For page indices px we define the physical page px, the swap page px,
and the virtual page px respectively as

ppage(cP , px) = cP .pm4K(px ◦ 012) ,

spage(cP , px) = cP .sm4K(px ◦ 012) , and

vpage(cV , px) = cV .vm4K(px ◦ 012) .

We extend the definition of physical page indices ppx(cP , va) and valid
bits v(cP , va) from addresses va to page indices px by

ppx(cP , px) = ppx(cP , px ◦ 012) and

v(cP , px) = v(cP , px ◦ 012) .

7.1 Memory map of the physical machine

We partition the physical memory cP .pm into user memory and system
memory according to Figure 7. Starting at the physical address with page
index abase we allocate a pages of user memory. This defines the set of
user page indices

UP = {u | abase ≤ 〈u〉 < abase + a − 1} .

Physical addresses with page indices smaller than abase are used by
the page fault handler and the swap memory driver.

We list below the data structures used by the handler and some in-
variants for them.

7 VIRTUAL MACHINE SIMULATION 20

• A process control block PCB to save the processor registers of the
virtual processor when the processors runs in system mode.

• The page table

PT (cP) = cP .pm4·V (cP .pto · 4K)

where V = 〈cP .ptl〉 + 1 is the number of accessible virtual pages.

We require for all virtual page indices 0 ≤ px < V that the corre-
sponding physical page index belongs to a user page if it is valid,

v(cP , px) =⇒ ppx(cP , px) ∈ UP .

• the physical page index MRL of the most recently loaded page.

• A swap page index sbase in swap memory. For virtual addresses va
we will use the swap memory address

sma(cP , va) = sbase · 4K + va

• A user page index b ∈ {0, . . . , a − 1}. We call a user page u ∈
{0, . . . , a − 1} full if it stores a valid virtual page, i.e. if there is a
virtual page index 0 ≤ px < V such that

v(cP , px) ∧ ppx(cP , px) = abase + u

A user page which is not full is called free. We maintain as an
invariant that user page u is free iff u > b.

• an array B of size a holding virtual page indices. If u ≤ b, i.e. if user
page u is full, then

abase + u = ppx(cP , B[u])

This data structure is used for victim selection, if a page has to be
evicted.

• Parameters ppxp, spxp, and p2s of the driver for the swap memory.

7.2 Simulation relation

For virtual machine configurations cV and physical machine configura-
tions cP we define a simulation relation B(cP , cV) stating that configura-
tion cP is an encoding for configuration cV . We require that the invariants
of the previous subsections hold for the physical machine and that the
physical machine is in user mode (cV .mode = 1). The simulation relation
is composed of two parts:

1. For all virtual addresses va

cV .p(va) = p(cP , va) .

i.e. the write protection function is encoded in the protection bits of
the page tables.

2. For all virtual addresses va

cV .vm(va) =

(

cP .pm(pma(cP , va)) if v(cP , va) ;

cP .sm(sma(cP , va)) otherwise.

So, the user pages of physical memory act as a (write-back) cache
for the swap memory. This condition may be equivalent formulated
for all virtual page indices px as

vpage(cV , px) =

(

ppage(cP , ppx(cP , px)) if v(cP , px) ;

spage(cP , sbase + px) otherwise.

7 VIRTUAL MACHINE SIMULATION 21

7.3 Page fault handler and software conditions

Assume the interrupt occurred during physical machine configuration cP

encoding virtual machine configuration cV , i.e. we have B(cP , cV).
We describe a very simple handler; the handler itself is never inter-

rupted. Thus it suffices that the handler saves only the general purpose
registers of the physical processor into the process control block. Testing
the exception cause register ECA it is easy to determine, whether a page
fault on fetch or a page fault on load store has occurred. For the former
we have ECA[3] = 1, for the latter we have ECA[4] = 1.

It is easy to specify and implement the handler in case of an exception
due to page table length exception or rights violations: the exception
is recognized and the simulation is stopped. Thus assume a page fault
occurs, because the required virtual page is not in physical memory. The
virtual address xva causing the exception is defined as

xva =

(

EDPC if pff ;

EDATA if pfls .

We call the page index of the exception virtual address the excep-
tion virtual page xv = xva.px. Because this page is not in memory and
B(cP , cV) holds, we know that the correct virtual page is stored in swap
memory

spage(cP , sbase + xv) = vpage(cV , xv)

If b = a−1 there are no free user pages and a victim physical page index
vp is selected from the user pages. However, the most recently loaded page
is never chosen as victim to avoid deadlock, so vp ∈ UP \ {MRL}.

Let vp = abase + u. By looking up table entry B[u] we determine
the corresponding victim virtual page index vv = B[u] of the virtual page
stored at physical page vp.

Because B(cP , cV) holds and ppx(cP , vv) = abase + u we have

vpage(cV , vv) = ppage(cP , ppx(cP , vv))

= ppage(cP , ppx(cP , B[u]))

= ppage(cP , abase + u)

= ppage(cP , vp)

Running the driver with parameters

(ppxp, spxp, p2s) = (vp, sbase + vv, 1)

will save the victim page to swap memory, i.e. we end up in a physical
machine configuration c

(1)
P with

spage(c
(1)
P , sbase + vv) = ppage(cP , vp) .

We conclude

spage(c
(1)
P , sbase + vv) = ppage(cP , vp) = vpage(cV , vv) .

Hence, if we clear the valid bit of page vv and enter a configuration
c
(2)
P with v(c

(2)
P , vv) = 0, the simulation relation B(c

(2)
P , cv) still holds.

We now have a user page index e where we can swap in the exception
virtual page, namely

e =

(

abase + b + 1 if b < a − 1 ;

vp otherwise.

7 VIRTUAL MACHINE SIMULATION 22

In the first case we increment b. Running the driver with parameters

(ppxp, spxp, p2s) = (e, sbase + xv, 0)

will swap the exception virtual page into physical memory, i.e. we end up
in a configuration c

(3)
P where

ppage(c
(3)
P , e) = spage(cP , sbase + xv)

= vpage(cV , xv) .

Thus, B(c
(4)
P , cV) and the invariants will hold if we set

v(c
(4)
P , vx) = 1

ppx(c
(4)
P , vx) = e

B[e − abase] = vx

MRL = e

in a later configuration c
(4)
P . The handlers completes its work by restoring

the general purpose registers from the process control block and executing
an rfe instruction.

By inspection of the handler we see that the software synchronization
conditions are fulfilled and thus we can conclude that with this handler
the hardware specified above will work correctly.

7.4 Simulation theorem

Theorem 1 For every computation (c0
V , c1

V , . . .) of the virtual machine
there is a computation (c0

P , c1
P , . . .) of the physical machine and there are

step numbers (s(0), s(1), . . .) such that we have for all t:

B(ct
V , c

s(t)
P)

This means that t steps of the virtual machine are simulated after s(t)
steps by the physical machine. This is obviously shown by induction on t.
For the initialization we set b = −1, i.e. all physical page are invalid, and
the entire virtual memory is stored in swap memory. Concluding from t
to t + 1 there are several cases. If there is no exception, then one step
of the virtual machine is simulated by one step of the physical machine
running in user mode6 and we get

s(t + 1) = s(t) + 1

Because in a single instruction we can have up to two page faults, there
remain four cases:

1. A single page fault on fetch.

2. A single page fault on load / store.

3. A page fault on fetch followed by a page fault on load / store.

4. A page fault on load / store followed by a page fault on fetch. This
case occurs if the page with the current instruction is the victim
page of the first page fault.

6Not in one cycle of the hardware!

8 SUMMARY AND FURTHER WORK 23

For physical machine steps s let τ (s) be the first step s′ after s such
that the machine is in user mode:

τ (s) = min{s′ | s′ > s ∧ cs′

P .mode}

In all four cases we have a page fault in step s(t) + 1. In the first two
cases the simulation of step t + 1 succeeds without page fault in the first
step in user mode after step s(t) + 1 thus

s(t + 1) = τ (s(t) + 1) + 1 .

In the other two cases the second page fault occurs in step

s′ = τ (s(t) + 1) + 1 .

Because the victim page of the second page fault is not the page
swapped in during the handling of the first page fault the simulation will
succeed in step

s(t + 1) = τ (s′) + 1 .

8 Summary and further work

We have presented two main results. (i) We have reported about the
formal verification of a processor with (simple) MMUs. The local cor-
rectness proof for an MMU alone (Section 4.4) is straight forward, but
it hinges on nontrivial operating conditions. Guaranteeing the operating
conditions requires a variety of arguments, from very detailed arguments
about the hardware (e.g. Section 5.2) to the format of page fault handlers
(Section 7.3). (ii) Arguing about low level system software we have given
a paper and pencil proof for a simulation theorem stating that virtual
machines are simulated by physical machines with appropriate page fault
handlers. Because modern operating systems support multitasking and
virtual memory, the results of this paper are crucial steps towards the
verification of entire computers systems.

Presently we see three main directions for further work. (i) On the
hardware side one wants to verify processors with pipelined MMUs, multi
level page tables and table look aside buffers. (ii) On the low level soft-
ware side one wants to formally prove the simulation theorem of this
paper. This is part of an ongoing effort to formally verify an entire op-
erating system kernel as part of the Verisoft project. Paper and pencil
proofs can be found in [SysArch04] (iii) one wants to establish correctness
theorems for the memory management mechanisms of shared memory
multiprocessors. The thesis [Hil05] contains results of this nature.

References

[ACHK04] Mark Aagaard, Vlad Ciubotariu, Jason Higgins, and Farzad
Khalvati. Combining equivalence verification and completion
functions. In Alan Hu and Andrew Martin, editors, FMCAD,
volume 3312 of Lecture Notes in Computer Science, pages 98–
112. Springer, 2004.

[Bev89] William R. Bevier. Kit and the short stack. Journal of Auto-
mated Reasoning, 5(4):519–530, 1989. In [Boy89].

REFERENCES 24

[Bey04] Sven Beyer. Putting It All Together: Formal Verification of the
VAMP. PhD thesis, Saarland University, Computer Science
Department, 2004.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinen-
bach, and Wolfgang Paul. Instantiating uninterpreted func-
tional units and memory system: functional verification of
the VAMP processor. In Daniel Geist and Enrico Tronci, ed-
itors, CHARME, volume 2860 of Lecture Notes in Computer
Science, pages 51–65. Springer, 2003.

[BM88] Robert S. Boyer and J S. Moore. A Computational Logic
Handbook. Academic Press, 1988.

[Boy89] Robert S. Boyer, editor. Special Issue on System Verification,
volume 5 of Journal of Automated Reasoning. Kluwer Aca-
demic Publishers, 1989.

[Hil05] Mark Hillebrand. Address Spaces and Virtual Memory: Speci-
fication, Implementation, and Correctnesss (Draft). PhD the-
sis, Saarland University, Saarbrücken, Germany, 2005.

[Hun89] Warren A. Hunt. Microprocessor design verification. Jour-
nal of Automated Reasoning, 5(4):429–460, December 1989.
In [Boy89].

[Kro01] Daniel Kroening. Formal Verification of Pipelined Micropro-
cessors. PhD thesis, Saarland University, Computer Science
Department, 2001.

[Moo89] J Strother Moore. A mechanically verified language implemen-
tation. Journal of Automated Reasoning, 5(4):461–492, 1989.
In [Boy89].

[Moo03] J Strother Moore. A grand challenge proposal for formal
methods: A verified stack. In Bernhard K. Aichernig and
T. S. E. Maibaum, editors, 10th Anniversary Colloquium of
UNU/IIST, volume 2757 of Lecture Notes in Computer Sci-
ence, pages 161–172. Springer, 2003.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architec-
ture: Complexity and Correctness. Springer, 2000.

[OSR92] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype
verification system. In 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752. Springer, 1992.

[SH98] Jun Sawada and Warren A. Hunt, Jr. Processor verification
with precise exeptions and speculative execution. In CAV ’98:
Proceedings of the 10th International Conference on Computer
Aided Verification, pages 135–146. Springer-Verlag, 1998.

[Ver03] The Verisoft Project. http://www.verisoft.de/, 2003.

[You89] William D. Young. A mechanically verified code genera-
tor. Journal of Automated Reasoning, 5(4):493–518, 1989.
In [Boy89].

