Exercise 1: (binary representation e_{0} of E_{0} in Booth recoding)
(4 points)
To avoid summing of negative numbers $C_{2 j}$ in Booth recoding we consider positive $E_{2 j}$ instead:

$$
\begin{aligned}
E_{2 j} & =C_{2 j}+3 \cdot 2^{n+1} \\
E_{0} & =C_{0}+4 \cdot 2^{n+1}
\end{aligned}
$$

where corresponding binary representations are:

$$
\begin{aligned}
e_{2 j} & =\operatorname{bin}_{n+3}\left(E_{2 j}\right) \\
e_{0} & =\operatorname{bin}_{n+4}\left(E_{0}\right)
\end{aligned}
$$

In the class was proved that binary representation $e_{2 j}$ of $E_{2 j}$ can be computed by

$$
\left\langle e_{2 j}\right\rangle=\left\langle 1 \overline{s_{2 j}}, d_{2 j} \oplus s_{2 j}\right\rangle+s_{2 j} \text { for } j>0
$$

Derive the formula of binary representation for case $j=0$ and prove its correctness.

Exercise 2: (the last sign bit)

(8 points)
Constructing partial products for multiplication using Booth Recoding we incorporated sign bits $s_{2 j}$ into the representation of $F_{2 j+2}$ instead of adding them to $F_{2 j}$ and defined

$$
\begin{aligned}
g_{2 j} & =\left(f_{2 j} 0 s_{2 j-2}\right) \\
g_{0} & =\left(f_{0} 00\right)
\end{aligned}
$$

Prove that $s_{2 m^{\prime}-2}=0$, i.e. we don't need to perform the additional summation in order to add the last sign bit (see Figure 1).

Figure 1: Construction of the partial products

Exercise 3: (partial product length)

(8 points)
We define a partial product

$$
S_{2 j, 2 k}^{\prime}=\sum_{t=j}^{j+k-1}\left\langle g_{2 t}\right\rangle \cdot 4^{t-1}
$$

Prove for all k that $S_{2 j, 2 k}^{\prime}$ is a multiple of $2^{2 j-2}$ bounded by $S_{2 j, 2 k}^{\prime} \leq 2^{n+2 j+2 k+2}$.

Exercise 4: (number of excess full adders)

Prove or disprove: the number of excess full adders in binary addition tree for Booth recoding is $O(m \log m)$.

