
University of the Saarland
Department 6.2 - Informatik
Prof. Dr. W.J. Paul

Computer Architecture I - WS 03/04
(due: 5.11.2003)

Today is the last day when you can be registered for this course. If you will not be registered
your solutions will not be graded and you cannot take part in the final exam.

The registration form is available in http://www-wjp.cs.uni-sb.de/lehre/lehre.php under
”Computer Architecture”.

Excercise 1: (partition lemma) (4 points)
Consider a number representation to base B, where string a ∈ {0, . . . , B − 1}n. For string a we
denote by

〈a〉B =
n−1∑

i=0

ai ∗Bi, where ai ∈ {0, ..., B − 1}

the natural number that has a as its representation to base B.

Prove that for any m ∈ {0, . . . , n− 1} holds:

〈a[n− 1 : 0]〉B = 〈a[n− 1 : m]〉B ∗Bm + 〈a[m− 1 : 0]〉B

Excercise 2: (addition algorithm for numbers to base B) (4 points)
Addition algorithm for numbers to base B (represented in the previous exercise) is the following:

cin = c−1

〈cisi〉B = ai + bi + ci−1

sn = cn−1

Prove that

〈cn−1s[n− 1 : 0]〉B = 〈a[n− 1 : 0]〉B + 〈b[n− 1 : 0]〉B + cin

Excercise 3: (addition algorithm for 1-digit decimal numbers) (5 points)
We can represent natural numbers by binary representations or by unary representations.
What ARE numbers in IN or IN0?
Assume IN consists of sequences of bars |, i.e. IN = {|}+ and 0 denotes the empty string ε.

Thus 〈5〉10 = |||||
〈10〉10 = ||||||||||
〈10〉2 = ||

〈0〉10 = 〈0〉2 = ε

Then for strings x, y ∈ IN0, addition is just concatenation:

x + y = xy

For example: ||+ ||| = |||||, ||+ ε = ||

University of the Saarland
Department 6.2 - Informatik
Prof. Dr. W.J. Paul

Computer Architecture I - WS 03/04
(due: 5.11.2003)

We need to construct a table for addition algorithm for base B = 10 like that:

ai bi ci−1 ci si
...

...
...

...
...

4 1 0 0 5
...

...
...

...
...

5 6 1 1 2
...

...
...

...
...

Prove (using unary numbers) that the following statements indeed hold:

a) 5 + 6 + 1 = 〈1, 2〉10

b) 4 + 1 + 0 = 〈0, 5〉10

Exercise 4: (associativity) (3+4 points)
Show that the following operations are associative:

a) ∧ : {0, 1}2 −→ {0, 1}
b) ◦ : {{0, 1}2}2 −→ {0, 1}2

where ◦ defined by

(g, p) = (g2, p2) ◦ (g1, p1)
= (g2 ∨ g1 ∧ p2, p1 ∧ p2)

