
System Architecture

as an Ordinary Engineering Discipline

Version 0.58

Christoph Baumann & Wolfgang J. Paul & Sabine Schmaltz

July 24, 2013

In case of discovery of errors or difficulty understanding specific parts of the book, please report
to sabine@wjpserver.cs.uni-saarland.de. Our goal is to bring this book in the best possible state we
can – before it is published. Thus, any input from students is both important and helpful.

Bitte bei Fehlern oder unverständlichen Textpassagen einfach per eMail (oder persönlich vor
oder nach der Vorlesung) bei sabine@wjpserver.cs.uni-saarland.de melden. Ziel ist es das Buch vor
Veröffentlichung in den bestmöglichen Zustand zu bringen, daher ist jeder Input von Studenten
wichtig und nützlich.

(v0.16) Clarified chapter 1 by using the successor-function S (instead of +1) where appropriate.

(v0.17) Corrected the definition of nzero.

(v0.18) Changed the definition of u on page 103 to match the lecture. Corrected BCE signals
according to the lecture.

(v0.19) Corrected the text on page 31, ”half adder”→”full adder”

(v0.20) Corrected definitions of alur and alui (page 121).

(v0.21) Renamed MIPS configurations c to configurations d.

Corrected the definition of jump targets.

Corrected several minor typos.

Renamed the access width d to a (because d(d) looks confusing).

(v0.22) Undid the renaming since the same MIPS chapter is also used in the MultiCore-book.

(v0.23) Corrected rs(c) to rd(c) on page 126. gpr(c) to gpr(x) on page 130. Typo page 132 foralla→
∀a

(v0.24) Corrected the picture of the BCE-unit (1-bit output, n- instead of k-bit b input) on page
111.

(v0.25) Corrected several typos in the ALU chapter.

(v0.26) Corrected neg to ovf on page 104.

(v0.27) Corrected page 102 bottom Bn to Bn. Corrected several typos in the first three chapters.

(v0.28) Added chapter 7. Beware of typos, I have not read it yet.

(v0.29) Chapter 7 was extended.

(v0.30) Chapter 7 improved.

(v0.31) A very preliminary chapter 8 was added.

(v0.32) Added missing null-pointer-constant.

(v0.33) Chapter 8 extended.

(v0.34) Further extensions to chapter 8.

(v0.35) Boolean expressions added as parameters to functions.

(v0.36) C0 chapter extended by expression evaluation.

ii

(v0.37) C0 chapter parts of statement execution added, fixed a few language errors.

(v0.38) Further extensions to chapter 8.

(v0.39) Lots of typos corrected.

(v0.40) Several minor clarifications.

(v0.41) Improvements to the text/style of presentation of Chapter 1. Errors fixed in several chapters.

(v0.42) Editing of Chapter 2, 3, 4, 5. Small errors in several chapters fixed.

(v0.43) Fixed typo in chapter 1 (a1 = 9→ a1 = 1)

(v0.44) Added definition of adding sequence elements left/right (page 20)

(v0.45) Added definition concatenation of sequences

(v0.46) Corrected many small errors in chapter 8, keep in mind, though, that this chapter will be
changed significantly during the lecture. Added a small remark on the order of applying lemmas
and theorems in a mathematical theory in chapter 1. Due to the switch to Springer monograph
document format, there might be several style issues that will need to be resolved.

(v0.47) Added a small paragraph about sequence element numbering convention on page 12. I am not
100% sure this convention is obeyed everywhere. Please report any violation of this condition
if you encounter one.

(v0.48) Added a paragraph about the conditional-sum-adder and its construction in the ALU chap-
ter.

(v0.49) Missing af [3] condition added in ALU. Parallel-prefix in basic circuits.

(v0.50) Corrected ∧-gate in parallel prefix to ◦-gate.

(v0.51) Corrected ifill definition in ISA. Removed irrelevant RAM designs. Reworking MIPS hard-
ware implementation to the simple 2-phase execute-fetch machine of the lecture (this means
many things get simpler) – this is only partially done so far! Going back to a layout with bigger
font and less margins for the lecture notes (cheaper for printing and carrying around).

(v0.52) Finished adapting construction and correctness proof of the 2-phase machine (had to leave
the proof of hardware memory correctness as an exercise due to lack of time to write down real
proof). It might be a good idea to get rid of byte- and halfword writes in the ISA specification
machine when we don’t even implement them.

(v0.53) Rewrite of beginning of C0 chapter. Added missing space character in C0 grammar. Cor-
rected PaDF→PaDS in C0 grammar.

(v0.54) Removed MIPS shift instructions (which we do not implement in this book) from the ISA
tables.

(v0.55) Corrected order of typedef on page 139. Removed hardware implementation of shift from
the book.

(v0.56) Parallel prefix circuit moved to ALU chapter. Significant improvements in MIPS hardware
construction chapter. Rewrite of parts of C0 chapter.

(v0.57) C0 examples partially rewritten. Minor changes elsewhere.

(v0.58) Minor errors corrected. Extended programming examples.

iii

iv

Contents

1 Introduction 1

2 Understanding Decimal Addition 3
2.1 Experience versus Understanding . 3
2.2 The Natural Numbers . 3

2.2.1 2 + 1 = 3 is a Definition . 5
2.2.2 1 + 2 = 3 is a Theorem . 5
2.2.3 9 + 1 = 10 is a Brilliant Theorem . 7

2.3 Summary . 8

3 Basic Mathematical Concepts 9
3.1 Basics . 10

3.1.1 Numbers and Sets . 10
3.1.2 Sequences, their indexing and overloading . 10
3.1.3 Logical connectives and vector notation . 13

3.2 Modulo Computation . 13
3.3 Sums . 15

3.3.1 Geometric sums . 15
3.3.2 Arithmetic Sums . 16

3.4 Graphs . 16
3.4.1 Directed Graphs . 16
3.4.2 Directed acyclic graphs and the depth of nodes 18
3.4.3 Rooted Trees . 19

4 Number Formats and Boolean Algebra 21
4.1 Binary Numbers . 21
4.2 Two’s Complement Numbers . 25
4.3 Boolean Algebra . 26

4.3.1 Identities . 29
4.3.2 Solving Equations . 30
4.3.3 Disjunctive Normal Form . 31

5 Hardware 33
5.1 Gates and Circuits . 33
5.2 Some Basic Circuits . 38
5.3 Clocked Circuits . 42
5.4 Registers . 45
5.5 Finite State Transducers . 45

5.5.1 Realization of Moore Automata . 46
5.5.2 Precomputing Outputs of Moore Automata 48

v

6 Five Shades of RAM 51
6.1 Basic Random Access Memory . 51
6.2 Read Only Memory (ROM) . 53
6.3 Combining RAM and ROM . 54
6.4 Three Port RAM for General Purpose Registers . 55
6.5 SPR RAM . 57

7 Arithmetic Circuits 59
7.1 Adder and Incrementer . 59

7.1.1 Carry-Chain Adder . 59
7.1.2 Conditional-Sum Adder and Incrementer . 60
7.1.3 Parallel Prefix Circuits . 63
7.1.4 Carry-Look-Ahead Adders . 65

7.2 Arithmetic Unit . 66
7.3 Arithmetic Logic Unit (ALU) . 71
7.4 Shifter . 72
7.5 Branch Condition Evaluation Unit . 73

8 A Basic Sequential MIPS Machine 77
8.1 Tables . 78

8.1.1 I-Type . 78
8.1.2 R-type . 79
8.1.3 J-type . 79

8.2 MIPS ISA . 79
8.2.1 Configuration and Instruction Fields . 79
8.2.2 Instruction Decoding . 82
8.2.3 ALU-Operations . 82
8.2.4 Shift . 84
8.2.5 Branch and Jump . 85
8.2.6 Loads and Stores . 86
8.2.7 ISA Summary . 88

8.3 A Sequential Processor Design . 88
8.3.1 Hardware Configuration . 89
8.3.2 Fetch and Execute Cycles . 90
8.3.3 Reset . 90
8.3.4 Instruction Fetch . 91
8.3.5 Proof Goals for the Execute Stage . 92
8.3.6 Instruction Decoder . 93
8.3.7 Reading from General Purpose Registers . 96
8.3.8 Next PC Environment . 97
8.3.9 ALU Environment . 100
8.3.10 Shifter Environment . 100
8.3.11 Jump and Link . 101
8.3.12 Collecting Results . 101
8.3.13 Effective Address . 102
8.3.14 Memory Environment . 102
8.3.15 Writing to the General Purpose Register File 103

8.4 Example Programs . 104
8.4.1 Simple MIPS Programs . 104
8.4.2 Software Multiplication . 105

vi

8.4.3 School Method for Integer Division . 106
8.4.4 Implementing Integer Division . 108

9 Context Free Grammars 111
9.1 Introduction to Context Free Grammars . 111

9.1.1 Syntax of Context Free Grammars . 111
9.1.2 Quick and Dirty Introduction to Derivation Trees 112
9.1.3 Tree Regions . 113
9.1.4 Clean definition of derivation trees . 115
9.1.5 Composition and Decomposition of Derivation Trees 117
9.1.6 Generated Languages . 118

9.2 Grammars for Expressions . 118
9.2.1 Syntax of Boolean Expressions . 118
9.2.2 Grammar for Arithmetic Expressions with Priorities 120
9.2.3 Proof of Lemma 67 . 121
9.2.4 Distinguishing Unary and Binary Minus . 124

10 The Language C0 127
10.1 Grammar of C0 . 127

10.1.1 Names and Constants . 127
10.1.2 Identifiers . 129
10.1.3 Arithmetic and Boolean Expressions . 130
10.1.4 Statements . 130
10.1.5 Programs . 131
10.1.6 Type and Variable Declarations . 131
10.1.7 Function Declarations . 132
10.1.8 Representing and Processing Derivation Trees in C0 132
10.1.9 Sequence Elements and Flattened Sequences in the C0 Grammar 136

10.2 Declarations . 136
10.2.1 Type Tables . 136
10.2.2 Global Variables . 139
10.2.3 Function Tables . 139
10.2.4 Variables and Subvariables of C0 Configurations 141
10.2.5 Range of Types and Default Values . 141

10.3 C0 Configurations . 143
10.3.1 Variables, Subvariables and their Type in C0 Configurations c 143
10.3.2 Value of Variables, Type Correctness and Invariants 145
10.3.3 Expressions and statements in function bodies 148
10.3.4 Program Rest . 150
10.3.5 Result destination Stack . 152

10.4 Initial Configuration . 152
10.5 Expression Evaluation . 153

10.5.1 Type, Right Value and Left Value of Expressions 154
10.5.2 Constants . 156
10.5.3 Variable Binding . 157
10.5.4 Pointer Dereferencing . 158
10.5.5 Struct Components . 159
10.5.6 Array Elements . 159
10.5.7 ’Address of’ . 160
10.5.8 Unary Operators . 162

vii

10.5.9 Binary Operators . 162
10.6 Statement Execution . 164

10.6.1 Assignment . 164
10.6.2 Conditional Statement . 165
10.6.3 ’New’ Statement . 166
10.6.4 Function Call . 168
10.6.5 Return . 170

10.7 Correctness of C0-Programs . 172
10.7.1 Assignment and Conditional Statement . 172
10.7.2 Computer Arithmetic . 174
10.7.3 While Loop . 174
10.7.4 Linked Lists . 176
10.7.5 Recursion . 181

11 A C0-Compiler 187
11.1 Compiler Consistency . 188

11.1.1 Mememory Map . 188
11.1.2 Size of Types, Displacement and Base Address 189
11.1.3 Consistency for Data, Pointers and Stack . 192
11.1.4 Consistency for Code . 194
11.1.5 Consistency for the PC and the Caller Stack 195

11.2 Translation of Expressions . 201
11.2.1 Aho-Ullman Algorithm . 201

11.3 Translation of Statements . 201
11.4 Reconstructing Consistent C0 configurations from MIPS configurations 201

12 Operating System support in MIPS processors 203

viii

Chapter 1

Introduction

Dear Reader,
this booklet contains the lecture notes of a class we teach in Saarbrucken to first year students

within a single semester. The purpose of the class is simple: to exhibit constructions of

• a simple MIPS processor

• a simple compiler for a C dialect

• a small operating system kernel

and to give detailed explanations why they work.
Clearly, this is much more material on much fewer pages than you would expect to find in a usual

textbook. So, where is the secret to so much speed resp. productivity and where is the catch? The
secret - if you want to call it this way - is, that we treat computer science as an engineering discipline
like any other: to any topic there is appropriate math which is intuitive and completely adequate
to deal with it; both with specifications and with explanations why constructions work. Highschool
mathematics happens to suffice to deal with all subjects in this booklet. The only catch is that you
might have to give up a belief: that this cannot be done. But engineering is about facts, not beliefs.

But then, if speed is what you cherish and if kernels are what you are really interested in:
wouldn’t it be even faster by skipping processors and compilers and by jumping directly to the third
subject? This is the approach taken in traditional texts about operating systems and: no, this is
much slower. Kernel construction has foundations, which happen to be processors and compilers.
Read the introductions of the corresponding chapters in this booklet for explanation. Building on
shaky foundations is slow and the result needs continuous repairs1.

Are we hinting here that it is possible to construct entire systems that never need repair and
which cannot crash except by physical failure of the hardware? Say by

• proving that they always work

• making the proof machine-readable and

• checking with a computer program, that the proof has no gaps.

The simple answer is ’yes’. It is possible and it has been done. For very simple systems as early
as xxxx [CLI], for complex processors in 2003 [we], for non optimizing compilers in xxxx[] and for
optimizing compilers in xxxx [leroy], for a complete kernel written in C including all lines of assembly
code in xxxx[], for the C portions of a fairly complex kernel in 2010 [Nicta]. For the underlying
mathematical theory see ... believe it or not ... this booklet. It is exactly the same theory which
gives the fastest explanation in the classroom, why systems work.

1repairs are called ’updates’ for software products

1

If this is real, you might say, and if this technology scales to the complexity of industrial products,
then a certain company with headquarters in Redmond should be interested in this. It certainly is
since 2007 [Verisoft-XT].

About stars: this booklet is thin, yet it contains more than the absolutely necessary material.
Chapters and sections marked with stars are complementary reading. Even if you skip them you
gain a very solid understanding of the entire subject.

For the chapters

• a main purpose of a kernel is to implement multiprocessing. This amounts to simulating on
a single processor multiple processors with the same instruction set. If you cannot specify an
instruction set and a simulation, you cannot even state precisely, what a kernel is supposed to
do.

• kernels perform so called process switches. They save processor registers into and restore
processor registers from certain C variables, which are called process control blocks. One cannot
program this in C, because processor registers are simply not visible in higher programming
languages. One must program this in assembly language, but these assembly portions of the
program access C variables (the process control blocks). One cannot even specify the effect of
these instructions without referring to the allocation function (address of) of the C compiler
used.

Therefore, if you do not have a precise understanding of processors and compilers, then kernel
construction is like building the third story of a house on top of a very shaky second floor. You end
up repairing and fixing the third story all your life. If your kernel were a product, you might end up
sending out updates constantly.

2

Chapter 2

Understanding Decimal Addition

2.1 Experience versus Understanding

This booklet is about understanding system architecture in a quick and clean way: no black art,
nothing you can only get a feeling for after years of programming experience. While experience is
good, it does not replace understanding. For illustration, consider the basic method for decimal
addition of one digit numbers as taught in the first weeks of elementary school: Everybody has
experience with it; very few of the people who do not understand it realize that they don’t.

Recall that, in mathematics, there are definitions and statements. Statements that we can prove
are called theorems. Some true statements, however, are so basic that there are no even more basic
statements that we can derive them from; these are called axioms. A person that understands decimal
addition will clearly be able to answer the following simple

Questions: Which of the following equations are definitions? Which ones are theorems? If an
equation is a theorem, what is the proof?

2 + 1 = 3

1 + 2 = 3

9 + 1 = 10

We just stated that these questions are simple; we did not say that answering them is easy. Should
you care? Indeed you should, for at least three reasons: i) In case you don’t even understand the
school method for decimal addition, how can you hope to understand computer systems? ii) The
reason, why the school method works has very much to do with the reason, why binary addition
in the fixed point adders of processors works. iii) You should learn to distinguish between having
experience with something that has not gone wrong (yet) and having an explanation of why it always
works. The authors of this booklet consider iii) the most important.

2.2 The Natural Numbers

In order to answer the above questions, we first consider counting. Since we count by repeatedly
adding 1, this should be a step in the right direction.

The set of natural numbers N1 and the properties of counting are not based on ordinary mathe-
matical definitions. In fact, they are so basic that we use 5 axioms due to Peano to simultaneously
lay down all properties about the natural numbers and of counting we will ever use without proof.
The axioms talk about

1The natural numbers are sometimes also referred to by the term counting numbers or, in our case, more precisely,
the term non-negative integers.

3

• a special number 0,

• the set N of all natural numbers (with zero),

• counting formalized by a successor function S : N→ N, and

• subsets A ⊂ N of the natural numbers.

Peano’s axioms are

1. 0 ∈ N. Zero is a natural number.2

2. x ∈ N→ S(x) ∈ N. You can always count to the next number.

3. x 6= y → S(x) 6= S(y). Different numbers have different successors.

4. @y : 0 = S(y). By counting you cannot arrive at 0. Note, that this isn’t true for computer
arithmetic, where you can arrive at zero by an overflow of modulo arithmetic (see Section
3.2).3

5. A ⊂ N ∧ 0 ∈ A ∧ (n ∈ A → S(n) ∈ A) → A = N. This is the famous induction scheme for
proofs by induction. We give plenty of examples later.

In an induction proof, one usually considers a set A consisting of all numbers n satisfying a certain
property P (n):

A = {n ∈ N | P (n)}
Then,

n ∈ A ↔ P (n)

A = N ↔ ∀n ∈ N : P (n)

and the induction axiom translates into a proof scheme you might or might not know from high
school:

• Start of the induction: show P(0).

• Induction step: show that P (n) implies P (S(n)).

• Conclude ∀n ∈ N : P (n). Property P holds for all natural numbers.

With the rules of counting laid down by the Peano axioms, we are able to make two ’ordinary’
definitions. We define 1 to be the next number after 0 if you count. We also define that addition of
1 is counting.

Definition 1 (Adding 1 by Counting).

1 = S(0)

x+ 1 = S(x)

With this, the induction step of proofs by induction can be reformulated to the more familiar form

• Induction step: show that P (n) implies P (n+ 1).

2This is a modern view of counting, because zero counts something that could be there but isn’t.
3Should you, dear reader, ever encounter in your future life articles or textbooks on programming or even pro-

gram correctness modeling the unsigned integers of a programming language by the natural numbers N, then clearly
somebody does not even understand the difference between ordinary counting and computer arithmetic. It isn’t you.

4

2.2.1 2 + 1 = 3 is a Definition

One can now give meaning to the other digits of decimal numbers with the following mathematical
definition.

Definition 2 (The Digits 2 to 9).

2 = 1 + 1 = S(1)

3 = 2 + 1 = S(2)

4 = 3 + 1 = S(3)
...

9 = 8 + 1 = S(8)

Thus, 2 + 1 = 3 is the definition of 3. In contrast,

2.2.2 1 + 2 = 3 is a Theorem

Expanding definitions, we would like to prove it by

1 + 2 = 1 + (1 + 1) (Definition of 2)

= (1 + 1) + 1

= 2 + 1 (Definition of 2)

= 3 (Definition of 3)

With the axioms and definitions we have so far, we cannot prove the second equation, yet. This is
due to the fact that we have not defined addition completely. This is fixed by the following inductive
definition:

Definition 3 (Addition).

x+ 0 = x

x+ S(y) = S(x+ y)

In words: adding 0 does nothing. In order to add y + 1, first add y, then add 1 (by counting to the
next number). From this we can derive the usual laws of addition.

Lemma 1 (Associativity of Addition).

(x+ y) + z = x+ (y + z)

by induction on z. For z = 0 we have

(x+ y) + 0 = x+ y = x+ (y + 0)

by definition of addition (adding 0).
For the induction step we assume the induction hypothesis x+(y+z) = (x+y)+z. By repeatedly

applying the definition of addition we conclude

(x+ y) + S(z) = S((x+ y) + z) (by definition of addition)

= S(x+ (y + z)) (by induction hypothesis)

= x+ S(y + z) (by definition of addition)

= x+ (y + S(z))

5

Substituting x = y = z = 1 in Lemma 1, we get

(1 + 1) + 1 = 1 + (1 + 1)

which completes the missing step in the proof of 1 + 2 = 3.
Showing the commutativity of addition is surprisingly tricky. We first have to show two special

cases.

Lemma 2. 0 + x = x

by induction on x. For x = 0 we have
0 + 0 = 0

by the definition of addition.
For the induction step we can assume the induction hypothesis 0 + x = x and use this to show

0 + S(x) = S(0 + x) (definition of addition)

= S(x) (induction hypothesis)

Lemma 3. x+ 1 = 1 + x

by induction on x. For x = 0 we have by the previous lemma and the definition of addition

0 + 1 = 1 = 1 + 0

For the induction step we can assume the induction hypothesis x+ 1 = 1 + x and show

1 + S(x) = S(1 + x) (definition of addition)

= S(x+ 1) (induction hypothesis)

= S(x) + 1 (definition of counting by adding 1)

Lemma 4 (Commutativity of Addition).

x+ y = y + x

by induction on y. For y = 0 we have

x+ 0 = x (definition of addition)

= 0 + x (lemma 2)

For the induction step we can assume the induction hypothesis x+ y = y + x and show

x+ S(y) = S(x+ y) (definition of addition)

= S(y + x) (induction hypothesis)

= y + S(x) (definition of addition)

= y + (x+ 1) (definition of counting by adding 1)

= y + (1 + x) (lemma 3)

= (y + 1) + x (associativity of addition)

= S(y) + x (definition of counting by adding 1)

6

2.2.3 9 + 1 = 10 is a Brilliant Theorem

The proof of 9 + 1 = 10 is much more involved. It uses a special biological constant defined as

Z = 9 + 1

which denotes the number of our fingers or, respectively, toes4. Moreover it uses a definition at-
tributed to the brilliant Arab mathematician al-Khwarizmi which defines the decimal number sys-
tem.

Definition 4 (Decimal Numbers). An n digit decimal number an−1 . . . a0 with digits ai ∈ {0, . . . , 9}
is interpreted as

an−1 . . . a0 =
n−1∑
i=0

ai · Zi

Substituting n = 2, a1 = 1 and a0 = 0 we can derive the proof of 9 + 1 = 10. We must however
evaluate the formula obtained from the definition of decimal numbers; in doing so, we need properties
of exponentiation and multiplication:

10 = 1 · Z1 + 0 · Z0 (definition of decimal number)

= 1 · Z + 0 · 1 (properties of exponentiation)

= Z + 0 (properties of multiplication)

= Z (definition of addition)

= 9 + 1 (definition of Z)

The interested reader will observe that, in elementary school, they were taught only the multipli-
cation of decimal numbers, which relied on decimal addition, and that exponentiation came after
multiplication. In this way we cannot possibly fill the gaps in the proof above. Instead, one defines
multiplication and exponentiation without relying on decimal numbers, as below.

Definition 5 (Multiplication).

x · 0 = 0

x · S(y) = x · y + x

Definition 6 (Exponentiation).

x0 = 1

xS(y) = xy · x
By Lemma 2, we get

x · 1 = x · (S(0)) = x · 0 + x = 0 + x = x

i.e., multiplication of x by 1 from the right results in x. In order to progress in the proof of 9+1 = 10,
we show

Lemma 5. 1 · x = x

by induction on x. For x = 0 we have 1 · 0 = 0 by the definition of multiplication. For the induction
step we can assume the induction hypothesis 1 · x = x and show

1 · S(x) = 1 · x+ 1 (definition of multiplication)

= x+ 1 (induction hypothesis)

4We use the letter Z here because in German, our native language, the word for ’ten’ and for ’toes’ is almost the
same: ’Zehn’ vs. ’Zehen’.

7

Note that, in all of the lemmas we just proved, one has to be careful to not simply apply basic
arithmetic rules known from high school.5 In order to obtain a sound mathematical theory, a proof
of a new lemma can only only use axioms, definitions and lemmas that have been proven before.
Indeed, one of the main challenges in establishing a mathematical theory lies in identifying an order
of lemmas that allows for the shortest, and thus, considered most beautiful, proofs.

Hints for the proofs of the following laws can be be found in the exercise section.

(x · y) · z = x · (y · z) (associativity of multiplication)

x · y = y · x (commutativity of multiplication)

(x+ y) · z = x · z + y · z (distributivity)

Using Lemma 5, we get
x1 = xS(0) = x0 · x = 1 · x = x (2.1)

We finish the section by showing a classical identity for exponentiation

Lemma 6. xy+z = xy · xz

by induction on z. For z = 0 we have (leaving the justification of the steps as an exercise)

xy+0 = xy = xy · 1 = xy · x0

For the induction step, we assume the induction hypothesis xy+z = xy · xz and show

xy+S(z) = xS(y+z) (definition of addition)

= x(y+z) · x (definition of exponentiation)

= (xy · xz) · x (induction hypothesis)

= xy · (xz · x) (associativity of multiplication)

= xy · (xS(z)) (definition of exponentiation)

2.3 Summary

At the example of decimal addition, we have demonstrated that being used to something that has
not gone wrong yet and understanding it are very different things. We have reviewed Peano’s axioms
and have warned the reader that computer arithmetic does not satisfy them: unsigned integers in
computers are not the natural numbers. We have stated the definition of decimal numbers; this will
turn out to be helpful when we study binary arithmetic and construct adders in the next chapter.
We have practiced proofs by induction and derived the ring axioms for the natural numbers with
addition and multiplication as well as a classical identity about exponentiation without referring to
the usual decimal number representations.

5In the proof of Lemma it might appear valid to just apply the definition ”S(x) = x + 1”, resulting in ”1 · S(x) =
1 · (x + 1) = 1 · x + 1 · 1. Applying distributivity of natural numbers here, however, would be problematic since it
hasn’t been proven yet.

8

Chapter 3

Basic Mathematical Concepts

We begin in Section 3.1 with very basic definitions like intervals [i : j] of natural numbers. So we
replace them by fairly obvious inductive definitions. We deal with the minor technical nuisance,
that usually sequence elements are numbered from left to right starting with index 1, but in number
representations it is much nicer to number them from right to left starting with index 0. We also
introduce vector operations on bit strings.

Section 3.2 on modulo arithmetic was included for several reasons. i) The notation mod k is
overloaded: it is used to denote both the congruence relation modulo a number k or the operation of
taking remainder of integer division by k. We prefer our readers to clearly understand this. ii) Fixed
point arithmetic is modulo arithmetic, so we will clearly have to make use of it. The most important
reason however is iii) addition/subtraction of binary numbers and of two’s complement numbers is
done by exactly the same hardware1. When we get to this topic this will look completely intuitive,
and therefore there should be a very simple proof justifying this fact. Such a proof will be exhibited
later; it hinges on the simple lemma 11, which deals with the solution of congruence equations from
this section.

The very short Section 3.3 on geometric and arithmetic sums is simply there to remind the reader
of the proof of the classical formulas for the computation of geometric and arithmetic sums, which
are much easier to memorize than the formula itself. The formula for geometric sums is used to
bound the range of numbers represented by bit strings.

Section 3.4 contains some very basic graph theory. Lemma 13 contains the result, that path
length in directed acyclic graphs is bounded. This little result is remarkably important for several
reasons: i) its short proof is a great illustration of the pigeon hole principle. ii) it justifiers to define
depth of nodes in directed acyclic graphs. This is later used to show - by an induction on the depth of
nodes - that the behavior of switching circuits is well defined. iii) it is used to show the equivalence of
a recursive definition and the classical graph theoretic definition of rooted trees. This result is later
used to relate our formalization of derivation trees for context free grammars with classical graph
theory.

The chapter is in a sense like a lexicon with fairly simple reference material. As a reader of the
book glimpse over it, notice what is there, but worry about detailed understanding when the material
is used. In lectures, just sketch the material of this chapter. Provide details or refer students to the
text when the material is used.

1Except for the computation of overflow and negative signals.

9

3.1 Basics

3.1.1 Numbers and Sets

We denote by
N = {0, 1, 2, . . .}

the set of natural numbers including zero, by

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

the set of integers. Unless explicitly stated otherwise we identify natural numbers with their decimal
representation, as we always have done since elementary school.

We denote by
B = {0, 1}

the set of Boolean values. We also use the term bit to refer to a Boolean value.
For integers i, j with i < j we define the interval of integers from i to j by

[i : j] = {i, i+ 1, . . . , j}

Strictly speaking, definitions using three dots are never precise; they resemble intelligence tests,
where the author hopes that all readers who are forced to take the test arrive at the same solution.
Usually, one can easily find a corresponding and completely precise recursive definition (without
three dots) in such a situation. Thus, we define [i : j] in a rigorous way as

[i : i] = {i}
[i : j + 1] = [i : j] ∪ {j + 1}.

The Hilbert ∈-Operator ∈ A picks an element from a set A. Applied to a singleton set, it returns
the unique element of the set:

∈{x} = x.

For finite sets A, we denote by #A the cardinality, i.e. the number of elements in A.
Given a function f operating on a set A and a set A1 ⊆ A, we denote by f(A1) the projection of

the function on set A1, i.e.
a ∈ A1 ↔ f(a) ∈ f(A1).

TODO: where do we need this?
For a few complexity arguments in this book we use big-Oh notation for comparing the asymptotic

growth of functions f, g : N→ N.

f = O(g)↔ ∃N0inN, c > 0.∀n ≥ N0.f(n) ≤ c · g(n)

3.1.2 Sequences, their indexing and overloading

We start this section with a remark on overloading. A mathematical symbol is overloaded, if it has
different meanings in different contexts. A standard example is the addition symbol + in arithmetic
expressions, which is for instance interpreted as integer addition in 1 + 2 and as addition of fractions
in 2

3
+ 3

4
. Overloading is helpful to keep notation uncluttered, but it should of course only be used,

where the meaning can be inferred from the context. Some situations - like 1 + 2
3

suggest several
meanings of a symbol. In such cases one has to resolve the conflict by recoding one or more operands;
in our example

1 +
2

3
=

1

1
+

2

3

10

Finite sequences (resp. words or strings) a of n many elements ai or a[i] from a set A are a basic
mathematical concept that is intuitively completely clear. If we try to formalize it, we find that there
are several completely natural ways to do this. Let n ≥ 1.

1. If we start indices with 1 and index from left to right we write

a = (a1, . . . , an) = a[1 : n]

which is formalized without three dots a a mapping

a : [1 : n]→ A

This is convenient for numbering symbols in a program text or statements in a statement
sequence. With this formalization the set An of sequences of length n with elements from A is
defined as

An = {a|a : [1 : n]→ A}

2. If we start indices at 0 and index from left to right we write

a = (a0, . . . , an−1) = a[0 : n− 1]

which is coded as
a : [0 : n− 1]→ A

This is e.g. convenient for indexing nodes of paths in graphs. With this formalization the set
An of sequences of length n with elements from A is defined as

An = {a|a : [0 : n− 1]→ A}

3. When dealing with number representations it turns out to be by far most convenient to start
counting from 0 from right to left. We write

a = (an−1, . . . , a0) = a[n− 1 : 0]

which is also formalized as
a : [0 : n− 1]→ A

and get again the formalization

An = {a|a : [0 : n− 1]→ A}

Thus the direction of ordering does not show in the formalization yet. The reason is, that the
interval [0 : n− 1] is a set, and elements of sets are unordered.

This is changed when we define concatenation a ◦ b = c of sequences a and b. For the three cases
we get

1.
a[1 : n] ◦ b[1 : m] = c[1 : n+m]

with

c[i] =

{
a[i] i ≤ n

b[i− n] i ≥ n+ 1

11

2.
a[0 : n− 1] ◦ b[0 : m− 1] = c[0 : n+m− 1]

with

c[i] =

{
a[i] i ≤ n− 1

b[i− n] i ≥ n

3.
a[n− 1 : 0] ◦ b[m− 1 : 0] = c[n+m− 1 : 0]

with

c[i] =

{
b[i] i ≤ m− 1

a[i−m] i ≥ n

Concatenation of sequences a with single symbols b ∈ A is handled by treating elements b as
sequences with one element b = b[1] if counting starts with 1 and b = b[0] if counting starts with 0.
The empty sequence ε is the unique sequence of length 0, thus one defines

A0 = {ε}

and it satisfies
a ◦ ε = ε ◦ a = a

in all formalizations. For any variant of indexing we define a to be a prefix of b if b has the form a◦ c:

prefix(a, b) ≡ ∃c.b = a ◦ c

The set A+ of nonempty finite sequences with elements from A is defined as

A+ =
⋃

n∈N\{0}
An

and the set A∗ of all finite sequences with elements from A as

A∗ =
⋃
n∈N

An = A+ ∪ {ε}

Both definitions use An. Because An is overloaded, A+ and A∗ are overloaded too.
When forming subsequences, we get for the three cases

1. for a[1 : n] and i ≤ j and

a[i : j] = c[1 : j − i+ 1] with c[k] = a[i+ k − 1]

2. for a[0 : n− 1] and i ≤ j

a[i : j] = c[0 : j − i] with c[k] = a[i+ k]

3. for a[0 : n− 1] and j ≥ i

a[j : i] = c[j − i : 0] with c[k] = a[i+ k]

In very few places we will have different indexing and direction in the same place, for instance
if we identify in a program text w[1 : n] a substring w[i : j] that we wish to interpret as a number
representation c[j − i : 0] we have to do the trivial conversion

w[j : i] = c[j − i : 0] with c[k] = a[i+ k]

12

∧ and
∨ or
¬ not
⊕ exclusive or, + modulo 2
→ implies
↔ if and only if
∀ for all
∃ exists

Table 3.1: Logical connectives and quantifiers

3.1.3 Logical connectives and vector notation

For bits x ∈ B and natural numbers n ∈ N we denote the string obtained by repeating x exactly n
times by xn. In the form of an intelligence test:

xn = x . . . x︸ ︷︷ ︸
n times

.

and in rigorous form

x1 = x

xn+1 = x ◦ xn.

where ◦ denotes the concatenation of bit strings. Examples: 12 = 11 and 04 = 0000.
For the concatenation of bit strings x1 and x2 we often omit ◦ and write

x1x2 = x1 ◦ x2.

In statements and predicates, we use the logical connectives and quantifiers from Table 3.1.3. For
¬x we also write x or /x.

For ◦ ∈ {∧,∨,⊕}, a, b ∈ Bn and a bit c ∈ B, we borrow notation from vector calculus to define
the corresponding bit-operations on bit-vectors:

a = (an−1, . . . , a0)

a[n− 1 : 0] ◦ b[n− 1 : 0] = (an−1 ◦ bn−1, . . . , a0 ◦ b0)
c ◦ b[n− 1 : 0] = (c ◦ bn−1, . . . , c ◦ b0)

Note that in the equations above, ◦ is not to be confused with the concatenation operator.
In computer science logarithms are to the base two unless explicitly stated otherwise. This text

is no exception.

3.2 Modulo Computation

There are infinitely many integers and every computer can only store finitely many numbers. Thus,
computer arithmetic cannot possibly work like ordinary arithmetic. Fixed point arithmetic2 is usually
performed modulo 2n for some n. We review basics about modulo computation.

Definition 7 (Congruence Modulo). For integers a, b ∈ Z and natural numbers k ∈ N one defines a
and b to be congruent mod k or equivalent mod k iff they differ by an integer multiple of k:

a ≡ b mod k ↔ ∃z ∈ Z : a− b = z · k.
2The only arithmetic considered in this booklet. For the construction of floating point units see [MP00].

13

Definition 8 (Equivalence Relation). Let R be a relation between elements of a set A. We say that
R is reflexive if we have aRa for all a ∈ A. We say that R is symmetric if aRb implies bRa. We say
that R is transitive if aRb and bRc imply aRc. If all three properties hold, R is called an equivalence
relation on A.

An easy exercise shows

Lemma 7. Congruence mod k is an equivalence relation.

Proof. We show that the properties of an equivalence relation are satisfied:

• Reflexivity: For all a ∈ Z we have a − a = 0 · k. Thus a ≡ a mod k and congruence mod k is
reflexive.

• Symmetry: Let a ≡ b mod k with a− b = z · k. Then b− a = −z · k, thus b ≡ a mod k.

• Transitivity: Let a ≡ b mod k with a − b = z · k and b ≡ c mod k with b − c = u · k. Then
a− c = (z + u) · k, thus a ≡ c mod k.

Lemma 8. Let a, b ∈ Z and k ∈ N with a ≡ a′ mod k and b ≡ b′ mod k. Then,

a+ b ≡ a′ + b′ mod k

a− b ≡ a′ − b′ mod k

a · b ≡ a′ · b′ mod k.

Proof. Let a− a′ = u · k and b− b′ = v · k, then we have

a+ b− (a′ + b′) = a− a′ + b− b′
= (u+ v) · k

a− b− (a′ − b′) = a− a′ − (b− b′)
= (u− v) · k

a · b = (a′ + u · k) · (b′ + v · k)

= a′ · b′ + k · (a′ · v + b′ · u+ k · u · v)

which imply the desired congruences.

Two numbers r and s in an interval of the form [i : i+ k − 1] that are both equivalent to a mod
k are identical:

Lemma 9. Let i ∈ Z, k ∈ N, and let r, s ∈ [i : i+ k − 1], then

a ≡ r mod k ∧ a ≡ s mod k → r = s

Proof. By symmetry we have s ≡ a mod k and by transitivity we get s ≡ r mod k. Thus r−s = z ·k
for an integer z. We conclude z = 0 because |r − s| < k.

Definition 9 (System of Representatives). Let R be an equivalence relation on A. A subset B ⊂ A
is called a system of representatives if and only if for every a ∈ A there is exactly one r ∈ B with
aRr. The unique r ∈ B satisfying aRr is called the representative of a in B.

Lemma 10. For i ∈ Z and k ∈ N, the interval of integers [i : i+k−1] is a system of representatives
for equivalence mod k.

14

Proof. Let a ∈ Z. We define the representative r(a) by

f(a) =

{
max{j | a− k · j ≥ i} a ≥ i

min{j | a+ k · j ≥ i} a < i

r(a) =

{
a− f(a) · k a ≥ i

a+ f(a) · k a < i.

Then r(a) ≡ a mod k and r(a) ∈ [i : i+ k − 1]. Uniqueness follows from Lemma 9.
Note that, in case i = 0, f(a) is the result of the integer division of a by k:

f(a) = ba/kc,
and

r(a) = a− ba/kc · k
is the remainder of this division.

We have to point out that in mathematics the three letter word ’mod’ is not only used for
the relation defined above. It is also used as a binary operator in which case a mod k denotes the
representative of a in [0 : k − 1].

Definition 10 (Modulo Operator). For a, b ∈ Z and k ∈ N,

(a mod k) = ∈{b | a ≡ b mod k ∧ b ∈ [0 : k − 1]}
Thus, (a mod k) is the remainder of the integer division of a by k for a ≥ 0. In order to stress

when mod is used as a binary operator, we always write (a mod k) in brackets. For later use in the
theory of two’s complement numbers we define another modulo operator:

Definition 11 (Two’s Complement Modulo Operator). For a, b ∈ Z and an even number k = 2 · k′
with k′ ∈ N,

(a tmod k) =∈ {b | a ≡ b mod k ∧ b ∈ [−k/2 : k/2− 1]}.
From Lemma 9 we infer a simple but useful lemma about the solution of equivalences mod k:

Lemma 11. Let k be even and x ≡ y mod k then

1. x ∈ [0 : k − 1]→ x = (y mod k),

2. x ∈ [−k/2 : k/2− 1]→ x = (y tmod k).

3.3 Sums

3.3.1 Geometric sums

For q 6= 1 we consider

S =
n−1∑
i=0

qi

the geometric sum over q. Then,

q · S =
n∑
i=1

qi

q · S − S = qn − 1

S =
qn − 1

q − 1
.

For q = 2 we get

15

u v

Figure 3.1: Drawing an edge (u, v) from u to v

Lemma 12. For n ∈ N,
n−1∑
i=0

2i = 2n − 1

which we will use in the next chapter.

3.3.2 Arithmetic Sums

For n ∈ N let

Sn =
n∑
i=0

i

be the sum of the natural numbers from 0 to n. We recall that Gauß wrote 2 · Sn as

2 · Sn = 0 + 1 + . . .+ (n− 1) + n

+n+ (n− 1) + . . .+ 1 + 0

= n · (n+ 1)

which gives

Sn = n · (n+ 1)/2

If you are suspicious about proofs involving three dots (which you should), use the equation as an
induction hypothesis and prove it by induction. While doing this do not define

n∑
i=0

fi = f0 + . . .+ fn

because that would involve three dots too. Instead define

0∑
i=0

fi = f0

n∑
i=0

fi = (
n−1∑
i=0

fi) + fn

3.4 Graphs

3.4.1 Directed Graphs

In graph theory a directed graph G is specified by

• a set G.V of nodes. Here we consider only finite graphs, thus G.V is finite.

• a set G.E ⊂ G.V × G.V of edges. Edges (u, v) ∈ G.E are depicted as arrows from node u to
node v as shown in figure 3.1. For (u, v) ∈ G.E one says that v is a successor of u and that u
is a predecessor of v.

16

21

0 3

Figure 3.2: Graph G

4

1

0

2

3

Figure 3.3: Graph G′

If it is clear which graph G is meant, one abbreviates

V = G.V

E = G.E

The graph G in figure 3.2 is formally described by

G.V = {0, 1, 2, 3}
G.E = {(0, 1), (1, 2), (2, 3), (3, 0)}

The graph G′ in figure 3.3 is formally described by

G′.V = {0, 1, 2, 3, 4}
G′.E = {(0, 1), (0, 2), (2, 3), (2, 4)}

Let G = (V,E) be a directed graph. For nodes u, v ∈ V a path from u to v in G is a sequence
p[0 : k] of nodes p[i] ∈ V , that begins with u, ends with v and in which subsequent elements are
connected by edges

p0 = u

pk = v

i > 0 → (pi−1, pi) ∈ E
The number k is called the length of the path. We denote it by le(p). A path from u to u with

length at least 1 is called a cycle. In figure 3.2 the sequence of nodes (0, 1, 2, 3, 0, 1) is a path of
length 5 from node 0 to node 1, and the sequence (1, 2, 3, 0, 1) is a cycle. In figure 3.3 the sequence
of nodes (0, 2, 4) is a path of length 2 from node 0 to node 4.

For graphs G and nodes v ∈ G.V the indegree indeg(v,G) of node v in graph G is defined as the
number of edges ending in v and the outdegree outdeg(v,G) of node v in graph G is defined as the
number of edges starting in v

indeg(v,G) = #{u : (u, v) ∈ G.E}
outdeg(v,G) = #{x : (v, x) ∈ G.E}

In the graph of figure 3.2 we have

indeg(v,G) = outdeg(v,G) = 1

for all nodes v. In the graph G′ of figure 3.3 we have

indeg(0, G′) = 0

v 6= 0 → indeg(v,G′) = 1

v ∈ {1, 3, 4} → outdeg(v,G′) = 0

v ∈ {0, 2} → outdeg(v,G′) = 2

17

Figure 3.4: Example of a directed acylic graph

A source of a graph G is a node v with indeg(v,G) = 0 and a sink of a graph is a node v with
outdeg(v,G) = 0. The graph in figure 3.2 has neither sources nor sinks. The graph in figure 3.3 has
a single source v = 0 and sinks 1,3 and 4. If it is clear which graph is meant one abbreviates

indeg(v) = indeg(v,G)

outdeg(v) = outdeg(v,G)

3.4.2 Directed acyclic graphs and the depth of nodes

A directed acyclic graph or DAG is simply a directed graph without cycles. For the remainder of this
subsection we will use the graph from figure 3.4 an a running example.

Lemma 13. In directed acyclic graphs G = (V,E) the length le(p) of paths p is bounded by the
number of nodes minus 1.

le(p) ≤ #V − 1

Proof. Assume you have n pigeons sitting in n− 1 holes. Then there must be two pigeons which are
sitting in the same hole, because otherwise there would be at most n − 1 pigeons. We use this so
called pigeon hole argument to prove the lemma by contradiction.

Let n = #V be the number of nodes and assume that p[0 : n] is a path in G. We treat the indices
i ∈ [0 : n] as pigeons, the vertices v ∈ V as pigeon holes, and pigen i sits in hole p(i). We conclude,
that there must be two different indices i and j such that p(i) = p(j). But then p[i : j] is a cycle and
G is not acyclic.

In the sequel this simple lemma will turn out to be amazingly useful.

Lemma 14. Let G = (V,E) be a directed acyclic graph. Then G has at least one source and one
sink.

18

uk

G

u

u1 u2
. . .

Figure 3.5: Generating a rooted tree G′ by adding new nodes u1, . . . , uk as successors of a sink u of
rooted tree G

Proof. Let n = #V . Pick any node v ∈ V in the graph. Starting from v follow edges forward
repeatedly as long as they are present. By lemma 13 one hits a sink after at most n − 1 edges.
Following edges backward one finds a source.

In the graph in figure 3.4 we end in sink 11 when we follow edges forward no matter where we
start; this is not surprising because there is only one sink. Following edges backward we arrive in
source 1 if we start in node 3, in source 2 if we start in node 7 and in source 1 or 2 if we start in
node 9, depending which of the edges (7, 9) and (3, 9) we follow.

The previous two lemmas allow to define the depth de(v,G) of a node v in a DAG G as the length
of a longest path in G from a source to v. If it is clear what graph is meant one drops the argument
G and abbreviates

de(v) = de(v,G)

A simple argument shows that the depth of sources is 0 and that the depth on node v is one greater
than the depth of one of its predecessors

de(v,G) =

{
0 v is a source

max{de(u, v) : (u, v) ∈G.E}+ 1 otherwise

Thus in figure x we have

de(v) =

1 v ∈ {3, 4, 5, 6}
2 v ∈ {7, 8}
3 v ∈ {9, 10}
4 v = 11

The depth of a DAG is the maximum of the depth of its nodes

de(G) = max{de(v,G) : v ∈ G.V }
Thus the graph in figure x has depth 4.

3.4.3 Rooted Trees

We define rooted trees in the following way

1. a graph with a single node and no edges is a rooted tree.

2. if G is a rooted tree, u is a sink of G and v0, . . . , vk−1 /∈ G.V are new nodes, then the graph G′

defined by

G′.V = G.V ∪ {v0, . . . , vk−1}
G′.E = G.E ∪ {(u, v0), . . . , (u, vk−1)}

19

c)

3 4

1 2

0

1 2

00

a) b)

Figure 3.6: Generating a rooted tree G′ by adding new nodes u1, . . . , uk as successors of a sink u of
rooted tree G

is a rooted trees (see figure 3.5).

3. all rooted trees can be generated in finitely many steps by the above two rules.

By this definition the graph in figure 3.3 is a rooted tree, because it can be generated in 3 steps
as shown in figure 3.6 a) to c). Rooted trees have a single source which is called the root of the tree.
The sinks of trees are called leaves of the tree. If (u, v) is an edge of a tree one calls u the father of
v and one calls v a son of u.

The following series of easy exercises relates the above recursive definition of rooted trees to a
common definition of rooted trees in graph theory.

Exercises

1. Show that every rooted tree has exactly one source (called the root) and that for every node u
of a rooted tree there is exactly one path from the root to u.

2. Now assume that G is a finite directed graph with a single source r (called the root) and such
that for every node u ∈ G.V there is exactly one path from r to u in G. Let n = #G.V be the
number of nodes of G

(a) show that every path in G has length at most n. Hint: use a pigeon hole argument

(b) construct a path p[0 : y] in G′ in the following way: i) initially y = 0 and p[0] = r. ii) if
all successors vi of p(y) are sinks, set u = p(y) and stop. Otherwise extend the path by
choosing p(y + 1) among the successors of p(y) that are not a sink. Show that we stop
with some y ≤ n.

(c) show that there is a node u in G such that all successors of u are sinks

(d) show that a finite graph is a rooted tree iff it has a single source r and such that for every
node u in G there is exactly one path from r to u

20

Chapter 4

Number Formats and Boolean Algebra

Section 4.1 introduces the binary number format, presents the school method for binary addition
and proves that it works. Although this will look completely familiar and the correctness proof of
the addition algorithms is only a few lines long, the reader should treat this result with deep respect:
it is probably the first time that he or she sees a proof of the fact that the addition algorithm he
learned at school always works. The Old Romans, who were fabulous engineers in spite of their
clumsy number systems, would have loved to see this proof.

Integers are represented in computers as two’s complement numbers. In Section 4.2 we introduce
this number format and derive a small number of basic identities for such numbers. From this we
derive a subtraction algorithms for binary numbers, which is quite different from the school method,
and show that it works. Sections 3.2, ?? and 4.2 are the basis of our constructions of an arithmetic
unit later.

Finally, in Section 4.3 on Boolean Algebra, we provide a very short proof of the fundamental
result that boolean functions can be computed using boolean expressions in disjunctive normal form.
This result can serve to construct all small circuits - e.g. in the control logic - where we only specify
their functionality and do not bother to specify a concrete realization. The proof is intuitive and
looks simple, but it will give us the occasion to explain formally the difference between what is often
called “two kinds of equations”: i) identities1 e(x) = e′(x) which hold for all x and ii) equations
e(x) = e′(x) that we want to solve by determining the set of all x such that the equation holds2. The
reader will notice that this might be slightly subtle, because both kinds of equations have exactly
the same form.

4.1 Binary Numbers

Definition 12 (Binary Number Interpretation). For bit-strings a = a[n− 1 : 0] ∈ Bn we denote by

〈a〉 =
n−1∑
i=0

ai · 2i

the interpretation of bit-string a as a binary number. We call a the binary representation of the
natural number 〈a〉.
Examples:

〈100〉 = 4

〈111〉 = 7

〈10n〉 = 2n.

1In German: Identitäten.
2In German: Bestimmungsgleichung.

21

Applying Lemma 12, we get

〈1n〉 =
n−1∑
i=0

2i = 2n − 1,

i.e., the largest binary number representable with n bits corresponds to the natural number 2n − 1.
Note that binary number interpretation is an injective function:

Lemma 15. Let a, b ∈ Bn. Then,

a 6= b→ 〈a〉 6= 〈b〉.

Proof. Let j = max{i | ai 6= bi} be the largest index where strings a and b differ. Without loss of
generality assume aj = 1 and bj = 0. Then

〈a〉 − 〈b〉 =

j∑
i=0

ai · 2i −
j∑
i=0

bi · 2i

≥ 2j −
j−1∑
i=0

2i

= 1

by Lemma 12.

Definition 13. Let n ∈ N. We denote by

Bn = {〈a〉 | a ∈ Bn}

the set of natural numbers that have a binary representation of length n.

Since

0 ≤ 〈a〉 ≤
n−1∑
i=0

2i = 2n − 1

we deduce

Bn ⊆ [0 : 2n − 1].

As 〈 · 〉 is injective and

#Bn = #[0 : 2n − 1] = 2n

we observe that 〈 · 〉 is bijective and, thus, we have

Lemma 16. For n ∈ N, we have

Bn = [0 : 2n − 1]

Definition 14 (Binary Representation). For x ∈ Bn we denote the binary representation of x of
length n by binn(x):

binn(x) = ∈{a | a ∈ Bn ∧ 〈a〉 = x}.
To shorten notation even further, we write xn instead of binn(x):

xn = binn(x).

It is often useful to decompose n bit binary representations a[n − 1 : 0] into an upper part
a[n−1 : m] and a lower part a[m−1 : 0]. The connection between the numbers represented is stated
in

22

a b c c’ s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 4.1: Binary addition of 1 bit numbers a, b with carry c

Lemma 17 (Decomposition Lemma). Let a ∈ Bn and n ≥ m. Then,

〈a[n− 1 : 0]〉 = 〈a[n− 1 : m]〉 · 2m + 〈a[m− 1 : 0]〉.

Proof.

〈a[n− 1 : 0]〉 =
n−1∑
i=m

ai · 2i +
m−1∑
i=0

ai · 2i

=
n−1−m∑
j=0

am+j · 2m+j + 〈a[m− 1 : 0]〉

= 2m ·
n−1−m∑
j=0

am+j · 2j + 〈a[m− 1 : 0]〉

= 2m · 〈a[n− 1 : m]〉+ 〈a[m− 1 : 0]〉

We obviously have
〈a[n− 1 : 0]〉 ≡ 〈a[m− 1 : 0]〉 mod 2m.

Using Lemma 11, we infer

Lemma 18. For a ∈ Bn and m ≤ n,

〈a[m− 1 : 0]〉 = (〈a[n− 1 : 0]〉 mod 2m)

Intuitively speaking, taking a binary number modulo 2m means ’throwing away’ the bits with position
m or higher.

Table 4.1 specifies the addition algorithm for binary numbers a, b of length 1 and a carry-bit c.
The binary representation (c′, s) ∈ B2 of the sum of bits a, b, c ∈ B is computed as

〈c′s〉 = a+ b+ c.

For the addition of n bit numbers a[n− 1 : 0] and b[n− 1 : 0] with carry in c0 we first observe for
the sum S:

S = 〈a[n− 1 : 0]〉+ 〈b[n− 1 : 0]〉+ c0

≤ 2n − 1 + 2n − 1 + 1

= 2n+1 − 1.

23

Thus, the sum S ∈ Bn+1 can be represented as a binary number 〈s[n : 0]〉 with n + 1 bits. For
the computation of the sum bits we use the method for long addition that we learn in elementary
school for decimal numbers. We denote by ci the carry from position i− 1 to position i and compute
(ci+1, si) using the basic binary addition of Table 4.1:

〈ci+1, si〉 = ai + bi + ci

sn = cn. (4.1)

That this algorithm indeed computes the sum of the input numbers is asserted in

Lemma 19 (Correctness of the Binary Addition Algorithm). Let a, b ∈ Bn and let c ∈ B. Further,
let cn ∈ B and s ∈ Bn be computed according to the addition algorithm described above. Then,

〈cn, s[n− 1 : 0]〉 = 〈a[n− 1 : 0]〉+ 〈b[n− 1 : 0]〉+ c0

Proof. By induction on n. For n = 0 this follows directly from Equation 4.1. For the induction step
we conclude from n− 1 to n:

〈a[n− 1 : 0]〉+ 〈b[n− 1 : 0]〉+ c0

= (an−1 + bn−1) · 2n−1 + 〈a[n− 2 : 0]〉+ 〈b[n− 2 : 0]〉+ c0

= (an−1 + bn−1) · 2n−1 + 〈cn−1, s[n− 2 : 0]〉 (induction hypothesis)

= (an−1 + bn−1 + cn−1) · 2n−1 + 〈s[n− 2 : 0]〉
= 〈cn, sn−1〉 · 2n−1 + 〈s[n− 2 : 0]〉 (Equation 4.1)

= 〈cn, s[n− 1 : 0].〉 (Lemma 17)

The following simple lemma allows to break the addition of two long numbers into two additions
of shorter numbers. It is useful amazingly useful. In this text we will use it in subsection 7.1.2 for
showing the correctness of recursive addition algorithms as well as in subsection 8.3.8 for justifying
the addition 32 bit numbers with 30-bit adders if the binary representation of one of the numbers
ends with 00. In the hardware oriented text [?] it is also used to show the correctness of the shifter
constructions supporting aligned byte and half word accesses in cache lines.

Lemma 20 (Decomposition of Binary Number Addition). For a, b ∈ Bn, for d, e ∈ Bm and for
c0, c

′, c′′ ∈ B let

〈d〉+ 〈e〉+ c0 = 〈c′t[m− 1 : 0]〉
〈a〉+ 〈b〉+ c′ = 〈c′′s[n− 1 : 0]〉,

then
〈ad〉+ 〈be〉+ c0 = 〈c′′st〉.

Repeatedly using Lemma 17, we have

〈ad〉+ 〈be〉+ c0

= 〈a〉 · 2m + 〈d〉+ 〈b〉 · 2m + 〈e〉+ c0

= (〈a〉+ 〈b〉) · 2m + 〈c′t〉
= (〈a〉+ 〈b〉+ c′) · 2m + 〈t〉
= 〈c′′s〉 · 2m + 〈t〉
= 〈c′′st〉.

24

4.2 Two’s Complement Numbers

Definition 15 (Two’s Complement Number Interpretation). For bit-strings a[n − 1 : 0] ∈ Bn we
denote by

[a] = −an−1 · 2n−1 + 〈a[n− 2 : 0]〉
the interpretation of a as a two’s complement number. We refer to a as the two’s complement
representation of [a].

Definition 16. For n ∈ N, we denote by

Tn = {[a] | a ∈ Bn}
the set of integers that have a two’s complement representation of length n.

Since

Tn = {[0b] | b ∈ Bn−1} ∪ {[1b] | b ∈ Bn−1}
= Bn−1 ∪ {−2n−1 + x | x ∈ Bn−1}
= [0 : 2n−1 − 1] ∪ {−2n−1 + x | x ∈ [0 : 2n−1 − 1]} (Lemma 16)

we have

Lemma 21. Let n ∈ N. Then,
Tn = [−2n−1 : 2n−1 − 1]

Definition 17 (Two’s Complement Representation). By twocn(x) we denote the two’s complement
representation of x ∈ Tn:

twocn(x) = ∈ {a | a ∈ Bn ∧ [a] = x}.
Basic properties of two’s complement numbers are summarized in

Lemma 22. Let a ∈ Bn. Then, the following hold:

[0a] = 〈a〉 (embedding)

[a] ≡ 〈a〉 mod 2n

[a] < 0 ↔ an−1 = 1 (sign bit)

[an−1a] = [a] (sign extension)

−[a] = [a] + 1.

Proof. The first line is trivial. The second line follows from

[a]− 〈a〉 = −an−1 · 2n−1 + 〈a[n− 2 : 0]〉 − (an−1 · 2n−1 + 〈a[n− 2 : 0]〉)
= −an−1 · 2n.

If an−1 = 0 we have [a] = 〈a[n− 2 : 0]〉 ≥ 0. If an−1 = 1 we have

[a] = −2n−1 + 〈a[n− 2 : 0]〉
≤ −2n−1 + 2n−1 − 1 (Lemma 16)

= −1.

This shows the third line. The fourth line follows from

[an−1a] = −an−1 · 2n + 〈a[n− 1 : 0]〉
= −an−1 · 2n + an−1 · 2n−1 + 〈a[n− 2 : 0]〉
= −an−1 · 2n−1 + 〈a[n− 2 : 0]〉
= [a].

25

x y x x ∧ y x ∨ y x⊕ y
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Table 4.2: Boolean operators

For the last line we observe that x = 1− x for x ∈ B. Then

[a] = −an−1 · 2n−1 +
n−2∑
i=0

ai · 2i

= −(1− an−1) · 2n−1 +
n−2∑
i=0

(1− ai) · 2i

= −2n−1 +
n−2∑
i=0

2i + an−1 · 2n−1 −
n−2∑
i=0

ai · 2i

= −1− [a]. (Lemma 12)

We conclude the discussion of binary numbers and two’s complement numbers with a lemma that
provides a subtraction algorithm for binary numbers:

Lemma 23. Let a, b ∈ Bn. Then

〈a〉 − 〈b〉 ≡ 〈a〉+ 〈b〉+ 1 mod 2n.

If additionally 〈a〉 − 〈b〉 ≥ 0, we have

〈a〉 − 〈b〉 = (〈a〉+ 〈b〉+ 1 mod 2n).

Proof. By Lemma 22 we have

〈a〉 − 〈b〉 = 〈a〉 − [0b]

= 〈a〉+ [1b] + 1

= 〈a〉 − 2n + 〈b〉+ 1

≡ 〈a〉+ 〈b〉+ 1 mod 2n.

The extra hypothesis 〈a〉 − 〈b〉 ≥ 0 implies

〈a〉 − 〈b〉 ∈ Bn.

The second claim now follows from Lemma 11

4.3 Boolean Algebra

We consider Boolean expressions with constants 0 and 1, variables x0, x1, . . ., a, b, . . ., and function
symbols ,∧,∨,⊕, f(. . .), g(. . .), Four of the function symbols have predefined semantics as
specified in Table 4.2. For a more formal definition one collects the constants, variables and function

26

symbols allowed into sets

C = {0, 1}
V = {x0, x1, . . .}
F = {f0, f1, . . .}

and denotes the number of arguments for function fi with ni. Now we can define the set BE of
Boolean expressions by the following rules:

1. constants and variables are Boolean expressions

C ∪ V ⊂ BE

2. if e is a Boolean expression, then also (e)

e ∈ BE → (e) ∈ BE

3. if e and e′ are boolean expresions then so is (e ◦ e′) for any of the binare predefined connectives
◦

e, e′ ∈ BE ∧ ◦ ∈ {∧,∨,⊕} → (e ◦ e′) ∈ BE

4. if fi is a symbol for a function with ni arguments, then we can obtain a Boolean expression
fi(e1, . . . , eni

) by substituting Boolean expressions ej

(∀j ∈ [1 : ni] : ej ∈ BE)→ fi(e1, . . . , eni
) ∈ BE

5. all Boolean expressions are formed by the above rules.

We call a Boolean expression pure if it uses only the predefined connectives.

In order to save brackets one uses the convention, that binds stronger than ∧ and that ∧ binds
stronger than ∨. Thus x1 ∧ x2 ∨ x3 is an abbreviation for

x1 ∧ x2 ∨ x3 = ((x1) ∧ x2) ∨ x3.

We denote expressions e depending on variables x = x[1 : n] often by e(x). Variables xi can take
values in B, thus x = x[1 : n] can take values in Bn. We denote the result of evaluation expression
e ∈ BE with bit string a ∈ Bn by e(a) and get a straight forward set of rules for evaluating
expressions:

1. Substitute ai for xi
xi(a) = ai

2. evaluate (e) by evaluating e and negating the result according to the predefined meaning of
negation in table 4.2

(e)(a) = e(a)

3. evaluate (e◦e′) by evaluating e and e′ and then combining the results according to the predefined
meaning of ◦ in table 4.2

(e ◦ e′)(a) = e(a) ◦ e′(a)

27

4. expressions of the form fi(e1, . . . , enj
) can only be evaluated if symbol fi has an interpretation

as a function
fi : Bni → B

In this case evaluate fi(e1, . . . , enj
)(a) by evaluating arguments ej, substituting the result into

f and evaluating f .
fi(e1, . . . , enj

)(a) = fi(e1(a), . . . , eni
(a))

The following small example shows that this very formal and detailed set of rules captures our
usual way of evaluating expressions.

(x1 ∧ x2)(0, 1) = x1(0, 1) ∧ x2(0, 1)

= 0 ∧ 1

= 0

Equations have thefor
e = e′

where e and e′ are expressions (involving here variables x = x[1 : n]. They come in two flavors:

• identities. An equation e = e′ is an identity iff expressions e and e′ evaluate to the same value
∈ B for any substitution of the variables a = a[1 : n] ∈ Bn:

∀a ∈ Bn : e(a) = e′(a),

• equations which one wants to solve. A substitution a = a[1 : n] ∈ Bn solves equation e = e′ if
e(a) = e′(a).

If not stated otherwise, we usually assume equations to be of the first type, i.e. to be implicitly
quantified over all free variables. This is also the case with definitions of functions, where the left-
hand side of an equation represents an entity being defined. For instance, the following definition of
the function

f(x1, x2) = x1 ∧ x2
is the same as

∀a, b ∈ B : f(a, b) = a ∧ b.
We may also write

e ≡ e′

to stress that a given equation is an identity or to avoid brackets in case if this equation is a definition
and the right-hand side itself contains an equality sign.

In case we talk about several equations in a single statement, we assume implicit quantification
over the whole statement rather than over every single equation. In that case we usually have
equations of the second kind. For instance

e1 = e2 ↔ e3 = 0

is the same as
∀a ∈ Bn : e1(a) = e2(a)↔ e3(a) = 0

and means that, for a given substitution a, equations e1 and e2 evaluate to the same value iff equation
e3 evaluates to 0.

In Boolean algebra there is a very simple connection between the solution of equations and
identities. An identity e ≡ e′ holds iff equations e = 1 and e′ = 1 have the same set of solutions.

28

Lemma 24. Given Boolean expressions e(x) and e′(x), we have

e ≡ e′ ↔ ∀a ∈ Bn : (e = 1↔ e′ = 1)

Proof. The direction from left to right is trivial. For the other direction we distinguish cases:

• e(a) = 1. Then e′(a) = 1 by hypothesis,

• e(a) = 0. Then e′(a) = 1 would by hypothesis imply the contradiction e(a) = 1. Because in
Boolean algebra e′(a) ∈ B we conclude e′(a) = 0.

Thus, we have e(a) = e′(a) for all a ∈ Bn.

4.3.1 Identities

In the following, we provide a list of useful identities of Boolean algebra.

• Commutativity:

x1 ∧ x2 ≡ x2 ∧ x1
x1 ∨ x2 ≡ x2 ∨ x1
x1 ⊕ x2 ≡ x2 ⊕ x1

• Associativity:

(x1 ∧ x2) ∧ x3 ≡ x1 ∧ (x2 ∧ x3)
(x1 ∨ x2) ∨ x3 ≡ x1 ∨ (x2 ∨ x3)
(x1 ⊕ x2)⊕ x3 ≡ x1 ⊕ (x2 ⊕ x3)

• Distributivity:

x1 ∧ (x2 ∨ x3) ≡ (x1 ∧ x2) ∨ (x1 ∧ x3)
x1 ∨ (x2 ∧ x3) ≡ (x1 ∨ x2) ∧ (x1 ∨ x3)

• Identity:

x1 ∧ 1 ≡ x1

x1 ∨ 0 ≡ x1

• Idempotence:

x1 ∧ x1 ≡ x1

x1 ∨ x1 ≡ x1

• Annihilation:

x1 ∧ 0 ≡ 0

x1 ∨ 1 ≡ 1

29

x1 x2 x1 ∧ x2 x1 ∧ x2 x1 x2 x1 ∨ x2
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Table 4.3: Verifying the first of de Morgan’s laws

• Absorption:

x1 ∨ (x1 ∧ x2) ≡ x1

x1 ∧ (x1 ∨ x2) ≡ x1

• Complement:

x1 ∧ x1 ≡ 0

x1 ∨ x1 ≡ 1

• Double negation:
x1 ≡ x1

• De Morgan’s laws:

x1 ∧ x2 ≡ x1 ∨ x2
x1 ∨ x2 ≡ x1 ∧ x2.

Each of these identities can be proven in a simple brute force way: if the identity has n variables,
then for each of the 2n possible substitutions of the variables the left and right hand sides of the
identities are evaluated with the help of Table 4.2. If for each substitution the left hand side and the
right hand side evaluate to the same value, then the identity holds. For the first of de Morgan’s laws
this is illustrated in Table 4.3.

4.3.2 Solving Equations

We consider expressions e and ei (where 1 ≤ i ≤ n), involving a vector of variables x. We derive
three basic lemmas about the solution of Boolean equations. For a ∈ B we define

ea =

{
e a = 1

e a = 0
.

Inspection of the semantics of in Table 4.2 immediately gives

Lemma 25 (Solving Negation). Given a Boolean expression e(x) and a ∈ B, we have

ea = 1↔ e = a

Inspection of the semantics of ∧ in Table 4.2 gives

(e1 ∧ e2) = 1↔ e1 = 1 ∧ e2 = 1.

Induction on n results in

30

Lemma 26 (Solving Conjunction). Given Boolean expressions ei(x), where 1 ≤ i ≤ n, we have

(
n∧
i=1

ei) = 1↔ ∀i ∈ [1 : n] : ei = 1

From the semantics of ∨ in Table 4.2, we have

(e1 ∨ e2) = 1↔ e1 = 1 ∨ e2 = 1.

Induction on n yields

Lemma 27 (Solving Disjunction). Given Boolean expressions ei, where 1 ≤ i ≤ n, we have

(
n∨
i=1

ei) = 1↔ ∃i ∈ [1 : n] : ei = 1

4.3.3 Disjunctive Normal Form

Definition 18. Let f : Bn → B be a switching function3 and let e be a Boolean expression with
variables x. We say that e computes f iff the identity f(x) ≡ e holds.

Lemma 28. Every switching function is computed by some Boolean expression:

∀f : Bn → B : ∃e : f(x) ≡ e

Moreover expression e is pure.

Proof. Let b ∈ B and let xi be a variable. We define the literal

xbi =

{
xi b = 1

xi b = 0.

Then by Lemma 25
xbi = 1↔ xi = b. (4.2)

Let a = a[1 : n] ∈ Bn and let x = x[1 : n] be a vector of variables. We define the monomial

m(a) =
n∧
i=1

xaii .

Then,

m(a) = 1 ↔ ∀i ∈ [1 : n] : xaii = 1 (Lemma 26)

↔ ∀i ∈ [1 : n] : xi = ai (Equation 4.2)

↔ x = a.

Thus, we have
m(a) = 1↔ x = a. (4.3)

We define the support S(f) of f as the set of arguments a, where f takes the value f(a) = 1:

S(f) = {a | a ∈ Bn ∧ f(a)}.

3The term switching function comes from electrical engineering and stands for a Boolean function.

31

If the support is empty, then e = 0 computes f . Otherwise we set

e =
∨

a∈S(f)
m(a).

Then

e = 1 ↔ ∃a ∈ S(f) : m(a) = 1 (Lemma 27)

↔ ∃a ∈ S(f) : a = x (Equation 4.3)

↔ x ∈ S(f)

↔ f(x) = 1.

Thus, equations e = 1 and f(x) = 1 have the same solutions. With Lemma 24 we conclude

e ≡ f(x).

The expression e constructed in the proof of Lemma 28 is called the complete disjunctive normal
form of f .

Example: The complete disjunctive normal forms of the sum and carry functions c′ defined in Table
4.1 are

c′(a, b, c) ≡ a ∧ b ∧ c ∨ a ∧ b ∧ c ∨ a ∧ b ∧ c ∨ a ∧ b ∧ c (4.4)

s(a, b, c) ≡ a ∧ b ∧ c ∨ a ∧ b ∧ c ∨ a ∧ b ∧ c ∨ a ∧ b ∧ c. (4.5)

In algebra, one often omits the multiplication sign in order to simplify notation. Recall that the first
binomic formula is usually written as

(a+ b)2 = a2 + 2ab+ b2,

where 2ab is a shorthand for 2 · a · b. In the same spirit we omit the ∧-sign in the conjunction of
literals. Thus the above identities can also be written as

c′(a, b, c) ≡ abc ∨ abc ∨ abc ∨ abc
s(a, b, c) ≡ abc ∨ abc ∨ abc ∨ abc.

Simplified Boolean expressions for the same functions are

c′(a, b, c) ≡ ab ∨ bc ∨ ac
s(a, b, c) ≡ a⊕ b⊕ c.

The correctness can be checked in the usual brute force way by trying all 8 assignments of values in
B3 to the variables of the expressions, or by applying the identities listed in Section 4.3.1.

In the remainder of this book, we return to the usual mathematical notation, using the equality
sign for both identities and equations to be solved. Whether we deal with identities or whether we
solve equations will (hopefully) be clear from the context. We will also sometimes use the equivalence
sign for identities e.g., to avoid using brackets in case we give a definition with an equality sign in
the right-hand side.

32

Chapter 5

Hardware

In Section 5.1 we introduce the classical model of digital circuits and show - by an induction on the
depth of gates - that the computation of signals in this model is well defined. The simple argument
hinges on the fact that depth in directed acyclic graphs is defined, which was established in subsection
3.4.2. We show how to transform Boolean expressions into circuits and obtain circuits for arbitrary
switching functions with the help of the disjunctive normal form.

A few basic digital circuits are presented for later use in Section 5.2. This is basically the same
collection of circuits as presented in [MP00] and [?].

In Section 5.3 we introduce a computational model consisting of digital circuits and 1 bit registers
as presented in [MP00, MP98, ?]. In the very simple Section 5.4 we define multiple 1 bit registers
witch are always clocked together as n bit registers and allow the state of such registers R as single
components h.R of hardware configurations h.

Some constructions for control automate are presented in Section 5.5. They are taken from
[MP00,?]. This section can be skipped at the first reading.

5.1 Gates and Circuits

In a nutshell, we can think of hardware as consisting of three kinds of components which are intercon-
nected by wires: gates, storage elements, and drivers. Drivers are tricky, and their behavior cannot
even properly explained in a purely digital circuit model; for details see [?]. Fortunately we can avoid
them in the designs of this book. Gates are: AND-gates, OR-gates, ⊕-gates, and inverters. For the
purpose of uniform language we sometimes call inverters also NOT − gates. In circuit schematics
we use the symbols from Figure 5.1.

Intuitively, a circuit C consists of a finite set H of gates, a sequence of input signals x[1 : n], a set
N of wires that connect them, as well as a sequence of output signals y[1 : t] chosen from all signals
of circuit C (as illustrated in Figure 5.2). Special inputs 0 and 1 are always available for use in a
circuit. Formally we specify a circuit C by the following components

• a sequence on inputs C.x[1 : n]. We define the corresponding set of inputs of the circuit as

In(C) = {C.x[i] : i ∈ [1 : n]}

• a set C.H of gates which is disjoint from the set of inputs

C.H ∩ In(C) = ∅

The signals of a circuit then are its inputs and its gates. Moreover the constant signals 0 and
1 are always available. We collect the signals of circuit C in the set

Sig(C) = In(C) ∪ C.H ∪ {0, 1}

33

aa

a ∨ b

ba b

a ∧ b ā

ab

a⊕ b

Figure 5.1: Symbols for gates in circuit schematics
Outputs

wires and gates

Inputs
. . .

x[n]x[2]x[1]01

. . .
y[1] y[2] y[t]

Figure 5.2: Illustration of inputs and out-
puts of a circuit C

Figure 5.3: Example of a circuit

• a labelling function

C.` : H → {∧,∨,⊕,¬}
specifying for each gate g ∈ C : H its type c.`(g). Thus a gate g a ◦-gate if C.`(g) = ◦.

• two functions

C.in1, C.in2 : C.H → Sig(C)

specifying for each gate g ∈ C.H the signals, where its left input C.in1(g) and its right input
C.in2(g) are coming from. These functions specify the wires interconnecting the gates and
inputs. For inverters the second input does not matter.

• a sequence

C.y[1 : t] ∈ Sig(C)∗

of signals of the circuit, which are taken as the outputs of the circuit.

34

1

Figure 5.4: Examples for cycles in circuits

As an example we specify the circuit from figure 5.3 formally by

C.x[1 : 2] = x[1 : 2]

C.H = {r, s, t, u, v}
C.y[1 : 1] = v

as well as the function tables in table 5.1
g r s t u v

C.`(g) ¬ ¬ ∧ ∧ ∨
C.in1(g) x2 x1 x1 s t
C.in2(g) r x2 u

At first glance it is very easy to define how a circuit should work.

Definition 19 (Evaluating Signals of a Circuit). For a circuit C, we define the values s(a) produced
by signals s ∈ Sig(C) for a given substitution a = a[1 : n] ∈ Bn of the input signals:

1. if s = xi is an input:
∀i ∈ [1 : n] : xi(a) = ai,

2. if s is an inverter:
s(a) = in1(s)(a),

3. if s is a ◦-gate with ◦ ∈ {AND,OR,⊕}:

s(a) = in1(s)(a) ◦ in2(s)(a).

Unfortunately, this is not always a definition. For three counterexamples, see Figure 5.4. Due
to the cycles, one cannot find an order in which the above definition can be applied. Fortunately,
defining and then forbidding cycles solves the problem. With circuits C we associate in an obvious
way a graph G(C) by the following rules

• the nodes of the graph are the signals of the circuit, i.e. inputs, gates ans well as the constants
0 and 1

G(C).V = Sig(C)

• we draw and edge (s, t) from signal s to signal t if t is a gate and s is an input for t

(s, t) ∈ G(C).E ↔ t ∈ C.H ∧ s ∈ {C.in1(t), C.in2(t)

The sources of these graphs are the inputs as well as the constant signals 0 and 1. We restrict the
definition of circuits C by requiring that their graphs G(C) are cycle free. This not only excludes
the counter examples above. We know from subsection 3.4.2 that in directed acyclic graph every
node has a depth. Evaluating signals s in circuits in the order of their depth will always work, and
we conclude by induction on the depth of gates the very reassuring

Lemma 29. The values s(a) are well defined for all signals s in a circuit C.

35

Applying the definition with inputs a[1 : 2] ∈ B2 to the circuit of figure 5.3 gives the values in
table 5.1.

a[1 : 2] 00 01 10 11

r 1 0 1 0
s 1 1 0 0
t 0 0 1 0
u 0 1 0 0
v 0 1 1 0

Obviously we can treat names g of gates as function symbols with n arguments satisfying with
x = x[1 : n] the identities

1. if s is an inverter:
s(x) = in1(s)(x),

2. if s is a ◦-gate with ◦ ∈ {AND,OR,⊕}:

s(x) = in1(s)(x) ◦ in2(s)(x).

So we can do Boolean algebra with signal names. We can for instance summarize the last line of
table 5.1 by

∀a ∈ B2 : v(a) = 1↔ a1 ⊕ a2 = 1

which can be written as the identity

v(x[1 : 2]) = x1 ⊕ x2
or shorter

v = x1 ⊕ x2
We can transform Boolean expressions in a trivial way into circuits.

Lemma 30. Let e be a pure Boolean expression with variables x[1 : n]. Then there is a circuit C(e)
with inputs x[1 : n] and a gate g ∈ C : H such that

e = g(x)

is an identity.

Proof. by induction on the structure of Boolean expressions. If e is a variable xi or a constant
c ∈ {0, 1} we take g as the corresponding input xi or the corresponding constant signal c in the
circuit. In the induction step there are two obvious cases

• e = ¬e′. By induction hypothesis we have circuit C(e′) and gate g′ such that

e′ = g′(x)

We extend the circuit by an inverter g as shown in figure 5.5 a) and get

g(x) = ¬(g′(x)) = ¬e′ = e

• e = e′ ◦ e”. By induction hypothesis we have circuits C(e′) and C(e”) with gates g′) and g”)
satisfying

e′ = g(x) and e” = g”(x)

We feed g′ and g” into a ◦-gate as shown in figure 5.5 b) and get

g(x) = g′(x) ◦ g”(x) = e′ ◦ e” = e

36

Figure 5.5: Transforming Boolean expressions to circuits. TODO: write g at output of ◦ gate in b)

Circuits for arbitrary switching functions are obtained with the help of lemma 28.

Lemma 31. Let f : Bn → B be a switching function. Then there is a circuit C with inputs x[1 : n]
and a gate g in the circuit computing f , i.e. such that

g(x) = f(x)

is an identity

Proof. Let e be the complete disjunctive normal form for f using variables x[1 : n]. Then

e = f(x)

By lemma 30 in circuit C(e) there is a gate g with

g(x) = e = f(x)

We conclude this section by mentioning two complexity measures for circuits C.

• the number of gates

c(C) = #C : H

is an approximation for the cost of the circuit.

• the length of a longest path in the underlying graph G(C) is denoted with d(C) and called the
depth of the circuit. It counts the maximal number of gates on a path in the circuit and is an
approximation for the delay of the circuit.

37

FA

c

c′ s

1

1

a b

1 1

1

(a) symbol

s

b
c

a
b
c

a

c′

s

c′

(b) implementation

Figure 5.6: Full adder

HA

1 1

1
1

c′

a

s

c

(a) symbol

a

c′ s

c

(b) implementation

Figure 5.7: Half adder

5.2 Some Basic Circuits

We have shown in lemma 30 that Boolean expressions can be transformed into circuits in a very
intuitive way. In Figure 5.6(b) we have transformed the simple formulas from Equation 4.4 for
c′(a, b, c) and s(a, b, c) into a circuit. With inputs (a, b, c) and outputs (c′, s) this circuit satisfies

〈c′, s〉 = a+ b+ c.

A circuit satisfying this condition is called a full adder. We use the symbol from Figure 5.6(a) to
represent this circuit in subsequent constructions. When the b-input of a full adder is known to be
zero, the specification simplifies to

〈c′, s〉 = a+ c.

The resulting circuit is called a half adder. Symbol and implementation are shown in Figures 5.7(a)
and (b). The circuit in Figure 5.8(b) is called a multiplexer or short mux. Its inputs and outputs
satisfy

z =

{
x s = 0

y s = 1.

For multiplexers we use the symbol from Figure 5.8(a). The n-bit multiplexer or short n-mux in
Figure 5.9(b) consists of n multiplexers with a common select signal s. Its inputs and outputs satisfy

z[1 : n] =

{
x[1 : n] s = 0

y[1 : n] s = 1.

For n-muxes we use the symbol from Figure 5.9(a). Figure 5.10(a) shows the symbol for an n-bit
inverter. Its inputs and outputs satisfy

y[1 : n] = x[1 : n].

38

1

10

1 1

z

s

yx

(a) symbol

y

z

s

x

(b) implementation

Figure 5.8: Multiplexer

10

z

s

yx
n n

n

(a) symbol

10

1 1

1

10

1 1

1

s· · ·

y1x1

z1zn

xn yn

(b) implementation

Figure 5.9: n-bit multiplexer

x[1 : n]

y[1 : n]

n

n

(a) symbol

1

1

x1

y1

· · ·
1

1

xn

yn

(b) implementation

Figure 5.10: n-bit inverter

39

n

◦

z[1 : n]

n n

y[1 : n]x[1 : n]

n

◦
n

y[1 : n]v

1

u[1 : n]

(a) symbol

◦

◦

◦

v

1 1

1

y1

u1

◦
1 1

1

z1

x1 y1

v

1 1

yn

un

1

1 1

1

xn yn

zn

· · ·

· · ·

(b) implementation

Figure 5.11: Gates for n-bit wide inputs

◦
1

n

a[1 : n]

b

(a) symbol

◦

◦ ◦

b

a[1 : n
2
] a[n

2
+ 1 : n]

n
2

n
2

(b) implementation

Figure 5.12: n-bit ◦-tree of gates for ◦ ∈ {∧,∨,⊕}

n-bit inverters are simply realized by n separate inverters as shown in Figure 5.10(b). For ◦ ∈
{∧,∨,⊕}, Figure 5.11(a) shows symbols for n-bit ◦-gates. Their inputs and outputs satisfy

z[1 : n] = x[1 : n] ◦ y[1 : n]

u[1 : n] = v ◦ y[1 : n].

n-bit ◦-gates are simply realized in the first case by n separate ◦-gates as shown in Figure 5.11(b).
In the second case all left inputs of the gates are connected to the same input v. An n-bit ◦-tree
has inputs a[1 : n] and a single output b satisfying

b = ◦ni=1ai.

Symbol and recursive construction are shown in Figures 5.12(a) and (b). The inputs a[1 : n] and
outputs zero and nzero of an n-zero tester shown in Figures 5.13(a) and (b)) satisfy

zero ≡ a = 0n

nzero ≡ a 6= 0n.

The implementation uses

nzero(a[1 : n]) =
n∨
i=1

ai , zero = nzero.

40

n-Zero

nzero

n

11

zero

a

(a) symbol

a

n

∨

zero

nzero

(b) implementation

Figure 5.13: n-bit zero tester

n-eq

n

a

11

n

b

eq neq

(a) symbol

neq

n

11

eq

ba
nn

n-Zero

(b) implementation

Figure 5.14: n-bit equality tester

The inputs a[1 : n], b[1 : n] and outputs eq, neq of an n-bit equality tester (Figures 5.14(a) and
(b)) satisfy

eq ≡ a = b

neq ≡ a 6= b.

The implementation uses

neq(a[1 : n]) = nzero(a[1 : n]⊕ b[1 : n]) , eq = neq.

An n-decoder is a circuit with inputs x[n− 1 : 0] and outputs y[2n − 1 : 0] satisfying

∀i : yi = 1↔ 〈x〉 = i.

A recursive construction with k = dn
2
e is shown in Figure 5.15. For the correctness one argues in the

induction step

y[i · 2k + j] = 1 ↔ V [i] = 1 ∧ U [j] = 1 (construction)

↔ 〈x[n− 1 : k]〉 = i ∧ 〈x[k − 1 : 0]〉 = j (ind. hypothesis)

↔ 〈x[n− 1 : k]x[k − 1 : 0]〉 = i · 2k + j. (Lemma 17)

An n-half decoder is a circuit with inputs x[n− 1 : 0] and outputs y[2n − 1 : 0] satisfying

y = 02n−〈x〉1〈x〉,

41

2n−k 2k

n− k

n− k−Dec

k

k−Dec

U [2k − 1 : 0]V [2n−k − 1 : 0]

x[n− 1 : k] x[k − 1 : 0]

· · · · · ·
U [j]V [i]

y[2k · i+ j]

n > 1:x0n = 1:

y0y1

Figure 5.15: Implementation of an n-bit decoder

x0

y0

0

y1

n = 1: x′ = x[n− 2 : 0]

Y [L]

n− 1

U [L]
2n−1

(n− 1)−hdec

Y [H]

2n−1 2n−1

n > 1:

xn−1

Figure 5.16: Recursive construction of n-bit half decoder

i.e. input x is interpreted as a binary number and decoded into a unary number. The remaining
output bits are filled with zeros. A recursive construction of n-half decoders is shown in Figure 5.16.
For the construction of n-half decoders from (n − 1)-half decoder we divide the index range into
upper and lower half:

L = [2n−1 − 1 : 0] , H = [2n − 1 : 2n−1].

Also we divide x[n− 1 : 0] into the leading bit xn−1 and the low order bits

x′ = x[n− 2 : 0].

Then on the induction step we conclude

Y [H] ◦ Y [L] = xn−1 ∧ U [L] ◦ (xn−1 ∨ U(L))

=

{
02n−1 ◦ 02n−1−〈x′〉1〈x

′〉 : xn−1 = 0

02n−1−〈x′〉1〈x
′〉 ◦ 12n−1

: xn−1 = 1

=

{
02n−〈x′〉1〈x

′〉 : xn−1 = 0

02n−(2n−1+〈x′〉)12n−1+〈x′〉 : xn−1 = 1

= 02n−〈xn−1x′〉1〈xn−1x′〉

= 02n−〈x〉1〈x〉.

5.3 Clocked Circuits

So far we have not treated storage elements yet. Now we introduce the simplest possible storage
elements, namely registers capable of storing a single bit and construct a computational model

42

0

x[1]cex[1]

x[1]in

x[2]cex[2]

x[2]in

x[n]cex[n]

x[n]in

· · ·

x[n] reset

n

x[1 : n]ce

x[1]

x[2]

circuit c

x[1 : n]in

n

1

Figure 5.17: A digital clocked circuit: Every output signal x[i]in of circuit c is the data input of the
corresponding register x[i] and every output x[i]ce produced by circuit c is the clock enable input of
the corresponding register

involving both circuits and these registers. All hardware constructions in this book including the
construction of an entire processor with operating system support will be done in this model. Of
course, we will construct more comfortable storage elements like n-bit registers and various flavors
of random access memories on the way

A digital clocked circuit or short clocked circuit, as illustrated in Figure 5.17, has four components:

• a special reset input,

• special inputs 0 and 1,

• a sequence x[1 : n] of 1 bit registers, and

• a circuit with inputs x[1 : n], reset, 0, and 1 and outputs x[1 : n]in and x[1 : n]ce.

Each register x[i] has

• a data input x[i]in,

• a clock enable input x[i]ce, and

• a register value x[i] which is also the output signal of the register.

In the digital model we assume that register values as well as all other signals always are in B.
A hardware configuration h of a clocked circuit is a snapshot of the current values of the registers:

h = x[1 : n] ∈ Bn.

A hardware computation is a sequence of hardware configurations where the next configuration
h′ is computed from the current configuration h and the current value of the reset signal by a next
hardware configuration function δH :

h′ = δH(h, reset).

In a hardware computation, we count cycles (steps of the digital model) using natural numbers
t ∈ N ∪ {−1}. The hardware configuration in cycle t of a hardware computation is denoted by
ht = xt[1 : n] and the value of signal y during cycle t is denoted by yt.

43

x[1]

1 0

0

y

1

reset

Figure 5.18: An example clocked circuit with a single register

The values of the reset signal are fixed. Reset is on in cycle −1 and off ever after:

resett =

{
1 t = −1

0 t ≥ 0.

At power up, register values are binary but unknown. We denote this sequence of unknown binary
values at startup by a[1 : n]:

x−1[1 : n] = a[1 : n] ∈ Bn.
The current value of a circuit signal y in cycle t is defined according to the previously introduced
circuit semantics:

yt =

{
in1(y)t y is an inverter

in1(y)t ◦ in2(y)t y is a ◦-gate.

Let x[1 : n]int and x[1 : n]cet be the register input and clock enable signals computed from the
current configuration xt[1 : n] and the current value of the reset signal resett. Then the register
value xt+1[i] of the next hardware configuration xt+1[1 : n] = δH(xt[1 : n], resett) is defined as

xt+1[i] =

{
x[i]int : x[i]cet = 1

xt[i] : x[i]cet = 0

i.e., when the clock enable signal of register x[i] is active in cycle t, the register value of x[i] in cycle
t+ 1 is the value of the data input signal in cycle t; otherwise, the register value does not change.

Example: Consider the digital clocked circuit of Figure 5.18. There is only one register, thus we
abbreviate x = x[1]. For cycle −1 we have

x−1 = a[0]

reset−1 = 1

xce−1 = 1

xin−1 = 0.

Hence, x0 = 0. For cycles t ≥ 0 we have

resett = 0

xcet = 1

xint = yt = xt.

Hence, we get xt+1 = xt. An easy induction on t shows that

∀t ≥ 0 : xt = (t mod 2).

44

R0

Rinn−1 Rin0

· · ·

Rce

Rn−1

Figure 5.19: An n-bit register

5.4 Registers

Although all memory components can be built from 1 bit registers, it is inconvenient to refer to all
memory bits in a computer by numbering them with an index i of a clocked circuit input x[i]. It is
more convenient to deal with hardware configurations h and to gather groups of such bits into certain
memory components h.M . For M we introduce n-bit registers h.R. In Chapter 6 we add to this no
less than 5 (five) random access memory (RAM) designs.1 As before, in a hardware computation
with memory components, we have

ht+1 = δH(ht, resett).

An n-bit register R consists simply of n many 1 bit registers R[i] with a common clock enable
signal Rce as shown in Figure 5.19.

Register configurations are n-tuples:
h.R ∈ Bn.

Given inputs signals Rin(ht) and Rce(ht), we obtain from the semantics of the basic clocked
circuit model:

ht+1.R =

{
Rin(ht) Rce(ht) = 1

ht.R Rce(ht) = 0.

Recall that, from the initialization rules for 1-bit registers, after power up register content is
binary but unknown (metastability is extremely rare):

h0.R ∈ Bn.

5.5 Finite State Transducers

Control automata (also called finite state transducers) are finite automata which produce an output
in every step. Formally, a finite state transducer M is defined by a 6-tuple (Z, z0, I, O, δA, η), where
Z is a finite set of states, I ⊆ Bσ is a finite set of input symbols, z0 ∈ Z is called the initial state,
O ⊆ Bγ is a finite set of output symbols,

δA : Z × I → Z

is the transition function, and
η : Z × I → O

is the output function.
Such an automaton performs steps according to the following rules:

• the automaton is started in state z0,

1In the more advanced text KP13] even more memory designs are used.

45

z z′

i

Figure 5.20: Graphical representation of a transition z′ = δA(z, i)

• if the automaton is in state z and reads input symbol in, then it outputs symbol η(z, in) and
goes to state δA(z, in).

If the output function does not depend on the input, i.e., if it can be written as

η : Z → O,

the automaton is called a Moore automaton. Otherwise, it is called a Mealy automaton.
Automata are often visualized in graphical form. We will do this too in Section ?? when we

construct several automata for the control of a cache coherence protocol. State z is drawn as a circle
with a z written inside. A state transition

z′ = δA(z, i)

is visualized by an arrow from state z to state z′ with label i as shown in Figure 5.20. Initial states
are sometimes drawn as a double circle.

In what follows, we show how to implement control automata. We start with the simpler Moore
automata and then generalize the construction to Mealy automata.

5.5.1 Realization of Moore Automata

Let k = #Z be the number of states of the automaton. Then, states can be numbered from 0 to
k − 1, and we can rename the states with numbers from 0 to k − 1, taking 0 as the initial state:

Z = {0, . . . , k − 1} , z0 = 0.

We code the current state z in a register S ∈ Bk by simple unary coding:

S = code(z)↔ ∀i : S[i] =

{
1 z = i

0 otherwise.

A completely straightforward and naive implementation is shown in Figure 5.21. By the con-
struction of the reset logic, we get

h0.S = code(0).

Circuits out (like output) and nexts are constructed such that the automaton is simulated in the
following sense: if h.S = z, i.e. state z is encoded by the hardware, then

1. out(h) = η(z), i.e. automaton and hardware produce the same output,

2. nexts(h) = δA(z, in(h)), i.e. in the next cycle the hardware h′.S encodes the next state
δA(z, in(h)).

The following lemma states correctness of the construction shown in Figure 5.21.

Lemma 32. Let
h.S = code(z) ∧ δA(z, in(h)) = z′.

Then,
out(h) = η(z) ∧ h′.S = code(z′).

46

out

10

nexts

out

k

k

σ

γ

S

in

k

0k−11

k

reset

1

Figure 5.21: Naive implementation of a Moore automaton

For all i ∈ [0 : γ − 1], we construct the i’th output simply by OR-ing together all bits S[x] where
η(x)[i] = 1, i.e. such that the i’th output is on in state x of the automaton:

out(h)[i] =
∨

η(x)[i]=1

h.S[x].

A straightforward argument shows the first claim of the lemma. Assume h.S = z. Then,

h.S[x] = 1↔ x = z.

Hence,

out(h)[i] = 1

↔
∨

η(x)[i]=1

h.S[x] = 1

↔ ∃x : η(x)[i] = 1 ∧ h.S[x] = 1

↔ η(z)[i] = 1.

Lemma 24 gives
out(h)[i] = η(z)[i].

For states i, j we define auxiliary switching functions

δi,j : Bσ → B

from the transition function δA of the automaton by

δi,j(in) = 1↔ δA(i, in) = j,

i.e. function δi,j(in) is on if input in takes the automaton from state i to state j. Boolean formulas
for functions δi,j can be constructed by Lemma 28. For each state j, component nexts[j] which
models the next state function is turned on in states x which transition under input in to state j
according to the automaton’s transition function:

nexts(h)[j] =
∨
x

h.S[x] ∧ δx,j(in(h)).

47

reset 10

S 1

out

nexts

k

σ
in

k

0k−11

k

1

out

γSin

k

k

outR

Figure 5.22: Implementation of a Moore automaton with precomputed outputs

For the second claim of the lemma let

h.S = code(z)

δA(z, in(h)) = z′.

For any next state j we then have

nexts(h)[j] = 1

↔
∨
x

h.S[x] ∧ δx,j(in(h)) = 1

↔ δz,j(in(h)) = j

↔ δA(z, in(h)) = j.

Hence,

nexts(h)[j] =

{
1 j = z′

0 otherwise.

Thus,

code(z′) = nexts(h)

= h′.S.

5.5.2 Precomputing Outputs of Moore Automata

The previous construction has the disadvantage that the propagation delay of circuit out tends to
contribute to the cycle time of the circuitry controlled by the automaton. This can by avoided by
precomputing the output signals of a Moore automaton as a function of the next state signals as
shown in Figure 5.22.

As above, one shows
Sin(h) = code(z)→ out(h) = η(z).

For h = h−1 the reset signal is active and we have

Sin(h−1) = 0k−11 = code(0) ∧ out(h−1) = η(0).

Thus,
h0.S = code(0) ∧ h0.outR = η(0).

The following lemma states correctness of the construction shown in Figure 5.22.

48

Lemma 33. For h = ht, t ≥ 0 let

h.S = code(z) ∧ δA(z, in(h)) = z′.

Then,
h′.S = code(z′) ∧ h′.outR = η(z′).

We have reset(h) = 0 and hence Sin(h) = nexts(h). From above we have

h′.S = nexts(h) = code(z′)

and
h′.outR = out(h) = η(z′).

49

50

Chapter 6

Five Shades of RAM

Memory components play an important role in the construction of a machine. We start in Section 6.1
with a basic construction of (static) random access memory (RAM). Next, we derive four specialized
designs: read only memory (ROM) in Section 6.2, combined ROM and RAM in Section 6.3, general
purpose register RAM (GPR RAM) in Section 6.4 and special purpose register RAM (SPR RAM)
in Section 6.5.

For the correctness proof of a RAM construction, we consider a hardware configuration h which
has the abstract state of the RAM h.S as well as the hardware components implementing this RAM.
The abstract state of the RAM is coupled with the state of its implementation by means of an
abstraction relation. Given that both the abstract RAM specification and RAM implementation
have the same inputs, we show that their outputs are also always the same.

The material in this section builds clearly on [MP00]. The new variations of RAMs (like general 2
port RAM), that we have introduced, are needed in later chapters. Correctness proofs for the various
flavors of RAM are quite similar. Thus, if one lectures about this material, it suffices to present only
a few of them in the classroom.

6.1 Basic Random Access Memory

As illustrated in Figure 6.1, an (n, a)-static RAM S or SRAM is a portion of a clocked circuit with
the following inputs and outputs:

• an n-bit data input Sin,

• an a-bit address inputs Sa,

• a write signal Sw, and

• an n-bit data output Sout.

Internally, the static RAM contains 2a many n-bit registers S(x) ∈ Bn. Thus, it is modeled as a
function

h.S : Ba → Bn.

The initial content of the RAM after reset is unknown:

∀x : h0.S(x) ∈ Bn.

The output of the RAM is the register content selected by the address input:

Sout(h) = h.S(Sa(h)).

51

n

Sa
S

Sw

Sin

a

Sout

n

Figure 6.1: Symbol for an (n, a)-SRAM.

out

n

n n

b[A− 1]

· · ·
b[0]

(n,A)-OR

Figure 6.2: Symbol for an (n,A)-or tree.

For addresses x ∈ Ba we define the next state transition function for SRAM as

h′.S(x) =

{
Sin(h) Sa(h) = x ∧ Sw(h) = 1

h.S(x) otherwise.

In order to give an implementation, we first define (n,A)-or trees. As shown in Figure 6.2, such
a tree has A many input vectors b[i] ∈ Bn with i ∈ [A− 1 : 0], where b[i][j] with j ∈ [n− 1 : 0] is the
j-th bit of input vector b[i]. The outputs of the circuit out[n− 1 : 0] satisfy

out[j] =
A−1∨
i=0

b[i][j].

The implementation of (n,A)-or trees, for the special case where A is a power of two, is shown in
Figure 6.3.

The implementation of an SRAM is shown in Figure 6.4. We use 2a many n-bit registers R(i)

with i ∈ [0 : 2a − 1] and an a-decoder with outputs X[2a − 1 : 0] satisfying

X(i) = 1↔ i = 〈Sa(h)〉.

The inputs of register R(i) are defined as

h.R(i)in = Sin(h)

h.R(i)ce = Sw(h) ∧X[i].

For the next state computation we get

h′.R(i) =

{
Sin(h) i = 〈Sa(h)〉
h.R(i) otherwise.

52

A > 1:

n

n n n n

n

A = 1 :

n

n

out

out

b[0] b[A− 1] b[A/2] b[A/2− 1]

(n,A/2)-OR (n,A/2)-OR

· · ·· · ·
b[0]

Figure 6.3: Recursive construction of an (n,A)-or tree.

n nb[i] Sout(n, 2a)-OR

a

n

n

a-Dec

···
Sin

R(2a−1)

R(0)

Sw

X [2a − 1]

X [i]

X [0]

R(i)

···

Sa

Figure 6.4: Construction of an (n, a)-SRAM.

The ith input vector b[i] to the or tree is constructed as

b[i] = X[i] ∧ h.R(i)

=

{
h.R(i) i = 〈Sa(h)〉
0n otherwise.

Thus,

Sout(h) =
2a−1∨
i=0

b[i]

= h.R(〈Sa(h)〉).

As a result, when we choose
h.S(x) = h.R(〈x〉)

as the defining equation of our abstraction relation, the presented construction implements an SRAM.

6.2 Read Only Memory (ROM)

An (n, a)-ROM is is a memory with a drawback and an advantage. The drawback: it can only be
read. The advantage: its content is known after power up. It is modeled by a mapping S : Ba → Bn,

53

n

Sa
Sa

Sout

Figure 6.5: Symbol of an (n, a)-ROM.

n

nb[i] Sout(n, 2a)-OR
n

a a-Dec

X [2a − 1]

X [i]

X [0]

Sa

S(ia)

Figure 6.6: Construction of an (n, a)-ROM.

which does not depend on the hardware configuration h. The construction is obtained by a trivial
variation of the basic RAM design from Figure 6.4: replace each register R(i) by the constant input
S(bina(i)) ∈ Bn. Since the ROM cannot be written, there are no data in, write, or clock enable
signals; the hardware constructed in this way is a circuit. Symbol and construction are given in
Figures 6.5 and 6.6.

6.3 Combining RAM and ROM

It is often desirable to implement some small portion of memory by ROM and the remaining large
part as RAM. The standard use for this is to store boot code in the ROM. Since, after power up,
the memory content of RAM is unknown, computation will not start in a meaningful way unless at
least some portion of memory contains code that is known after power up. The reset mechanism of
the hardware ensures that processors start by executing the program stored in the ROM. This code
usually contains a so called boot loader which accesses a large and slow memory device – like a disk
– to load further programs, e.g. an operating system, to be executed from the device.

For r < a we define a combined (n, r, a)-RAM-ROM S as a device that behaves for small addresses
a = 0a−rb with b ∈ Br like ROM and on the other addresses like RAM. Just like an ordinary (n, a)-
RAM, we model the state of the (n, r, a)-RAM-ROM as

h.S : Ba → Bn

and define its output as

Sout(h) = h.S(Sa(h)).

Write operations, however, affect only addresses larger than 0a−r1r:

h′.S(x) =

h0.S(x) x[a− 1 : r] = 0a−r

Sin(h) x = Sa(h) ∧ Sw(h) ∧ x[a− 1 : r] 6= 0a−r

h.S(h) otherwise.

54

(n, r)-ROM

Sa Sw

Sin

a S

n

n

Sout

Figure 6.7: Symbol of an (n, r, a)-RAM-ROM.

a− r

10

a

n

n

r

n

Sa[r − 1 : 0]Sa

Sin

n

Sout

Sw

S1 S2

Sa[a− 1 : r]

(a− r)-Zero

Figure 6.8: Construction of an (n, r, a)-RAM-ROM.

The symbol for an (n, r, a)-RAM-ROM and a straight forward implementation involving an (n, a)-
SRAM, an (n, r)-ROM, and an (a− r)-zero tester is shown in Figures 6.7 and 6.8.

6.4 Three Port RAM for General Purpose Registers

An (n, a)-GPR-RAM is a three port RAM that we use later for general purpose registers. As shown
in Figure 6.9, it has the following inputs and outputs:

• an n-bit data input Sin,

• three a-bit address inputs Sa, Sb, Sc,

• a write signal Sw, and

• two n-bit data outputs Souta, Soutb.

As for ordinary SRAM, the state of the 3-port RAM is a mapping

h.S : Ba → Bn.

Reads are controlled by address inputs Sa(h) and Sb(h):

Souta(h) = h.S(Sa(h))

Soutb(h) = h.S(Sb(h)).

55

Souta

Sa a

Sb a

Sc a

S
Sw

Sin

n

n n

Soutb

Figure 6.9: Symbol of an (n, a)-GPR RAM.

n

a a-DecSc Z[i]

a a-DecSa X [i]

a a-DecSb Y [i]

na[i] Souta(n, 2a)-OR
n

nb[i] Soutb(n, 2a)-OR

n

Sin

Sw

R(i)

n

n

Figure 6.10: Construction of an (n, a)-GPR-RAM.

Writing is performed under control of address input Sc(h):

h′.S(x) =

{
Sin(h) Sc(h) = x ∧ Sw(h) = 1

h.S(x) otherwise.

The implementation shown in Figure 6.10 is a straightforward variation of of the design for
ordinary SRAM. One uses three different a-decoders with outputs X[0 : 2a − 1],Y [0 : 2a − 1],
Z[0 : 2a − 1] satisfying

X[i] = 1 ↔ i = 〈Sa(h)〉
Y [i] = 1 ↔ i = 〈Sb(h)〉
Z[i] = 1 ↔ i = 〈Sc(h)〉.

Clock enable signals are derived from the decoded Sc address:

R(i)ce = Z[i] ∧ Sw(h).

56

Sdout[0]

Sa
S

n nn

Sdin[0]
· · ·

Sin

n n

Sout

n· · ·

a

2a
Sw

Sce

Sdout[2a − 1]

Sdin[2a − 1]

Figure 6.11: Symbol of an (n, a)-SPR RAM.

Outputs Souta, Soutb are generated by two (n, 2a)-or trees with inputs a[i], b[i] satisfying

a[i] = X[i] ∧ h.R(i)

Souta(h) =
∨

a[i]

b[i] = Y [i] ∧ h.R(i)

Soutb(h) =
∨

b[i].

6.5 SPR RAM

An (n, a)-SPR-RAM as shown in Figure 6.11 is used for the realization of special purpose register
files. It behaves both as an (n, a)-RAM and as a set of 2a many n bit registers. It has the following
inputs and outputs:

• an n-bit data input Sin,

• an a-bit address input Sa,

• an n-bit data output Sout,

• a write signal Sw,

• for each i ∈ [0 : 2a − 1] an individual n-bit data input Sdin[i] for register R(i),

• for each i ∈ [0 : 2a − 1] an individual n-bit data output Sdout[i] for register R(i), and

• for each i ∈ [0 : 2a − 1] an individual clock enable signal Sce[i] for register R(i).

Ordinary data output is generated as usual, and the individual data outputs are simply the
outputs of the internal registers:

Sout(h) = h.S(Sad(h))

Sdout(h)[i] = h.S(bina(i)).

Register updates to R(i) can be performed either by Sin for regular writes or by Sdin[i] if the
special clock enables are activated. Special writes take precedence over ordinary writes:

h′.S(x) =

Sdin(h)[〈x〉] Sce(h)[〈x〉] = 1

Sin(h) Sce(h)[〈x〉] = 0 ∧ Sw(h) = 1

h.S(x) otherwise.

57

Sce[i]10

n
n

n

R(i)

a a-Dec

Sw

Sce[i]

Sdout[i]

nn

Sin Sdin[i]

X [i]

nb[i]
(n, 2a)-ORSa Sout

Figure 6.12: Construction of an (n, a)-SPR RAM.

A single address decoder with outputs X[i] and a single or-tree suffices. Figure 6.12 shows the
construction satisfying

R(i)ce = Sce(h)[i] ∨X[i] ∧ Sw(h)

R(i)in =

{
Sdin(h)[i] Sce(h)[i] = 1

Sin(h) otherwise.

58

Chapter 7

Arithmetic Circuits

For later use in processors with the MIPS instruction set architecture (ISA), we construct several
circuits: various flavors of adders and incrementers are presented in section 7.1. In particular we
construct in subsection 7.1.4 so called carry-look-ahead adders which, for arguments of length n have
at the same time cost linear in n and depth logarithmic in n. The slightly advanced construction is
based on the parallel prefix circuits from section 5.2. It can be skipped, but we recommend to cover
this construction. It is after all the real thing and we feel everybody should be given the chance to
know it.

An arithmetic unit (AU) for binary and two’s complement numbers is studied in Section 7.2.
In our view understanding the proofs of this section is a must for anyone wishing to understand
fixed point arithmetic. With the help of the AU we construct in Section 7.3 an arithmetic logic
unit (ALU) for the MIPS instruction set architecture (ISA) in a straight forward way. Differences to
to [MP00] are simply due to differences in the encoding of ALU operations between the MIPS ISA
considered here and the DLX ISA considered in [MP00]. Section 7.4 contains a rudimentary shifter
construction supporting just logical right shifts. The short and technical section 7.5 we construct a
branch condition evaluation (BCE) unit which is later used to implement the branch instructions of
the MIPS ISA. In lectures this section should be covered by a reading assignment.

In textbooks on computer architecture like [MP00, ?] the counter part of this chapter includes
general shifter constructions. Shifter constructions are interesting and we do cover them in the
classroom.

7.1 Adder and Incrementer

An n-adder is a circuit with inputs a[n − 1 : 0] ∈ Bn, b[n − 1 : 0] ∈ Bn, c0 ∈ B and outputs cn ∈ B
and s[n− 1 : 0] ∈ Bn satisfying the specification

〈cn, s[n− 1 : 0]〉 = 〈a[n− 1 : 0]〉+ 〈b[n− 1 : 0]〉+ c0.

We use the symbol from Figure 7.1 for n-adders.
A full adder is obviously a 1-adder. In the following, we present constructions for n-adders.

7.1.1 Carry-Chain Adder

A recursive construction of a very simple carry chain adder is shown in Figure 7.2. correctness follows
directly from the correctness of the basic addition algorithm for binary numbers (Lemma 19).

An n-incrementer is a circuit with inputs a[n − 1 : 0] ∈ Bn, c0 ∈ B and outputs cn ∈ B and
s[n− 1 : 0] ∈ Bn satisfying

〈cn, s[n− 1 : 0]〉 = 〈a[n− 1 : 0]〉+ c0.

59

c0
n n

n
cn

a b

s

n-Add

Figure 7.1: Symbol of an n-adder.

c0

n− 1

n− 1 n− 1

FA

an−1

sn−1

n > 1:n = 1:

bn−1

s[n− 2 : 0]

FA

a0 b0 c0

s0

(n− 1)-Add

cn

c1

a[n− 2 : 0] b[n− 2 : 0]

cn−1

Figure 7.2: Recursive construction of a carry chain adder.

We use the symbol from Figure 7.3 for n-incrementers.
Obviously, incrementers can be constructed from n-adders by tying the b input to 0n. As shown

in Section 5.2 a full adders whose b input is tied to zero can be replaced with a half adder. This
yields the construction of carry chain incrementers shown in Figure 7.4.

We introduce special symbols +n and −n to denote addition and subtraction of n bit binary
numbers mod 2n:

a+n b = binn(〈a〉+ 〈b〉 mod 2n)

a−n b = binn(〈a〉 − 〈b〉 mod 2n).

7.1.2 Conditional-Sum Adder and Incrementer

In section 5.1 we denoted cost and delay of circuits S by c(S) resp. d(S). We denote the complexity
of n bit carry chain adders by c(n) and their depth by d(n) and read off from the constructions the
following so called difference equations:

c(1) = c(FA)

c(n) = c(n− 1) + c(FA)

d(1) = d(FA)

d(n) = ≤ d(n− 1) + d(FA)

A trivial induction shows

c(n) = n · c(FA)

d(n) = d · d(FA)

60

a
c0

n

n

Scn

n−inc

Figure 7.3: Symbol of an n-incrementer.

(n− 1)−inc

n > 1:n = 1:

c1

a[n− 2 : 0]

n− 1

n− 1

S[n− 2 : 0]

cn

a0

s0

c0

an−1

sn−1

c0

HA

HA

Figure 7.4: Recursive construction of a carry chain incrementer.

Replacing full adders by half adders one can make a completely analogous argument can be made
for carry chain incrementers. Thus we can summarize the asymptotic complxity of theses circuits in

Lemma 34. n bit carry chain adders and incrementers have cost O(n) and delay O(n)

Linear cost O(n) is all one can hope for. At first sight, the delay formula also seems optimal,
because by definition appears to be inherently sequential. One is tempted to argue, that one cannot
compute the carry cn at position n before one knows the carry cn−1 at position n− 1. But trying to
turn this argument into a proof fails because there are much faster adder constructions. The simplest
one are so called n bit conditional sum adders or short n-CSAs. They are defined inductively. We
take a full adder as a 1-CSA. For even n the construction of an n-CSA from 3 n/2-CSA is shown in
figure 7.5

One splits the inputs a, b ∈ Bn into upper and lower halves:

aH = a[n− 1 : n
2
] aL = a[n

2
− 1 : 0]

bH = b[n− 1 : n
2
] bL = b[n

2
− 1 : 0]

Then, one exploits the fact that the carry of the binary addition of aL and bL is either 0 or 1:
instead of using carry cn

2
as an input to the computation of the upper half of the sum, one simply

computes binary representations of both 〈aH〉+ 〈bH〉+ 0 and 〈aH〉+ 〈bH〉+ 1, one of these two will
be the correct result which is chose with a multiplexer controlled by signal cn

2
. Correctness of this

construction follows from the simple lemma 20. We use now c(n) and d(n) to denote cost and depth
of n-CSAs and obtain from the construction the difference equations.

61

n
2

1

1

n
2

n
2

+ 1

n
2
-CSAn

2
-CSA

n
2
-CSA

cns[n− 1 : n
2
] s[n

2
− 1 : 0]

n
2

n
2

n
2

n
2

cn
2

n
21

n
2

+ 1

1

n
2

+ 1

aH

bH

aL

bL

1 0 cin

1 0

Figure 7.5: Recursive construction of a conditional sum adder.

d(1) = d(FA)

d(n) = d(n/2) + d(MUX)

= d(n/2) + 3

c(1) = c(FA)

c(n) = 3 · c(n/2) + c(((n/2) + 1)-MUX)

≥ 3 · c(n/2)

In general, difference equations are solved in two steps: i) guessing the solution and ii) showing
by induction, that the guessed solution satisfies the equations. As is usual in proofs by inductions,
finding the induction hypothesis is the hard part. Fortunately there is a simple heuristics, that will
work for us: we repeatedly apply the inductive definition until we see enough to guess the solution.
Let

n = 2k

be a power of two so that starting from n we can apply the recursive construction repeatedly until
we arrive at n = 1. The heuristics gives for the depth of CSA’s

d(n) = d(n/2) + 3

= d(n/4) + 2 · 3
= d(n/8) + 3 · 3

At this point we might guess for all x:

d(n) = d(n/2x) + x · 3

which, for

x = k = log n

62

gives
d(n) = d(FA) + 3 · log n

That this guess indeed satisfies the difference equations is a trivial exercise that we omit. Unfor-
tunately, conditional sum adders are quite expensive. Repeated application of the lower bound for
their cost gives

c(n) ≥ 3 · c(n/2)

≥ 32c(n/4) . . .

≥ 3x · c(n/2x)
≥ 3logn · c(1)

= 3logn · c(FA)

Again, proving by induction that this guess satisfies the difference equations is easy. We estimate
the term 3logn:

3logn = (2log 3)logn

= 2(log 3)·(logn)

= (2logn)log 3

= nlog 3

We summarize the estimates in

Lemma 35. n-CSAs have depth O(logn) and cost at least C(FA) · nlog 3

As log 3 = 1.73 . . . the cost estimate is way above the cost of carry chain adders.

7.1.3 Parallel Prefix Circuits

In life and in science sometimes extremely good things are possible. In life it is possible to be rich
and healthy at the same time. In adder construction it is possible to achieve the asymptotic cost of
carry chain adders and the asymptotic delay of conditional sum adders at the same time in so callled
n bit carry-look-ahead adders or short n-CLAs. The fundamental auxiliary circuits that are used in
their construction are so called n-parallel prefix circuits

An n-parallel prefix circuit for an associative function ◦ : M ×M → M is a circuit with inputs
x[n− 1 : 0] ∈Mn and outputs y[n− 1 : 0] ∈Mn satisfying

y0 = x0 , yi+1 = xi+1 ◦ yi.

We construct it in a slightly generalized circuit model where signals take values in M and compu-
tation is done by gates for function ◦. Cost and delay in this model are defined by counting ◦-gates
in the circuit resp. on the longest path. We use the construction later with M = B2. For even n
a recursive construction of an n-parallel prefix circuit based on ◦-gates is shown in Figure 7.6. For
odd n one can realize an (n− 1)-bit parallel prefix from Figure 7.6 and compute output yn−1 as

yn−1 = xn−1 ◦ yn−2
using one extra ◦-gate.

For the correctness of the construction we first observe that

x′i = x2i+1 ◦ x2i
y2i = x2i ◦ y′i−1

y2i+1 = y′i.

63

xn−1 xn−2 x3 x2 x1

y2 y1 y0

PP◦(n/2)

x′
1 x′

0

n > 1 :

y′0

n = 1 :

y0

x0

x′
n
2
−1

x0

y′n
2
−1

yn−2yn−1

Figure 7.6: Recursive construction of an n-bit parallel prefix circuit of the function ◦ for an even n

We first show that odd outputs of the circuit are correct. For i = 0 we have

y1 = y′0 (construction)

= x′0 (ind. hypothesis PP◦(n/2))

= x1 ◦ x0 (construction).

For i > 0 we conclude

y2i+1 = y′i (construction)

= x′i ◦ y′i−1 (ind. hypothesis PP◦(n/2))

= (x2i+1 ◦ x2i) ◦ y′i−1 (construction)

= x2i+1 ◦ (x2i ◦ y′i−1) (associativity)

= x2i+1 ◦ y2i (construction).

For even outputs of the circuit we easily conclude

y0 = x0 (construction)

i > 0→ y2i = x2i ◦ y′i−1 (construction)

= x2i ◦ y2i−1 (construction).

We denote by c(n) and d(n) cost and delay of n-parallel-prefix circuits constructed in this way.
From the construction we read off the difference equations

d(2) = 1

d(n) = d(n/2) + 2

c(2) = 1

c(n) ≤ c(n/2) + n

Applying the heuristics for the depth gives

64

d(n) = d(n/2x) + 2 · x
The recursion must be stopped when

n/2x = 2

↔ 2x = n/2

↔ x = log n− 1

This gives the conjecture

d(n) = d(2) + 2 · (logn− 1) = 2 · logn− 1

which is easily verified by induction.
For the cost we get the estimate

c(n) ≤ c(n/2) + n

= ≤ c(n/4) + n+ n/2

≤ c(n/8) + n+ n/2 + n/4 . . .

≤ c(n/x) + n ·
x−1∑
i0

(1/2)i

≤ c(2) + n ·
logn−2∑
i0

(1/2)i

We guess

c(n) ≤ 2 · n
which is verified by an easy induction proof. We summarize

Lemma 36. There are n-parallel-prefix circuits with cost O(n) and depth O(log n).

7.1.4 Carry-Look-Ahead Adders

For a[n− 1 : 0], b[n− 1] and indices i ≤ j we define

pi,j(a, b) ≡ 〈a[j : i]〉+ 〈a[j : i]〉 = 〈1j−i+1〉
This is the case if ci = cj+1, i.e. if carry ci is propagated by positions i to j of the operands to position
j + 1. Similarly, we define

gi,j(a, b) ≡
{
〈a[j : i]〉+ 〈a[j : i]〉 = 〈10j−i+1〉 i > 0

〈a[j : i]〉+ 〈a[j : i]〉 = 〈10j−i+1〉 + c0 i = 0

i.e. if positions i to j of the operands generate a carry independent of ci. We abbreviate with pi,j
and gi,j and observe for j = i

pi,i = ai ⊕ bi

gi,i =

{
ai ∧ bi i > 0

a0 ∧ b0 ∨ a0 ∧ c0 ∨ b0 ∨ c0 i = 0

65

Figure 7.7: Circcuir replacing ◦-gates in the parallel prefix circuit

Now consider indices i ≤ k and k+ 1 ≤ j delimiting adjacent intervals of indices, and suppose we
know already functions gi,k, pi,k, gk+1,j, pk+1,j are already known. The the signals for the combined
interval i : j can be computed as

pi,j = pi,k ∧ pk+1,j

gi,j = gk+1,j ∨ gi,k ∧ pk+1,j

This computation can be performed by the circuit in figure 7.7 which takes inputs (g1, p1) and
(g2, p2) from M = B2 and produces as output in B2

(g, p) = (g2 ∨ g1 ∧ p2, p1 ∧ p2)

= (g2, p2) ◦ (g1, p1)

An easy calculation shows that the function ◦ defined in this way is associative (for details see
e.g. [?]). Hence we can substitute in figure 7.6 the ◦ gates by the circuit of figure x. One ◦ gate now
produces a cost of 3 ordinary gates and 2 ordinary gate delays. For the resulting circuit n−GP we
conclude

d(n−GP) ≤ 4 · log n− 2 and c(nGP) ≤ 6 · n
The point of the construction is, that output i of circuit n−GP computes

Gi, Pi) = (gi, pi) ◦ . . . ◦ (g0, p0) = (g0,i, p0,i) = (ci+1, p0,i)

Thus the circuit from figure 7.8 is an n-adder with cost O(n) and delay O(logn).
TODO figures, copy from Mı̈¿1

2
ller-Paul but do trivial computation of g0 as defined in text

7.2 Arithmetic Unit

The symbol of an n-arithmetic unit or short n-AU is shown in Figure 7.9. It is a circuit with the
following inputs:

66

Figure 7.8: Constructing a carry-look-ahead-adder from a parallel prefix circuit for ◦

sub

n

n

a b

s
neg

n-AU

ovf

n

2

u

Figure 7.9: Symbol of an n-arithmetic unit.

• operand inputs a = a[n− 1 : 0], b = b[n− 1 : 0] with a, b ∈ Bn,

• control input u ∈ B distinguishing between unsigned (binary) and signed (two’s complement)
numbers,

• control input sub ∈ B indicating whether input b should be subtracted from or added to input
a,

and the following outputs:

• result s[n− 1 : 0] ∈ Bn,

• overflow bit ovf ∈ B, and

• negative bit neg ∈ B.

We define the exact result S ∈ Z of an arithmetic unit as

S =

[a] + [b] (u, sub) = 00

[a]− [b] (u, sub) = 01

〈a〉+ 〈b〉 (u, sub) = 10

〈a〉 − 〈b〉 (u, sub) = 11.

67

For the result of the ALU, we pick the representative of the exact result in Bn resp. Tn and represent
it in the corresponding format

s =

{
twocn(S tmod 2n) u = 0

binn(S mod 2n) u = 1,

i.e., we have

[s] = (S tmod 2n) if u = 0

〈s〉 = (S mod 2n) if u = 1.

Overflow and negation signals are defined with respect to the exact result. The overflow bit is
computed only for the case of two’s complement numbers; for binary numbers it is always 0 since
the architecture we introduce later does not consider unsigned overflows:

ovf ↔
{
S /∈ Tn u = 0

0 u = 1

neg ↔ S < 0.

Data Paths

The following lemma asserts that, for signed and unsigned numbers, the sum bits s can be computed
in exactly the same way:

Lemma 37. Compute the sum bits as

s =

{
a+n b sub = 0

a−n b sub = 1,

then

[s] = (S tmod 2n) if u = 0

〈s〉 = (S mod 2n) if u = 1.

Proof. For u = 1 this follows directly from the definitions. For u = 0 we have from Lemma 22 and
Lemma 8:

[s] ≡ 〈s〉 mod 2n

≡ (

{
〈a〉+ 〈b〉 sub = 0

〈a〉 − 〈b〉 sub = 1
) mod 2n

≡ (

{
[a] + [b] sub = 0

[a]− [b] sub = 1
) mod 2n

≡ S mod 2n.

From [s] ∈ Tn and Lemma 11 we conclude

[s] = (S tmod 2n).

The main data paths of an n-AU are shown in Figure 7.10. The following lemma asserts that the
sum bits are computed correctly.

68

dn n

n

s

n-Add

a

b sub

Figure 7.10: Data paths of an n-arithmetic unit.

Lemma 38. The sum bits s[n− 1 : 0] in Figure 7.10 satisfy

s =

{
a+n b sub = 0

a−n b sub = 1.

Proof. From the construction of the circuit, we have

d = b⊕ sub

=

{
b sub = 0

b sub = 1.

From the specification of an n-adder, Lemma 18, and the subtraction algorithm for binary numbers
(Lemma 23), we conclude

〈s〉 = (

({
〈a〉+ 〈b〉 sub = 0

〈a〉+ 〈b〉+ 1 sub = 1

)
mod 2n)

= (

({
〈a〉+ 〈b〉 sub = 0

〈a〉 − 〈b〉 sub = 1

)
mod 2n).

Application of binn(·) to both sides completes the proof of the lemma.

Negative Bit

We start with the case u = 0, i.e. with two’s complement numbers. We have

S = [a]± [b]

= [a] + [d] + sub

≤ 2n−1 − 1 + 2n−1 − 1 + 1

= 2n − 1,

S ≥ −2n−1 − 2n−1

= −2n.

Thus,

S ∈ Tn+1.

69

According to Lemma 22 we use sign extension to extend operands to n+ 1 bits:

[a] = [an−1a]

[d] = [dn−1d].

We compute an extra sum bit sn by the basic addition algorithm:

sn = an−1 ⊕ dn−1 ⊕ cn,

and conclude

S = [s[n : 0]].

Again by Lemma 22 this is negative if and only if the sign bit sn is 1:

S < 0↔ sn = 1.

As a result, we have the following lemma.

Lemma 39.

u = 0→ neg = an−1 ⊕ dn−1 ⊕ cn

For the case u = 1, i.e. for binary numbers, a negative result can only occur in the case of
subtraction, i.e. if sub = 1. In this case we argue along the lines of the correctness proof for the
subtraction algorithm:

S = 〈a〉 − 〈b〉
= 〈a〉 − [0b]

= 〈a〉+ [1b] + 1

= 〈a〉+ 〈b〉 − 2n + 1

= 〈cns[n− 1 : 0]〉 − 2n

= 2n(cn − 1) + 〈s[n− 1 : 0]〉︸ ︷︷ ︸
∈Bn

.

If cn = 1 we have S = 〈s〉 ≥ 0. If cn = 0 we have

S = −2n + 〈s[n− 1 : 0]〉
≤ −2n + 2n − 1

= −1.

Thus,

u = 1→ neg = sub ∧ cn,

and together with Lemma 39 we get

Lemma 40.

neg = u ∧ (an−1 ⊕ dn−1 ⊕ cn) ∨
u ∧ sub ∧ cn

70

af

a b

n-ALU

n n

n

alures

4

ovfalu

i

Figure 7.11: Symbol of an n-arithmetic logic unit.

Overflow Bit

We compute the overflow bit only for the case of two’s complement numbers, i.e. when u = 0. We
have

S = [a] + [d] + sub

= −2n−1(an−1 + dn−1) + 〈a[n− 2 : 0]〉+ 〈d[n− 2 : 0]〉+ sub

= −2n−1(an−1 + dn−1) + 〈cn−1s[n− 2 : 0]〉 − cn−12n−1 + cn−12
n−1

= −2n−1(an−1 + dn−1 + cn−1) + 2n−1(cn−1 + cn−1) + 〈s[n− 2 : 0]〉
= −2n−1〈cnsn−1〉+ 2ncn−1 + 〈s[n− 2 : 0]〉
= −2ncn − 2n−1sn−1 + 2ncn−1 + 〈s[n− 2 : 0]〉
= 2n(cn−1 − cn) + [s[n− 1 : 0]].

We claim
S ∈ Tn ↔ cn−1 = cn.

If cn = cn−1 we obviously have S = [s], thus S ∈ Tn. If cn = 1 and cn−1 = 0 we have

−2n + [s] ≤ −2n + 2n−1 − 1 = −2n−1 − 1 < −2n−1

and if cn = 0 and cn−1 = 1, we have

2n + [s] ≥ 2n − 2n−1 > 2n−1 − 1.

Thus, in the two latter cases, we have S /∈ Tn. Because

cn 6= cn−1 ↔ cn ⊕ cn−1 = 1,

we conclude

Lemma 41.
ovf = u ∧ cn ⊕ cn−1

7.3 Arithmetic Logic Unit (ALU)

Figure 7.11 shows a symbol for the n-ALU constructed here. Width n should be even. The circuit
has the following inputs:

• operand inputs a = a[n− 1 : 0], b = b[n− 1 : 0] with a, b ∈ Bn,

• control inputs af [3 : 0] ∈ B4 and i ∈ B specifying the operation that the ALU performs with
the operands,

71

af [3 : 0] i alures[31 : 0] ovfalu

0000 * a+n b [a] + [b] /∈ Tn
0001 * a+n b 0
0010 * a−n b [a]− [b] /∈ Tn
0011 * a−n b 0
0100 * a ∧ b 0
0101 * a ∨ b 0
0110 * a⊕ b 0

0111 0 a ∨ b 0
0111 1 b[n/2− 1 : 0]0n/2 0
1010 * 0n−1([a] < [b] ? 1 : 0) 0
1011 * 0n−1(〈a〉 < 〈b〉 ? 1 : 0) 0

Table 7.1: Specification of ALU operations.

and the following outputs:

• result alures[n− 1 : 0] ∈ Bn,

• overflow bit ovfalu ∈ B.

The results that must be generated are specified in Table 7.1. There are three groups of operations:

• arithmetic operations,

• logical operations. At first sight, the result b[n/2 : 0]0n/2 might appear odd. This ALU function
is later used to compute the upper half of an n bit constant using the immediate fields of an
instruction,

• test and set instructions. They compute an n bit result 0n−1z where only the last bit is of
interest. These instructions can be computed by performing a subtraction in the AU and then
testing the negative bit.

Figure 7.12 shows the fairly obvious data paths of an n-ALU. The missing signals are easily
constructed. We subtract if af [1] = 1. For test and set operations with af [3] = 1, the output z
is the negative bit neg that we compute for unsigned numbers if af [0] = 1 and for signed numbers
otherwise. The overflow bit can only differ from zero if we are doing an arithmetic operation. Thus,
we have

sub = af [1]

z = neg

u = af [0]

ovfalu = ovf ∧ /af [3] ∧ /af [2].

7.4 Shifter

For a ∈ Bn and i ∈ [0 : n− 1] we define the logical right shift srl(n, i) of a by n positions by

srl(n, i) = 0ia[n− 1 : 0]

Thus operand a is shifted by i position to the right. Unused bits are filled in by zeros.
Let n = 2k be a power of two. An n-logical right shifter or short n− SRL is a circuit with

72

n
2

10

10

10

10

10

10

n

neg

n-AU

ovf

n

2

n

n

n n n n

n n n

n

n

n

nn

n

n

n

n n

0n/2

i

af [0]

af [1]

af [0]

alures

0n−1z

af [3]

a

b

af [2]

u
sub

n
2

b[n2 − 1 : 0]

Figure 7.12: Data paths of an n-arithmetic logic unit.

• input a[n− 1 : 0] and b[k − 1 : 0]

• an output sres[n− 1 : 0] satisfying

shres(a, b) = srl(a, 〈b〉)

For fixed i ∈ [0 : n− 1] the circuit in figure 7.13 satisfies

a′ =

{
srl(a, i) s = 1

a s = 0

We call it an (n, i)-logical right shifter or short (n, i)− SRL. Figure 7.14 shows the construction of
n-logical right shifters by a stack of k many (n, i)− SRL’s. An obvious induction shows

r(i) = sra(n, 〈b[i : 0]〉)

7.5 Branch Condition Evaluation Unit

An n-BCE (see Figure 7.15) has

• inputs a[n− 1 : 0], b[n− 1 : 0] ∈ Bn,

• inputs bf [3 : 0] ∈ B4 selecting the condition to be tested,

• output bcres ∈ B specified by Table 7.2.

73

Figure 7.13: Construction of an (n, i)-logical right shifter.

bf [3 : 0] bcres

0010 [a] < 0
0011 [a] ≥ 0
100* a = b
101* a 6= b
110* [a] ≤ 0
111* [a] > 0

Table 7.2: Specification of branch condition evaluation.

The auxiliary circuit in Figure 7.16 computes obvious auxiliary signals satisfying

d ≡ b ∧ (bf [3] ∧ bf [2])

≡
{
b bf [3 : 2] = 01

0n otherwise

eq ≡ a = d

≡
{
a = b bf [3 : 2] = 10

[a] = 0 otherwise

neq ≡ eq

lt ≡ [a] < 0

le ≡ [a] < 0 ∨
{
a = b bf [3 : 2] = 10

[a] = 0 otherwise.

74

Figure 7.14: Construction of an n-logical right shifter by a stack of (n, i) − SRL’s. TODO: label
output shres

n

ba
n

n-BCE

bcres

4
bf

Figure 7.15: Symbol of an n-branch condition evaluation unit.

The result bcres can then be computed as

bcres ≡ bf [3 : 1] = 001 ∧ (bf [0] ∧ lt ∨ bf [0] ∧ lt)
∨ bf [3 : 2] = 10 ∧ (bf [1] ∧ eq ∨ bf [1] ∧ eq)
∨ bf [3 : 2] = 11 ∧ (bf [1] ∧ le ∨ bf [1] ∧ le)

≡ bf [3] ∧ bf [2] ∧ bf [1] ∧ (bf [0]⊕ lt)
∨ bf [3] ∧ bf [2] ∧ (bf [1]⊕ eq)
∨ bf [3] ∧ bf [2] ∧ (bf [1]⊕ le).

75

bf [3] ∧ ¬bf [2]

neq

n

n-eq

a

n

b

eq

n

n

lt

le

d
an−1

Figure 7.16: Computation of auxiliary signals in an n-branch condition evaluation unit.

76

Chapter 8

A Basic Sequential MIPS Machine

We define the basic MIPS instruction set architecture (ISA)1 and present a gate level construction
of a processor that implements it. The first Section 8.1 of this chapter is very short. It contains a
very compact summary of the instruction set architecture and the assembly language in the form
of tables, which define the ISA if one knows how to interpret them. In Section 8.2 we provide a
succinct and completely precise interpretation of the tables with a small exception: treatment of the
three coprocessor instructions and the system call instructions is postponed to the chapter 12 on
operating system support. From the mathematical description of the ISA we derive in Section 8.3
the hardware of a sequential - i.e. non pipelined - MIPS processor and argue, that this processor
construction is correct.

Because the simple processor construction presented here follows the ISA specification very closely,
most of the correctness proof is reduced to very simple simple bookkeeping. Pure bookkeeping ends,
where the construction deviates from the ISA or is not implicitly taken from it: i) the implementation
of predicates (lemma 44 ii) the use of 30 bit adders in the use of address computations for aligned
addresses (lemmas 51 and 52) iii) accesses to memory, where the specification memory is byte
addressable and the hardware memory is word addressable (lemmas 42 and 57). In the classroom
we treat lemmas concerned in some details and refer for the pure bookkeeping to the lecture notes.

For brevity we treat in this text only one shift operation (srl) and no loads and stores of bytes
and half words. A full Implementation of all loads, stores and shifts is not as straight forward as one
would expect. The interested reader can find processor constructions for the MIPS instruction set
with these instructions in [KMPar].

The final section 8.4 contains some example programs written in MIPS assembly language.

1In order to keep the specification simple we make general purpose register 0 an ordinary register, that can be
written and read like any other special purpose register. In the original instruction set as documented in [?] general
purpose register 0 is always 0 and writes to it have no effect.

77

8.1 Tables

8.1.1 I-Type

In the following table: m = md(ea(c)) with ea(c) = rs(c) +32 sxtimm(c)

opc Mnemonic Assembler-Syntax d Effect

Data Transfer

100 011 lw lw rt rs imm 4 rt = m
101 011 sw sw rt rs imm 4 m = rt

Arithmetic, Logical Operation, Test-and-Set

001 000 addi addi rt rs imm rt = rs + sxt(imm)
001 001 addiu addiu rt rs imm rt = rs + sxt(imm)
001 010 slti slti rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 011 sltui sltui rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 100 andi andi rt rs imm rt = rs ∧ zxt(imm)
001 101 ori ori rt rs imm rt = rs ∨ zxt(imm)
001 110 xori xori rt rs imm rt = rs ⊕ zxt(imm)
001 111 lui lui rt imm rt = imm016

opc rt Mnemonic Assembler-Syntax Effect

Branch

000 001 00000 bltz bltz rs imm pc = pc + (rs < 0 ? imm00 : 4)
000 001 00001 bgez bgez rs imm pc = pc + (rs ≥ 0 ? imm00 : 4)
000 100 beq beq rs rt imm pc = pc + (rs = rt ? imm00 : 4)
000 101 bne bne rs rt imm pc = pc + (rs 6= rt ? imm00 : 4)
000 110 00000 blez blez rs imm pc = pc + (rs ≤ 0 ? imm00 : 4)
000 111 00000 bgtz bgtz rs imm pc = pc + (rs > 0 ? imm00 : 4)

78

8.1.2 R-type

opcode fun Mnemonic Assembler-Syntax Effect

Shift Operation

000000 000 010 srl srl rd rt sa rd = srl(rt,sa)

Arithmetic, Logical Operation

000000 100 000 add add rd rs rt rd = rs + rt
000000 100 001 addu addu rd rs rt rd = rs + rt
000000 100 010 sub sub rd rs rt rd = rs − rt
000000 100 011 subu subu rd rs rt rd = rs − rt
000000 100 100 and and rd rs rt rd = rs ∧ rt
000000 100 101 or or rd rs rt rd = rs ∨ rt
000000 100 110 xor xor rd rs rt rd = rs ⊕ rt
000000 100 111 nor nor rd rs rt rd = rs ∨ rt

Test Set Operation

000000 101 010 slt slt rd rs rt rd = (rs < rt ? 1 : 0)
000000 101 011 sltu sltu rd rs rt rd = (rs < rt ? 1 : 0)

Jumps, System Call

000000 001 000 jr jr rs pc = rs
000000 001 001 jalr jalr rd rs rd = pc + 4 pc = rs
000000 001 100 sysc sysc System Call

Coprocessor Instructions

opcode fun rs Mnemonic Assembler-Syntax Effect
010000 011 000 10000 eret eret Exception Return
010000 00100 movg2s movg2s rd rt spr[rd] := gpr[rt]
010000 00000 movs2g movs2g rd rt gpr[rt] := spr[rd]

8.1.3 J-type

opc Mnemonic Assembler-Syntax Effect

Jumps

000 010 j j iindex pc = bin32(pc+4)[31:28]iindex00
000 011 jal jal iindex R31 = pc + 4,

pc = bin32(pc+4)[31:28]iindex00

8.2 MIPS ISA

8.2.1 Configuration and Instruction Fields

A basic MIPS configuration c has only three user visible data structures (Figure 8.1):

• c.pc ∈ B32: the program counter (PC),

• c.gpr : B5 → B32: the general purpose register file consisting of 32 registers, each 32 bits wide.
For register addresses x ∈ B5 the content of general purpose register x in configuration c is
denoted by c.gpr(x) ∈ B32,

• c.m : B32 → B8: the processor memory. It is byte addressable; addresses have 32 bits. Thus,
for memory addresses a ∈ B32 the content of memory location a in configuration c is denoted
by c.m(a) ∈ B8.

79

CPU memory

m

gpr 32

232

32

pc

8

Figure 8.1: Visible data structures of MIPS ISA

Program counter and general purpose registers belong to the central processing unit (CPU).
Let K be the set of all basic MIPS configurations. A mathematical definition of the ISA will be

given by a function
δ : K → K,

where
c′ = δ(c, reset)

is the configuration reached from configuration c, if the next instruction is executed. An ISA com-
putation is a sequence (ci) of ISA configurations with i ∈ N \ {0} satisfying

c1.pc = 032

ci+1 = δ(ci, 0),

i.e. initially the program counter points to address 032 and in each step one instruction is executed.
In the remainder of this section we specify the ISA simply by specifying function δ, i.e. by specifying
c′ = δ(c, 0) for all configurations c.

Recall, that for numbers y ∈ Bn we abbreviate the binary representation of y with n bits as

yn = binn(y),

e.g. 18 = 00000001 and 38 = 00000011. For memories m : B32 → B8, addresses a ∈ B32 and numbers
d of bytes we denote the content of d consecutive memory bytes starting at address a by

m1(a) = m(a)

md+1(a) = m(a+32 d32) ◦md(a).

The current instruction I(c) to be executed in configuration c is defined by the 4 bytes in memory
addressed by the current program counter:

I(c) ≡ c.m4(c.pc).

Because all instructions are 4 bytes long, one requires, that instructions are aligned on 4 byte
boundaries, or, equivalently that

c.pc[1 : 0] = 00.

In case this condition is violated a so called misalignment interrupt is raised.
The six high order bits of the instruction are called the op-code:

opc(c) = opc(c)[5 : 0] = I(c)[31 : 26].

80

fun

opc rs rt immI

031 25 20 1526 21 16

opc rs rt

31 25 2026 21 16 15

R

opcJ

031 2526

iindex

rd sa

15 10 511 6 0

Figure 8.2: Types and fields of MIPS instructions

There are three instruction types: R-, J- and I-type. The instruction type is determined by the
following predicates:

rtype(c) = opc(c) = 0*04

jtype(c) = opc(c) = 041*

itype(c) = rtype(c) ∨ jtype(c).

Depending on the instruction type, the bits of the instruction are subdivided as shown in Figure
8.2. Addresses of registers in the general purpose register file are specified in the following fields of
the instruction:

rs(c) = I(c)[25 : 21]

rt(c) = I(c)[20 : 16]

rd(c) = I(c)[15 : 11]

Field
sa(I) = I[10 : 6]

specifies the shift distance (shift amount) in the one shift operation (srl) that we implement here.
For R-type instructions, ALU-functions to be applied to the register operands can be specified in

the function field:
fun(c) = I(c)[5 : 0].

Two kinds of immediate constants can be specified: the immediate constant imm in I-type
instructions, and an instruction index iindex in J-type (like jump) operations:

imm(c) ≡ I(c)[15 : 0]

iindex(c) ≡ I(c)[25 : 0].

Immediate constant imm has 16 bits. In order to apply ALU functions to it, the constant can be
extended with 16 high order bits in two ways: zero extension and sign extension:

zxtimm(c) = 016imm(c)

sxtimm(c) = imm(c)[15]16imm(c)

= I(c)[15]16imm(c).

In case of sign extension, the value of the constant interpreted as a two’s complement number
does not change:

[sxtimm(c)] = [imm(c)].

81

8.2.2 Instruction Decoding

For every mnemonic mn of a MIPS instruction from the tables above we define a predicate mn(c)
which is true, if I(c) is an mn instruction. For instance

l(c) ≡ opc(c) = 100011

bltz(c) ≡ opc(c) = 051 ∧ rt(c) = 05

add(c) ≡ rtype(c) ∧ fun(c) = 105.

The remaining predicates directly associated to the mnemonics of the assembly language are
derived in the same way from the tables. We group the basic instruction set into 5 groups and define
for each group a predicate that holds, if an instruction from that group is to be executed:

• ALU-operations of I-type are recognized by the leading three bits of the opcode, resp. I(c)[31 :
29]; ALU-operations of R-type - by the two leading bits of the function code, resp. I(c)[5 : 4]:

alur(c) ≡ rtype(c) ∧ fun(c)[5 : 4] = 10

≡ rtype(c) ∧ I(c)[5 : 4] = 10

alui(c) ≡ itype(c) ∧ opc(c)[5 : 3] = 001

≡ itype(c) ∧ I(c)[31 : 29] = 001

alu(c) ≡ alur(c) ∨ alui(c)

• loads and stores are of I-type and are recognized by the three leading bits of the opcode:

l(c) ≡ opc(c)[5 : 3] = 100

≡ I(c)[31 : 29] = 100

s(c) ≡ opc(c)[5 : 3] = 101

≡ I[31 : 29] = 101

ls(c) ≡ l(c) ∨ s(c)
≡ opc(I)[5 : 4] = 10

≡ I(c)[31 : 30] = 10

• branches are of I-Type and are recognized by the three leading bits of the opcode:

b(c) ≡ itype(c) ∧ opc(c)[5 : 3] = 000

≡ itype(c) ∧ I(c)[31 : 29] = 000

We define jumps in a brute force way:

jump(c) ≡ jr(c) ∨ jalr(c) ∨ j(c) ∨ jal(c)
jb(c) ≡ jump(c) ∨ b(c).

8.2.3 ALU-Operations

We can now go through the ALU-operations in the tables one by one and give them precise inter-
pretations. We do this for two examples:

82

add(c): The table specifies the effect as rd = rs+rt. This is to be interpreted as the corresponding
register contents: on the right hand side of the equation for c, i.e. before execution of the instruction;
on the left hand side for c′:

c′.gpr(rd(c)) = c.gpr(rs(c)) +32 c.gpr(rt(c)).

Other register contents and the memory content do not change:

c′.gpr(x) = c.gpr(x) for x 6= rd(c)

c′.m = c.m.

The program counter is advanced by four bytes to the next instruction:

c′.pc = c.pc+32 432.

addi(c): The second operand is now the sign extended immediate constant:

c′.gpr(x) =

{
c.gpr(rs(c)) +32 sxtimm(c) x = rt(c)

c.gpr(x) otherwise

c′.m = c.m

c′.pc = c.pc+32 432.

It is clear how to derive precise specifications for the remaining ALU-operations, but we take a
shortcut exploiting the fact that we have already constructed an ALU that was specified in Table
7.1.

This table defines functions alures(a, b, af, i) and ovf(a, b, af, i). As we do not treat interrupts
(yet) we use only the first of these functions here. We observe that in all ALU operations a function
of the ALU is performed. The left operand is always

lop(c) ≡ c.gpr(rs(c)).

For R-type operations, the right operand is the register specified by the rt field of R-type instruc-
tions. For I-type instructions it is the sign extended immediate operand if opc(c)[2] = I(c)[28] = 0
or zero extended immediate operand if opc(c)[2] = 1. 2 Thus, we define immediate fill bit ifill(c),
extended immediate constant xtimm(c), and right operand rop(c) in the following way:

ifill(c) ≡
{

0 opc(c)[3 : 2] = 11

imm(c)[15] otherwise

= I(c)[15] ∧ (I(c)[29] ∧ I(c)[28])

xtimm(c) ≡
{
sxtimm(c) opc(c)[2] = 0

zxtimm(c) opc(c)[2] = 1

= ifill(c)16imm(c)

rop(c) ≡
{
c.gpr(rt(c)) rtype(c)

xtimm(c) otherwise.

2Note that for instructions addiu and sltiu this is counterintuitive. The letter u in the instruction name suggests
unsigned arithmetic, and arithmetic with binary numbers is indeed performed by these operations. But the immediate
operand for these instructions is sign extended and not zero extended, thus we have

〈sextimm(c)〉 6= 〈imm(c)〉 if imm(c)[15] = 1

The instruction set manual [?] acknowledges this in the documentation of the addiu instruction and calls the term
’unsigned’ in the instruction name a misnomer.

83

Comparing Table 7.1 with the tables for I-type and R-type instructions we see that bits af [2 : 0]
of the ALU control can be taken from the low order fields of the opcode for I-type instructions and
from the low order bits of the function field for R-type instructions:

af(c)[2 : 0] ≡
{
fun(c)[2 : 0] rtype(c)

opc(c)[2 : 0] otherwise

=

{
I(c)[2 : 0] rtype(c)

I(c)[28 : 26] otherwise.

For bit af [3] things are more complicated. For R-type instructions it can be taken from the function
code. For I-type instructions it must only be forced to 1 for the two test and set operations, which
can be recognized by opc(c)[2 : 1] = 01:

af(c)[3] ≡
{
func(c)[3] rtype(c)

opc(c)[2] ∧ opc(c)[1] otherwise

≡
{
I(c)[3] rtype(c)

I(c)[28] ∧ I(c)[27] otherwise.

The i-input of the ALU distinguishes for af [3 : 0] = 1111 between the lui-instruction of I-type
for i = 0 and the nor-instruction of R-type for i = 1. Thus we set it to itype(c). The result of the
ALU computed with these inputs is denoted by

ares(c) ≡ alures(lop(c), rop(c), af(c), itype(c)).

Depending on instruction type the destination register rdes is specified by the rd field or the rt
field:

rdes(c) ≡
{
rd(c) rtype(c)

rt(c) otherwise.

A summary of all ALU operations is then

alu(c) →

c′.gpr(x) =

{
ares(c) x = rdes(c)

c.gpr(x) otherwise

c′.m = c.m

c′.pc = c.pc+32 432.

8.2.4 Shift

We implement only a single shift operation. The shift distance is taken from the shift amount field
sa(c). The left operand slop(c) to be shifted is always the register specified by the rt field

slop(c) = c.gpr(rt(c))

The result of the shifter from section ?? with these operands is

sres(c) = shres(slop(c), sa(c))

84

The destination register is specified by the rd field. We summarize

srl(c) →

c′.gpr(x) =

{
sres(c) x = rd(c)

c.gpr(x) otherwise

c′.m = c.m

c′.pc = c.pc+32 432

8.2.5 Branch and Jump

A branch condition evaluation unit was specified in Table 7.2. It computes a function bcres(a, b, bf).
We use this function with the following parameters:

blop(c) ≡ c.gpr(rs(c))

brop(c) ≡ c.gpr(rt(c))

bf(c) ≡ opc(c)[2 : 0] ◦ rt(c)[0]

= I(c)[28 : 26]I[16].

and define the result of a branch condition evaluation as

bres(c) ≡ bcres(blop(c), brop(c), bf(c)).

The next program counter c′.pc is usually computed as c.pc +32 432. This order is only changed
in jump instructions or in branch instructions, where the branch is taken, i.e. the branch condition
evaluates to 1. We define

jbtaken(c) ≡ jump(c) ∨ b(c) ∧ bres(c).
In case of a jump or a branch taken, there are three possible jump targets

Branch instructions involve a relative branch. The PC is incremented by a branch distance:

b(c) ∧ bcres(c) →
bdist(c) = imm(c)[15]14imm(c)00

btarget(c) = c.pc+32 bdist(c).

Note, that the branch distance is a kind of a sign extended immediate constant, but due to the
alignment requirement the low order bits of the jump distance must be 00. Thus, one uses the 16
bits of the immediate constant for bits [17 : 2] of the jump distance. Sign extension is used for the
remaining bits. Note also that address arithmetic is modulo 2n. We have

〈c.pc〉+ 〈bdist(c)〉 ≡ [c.pc] + [bdist(c)] mod 2n

= [c.pc] + [imm(c)00].

Thus, backward jumps are realized with negative [imm(c)].

R-type jumps for instructions jr and jalr. The branch target is specified by the rs field of the
instruction:

jr(c) ∨ jalr(c) →
btarget(c) = c.gpr(rs(c)).

85

J-Type jumps for instructions j and jal. The branch target is computed in a rather peculiar way:
i) the PC is incremented by 4. Then bits [27 : 0] are replaced by the iindex field of the instruction:

j(c) ∨ jal(c) →
btarget(c) = (c.pc+32 432)[31 : 28]iindex(c)00

Now we can define the next PC computation for all instructions as

btarget(c) ≡

c.pc+32 imm(c)[15]14imm(c)00 b(c)

c.gpr(rs(c)) jr(c) ∨ jalr(c)
(c.pc+32 432)[31 : 28]iindex(c)00 otherwise.

c′.pc =

{
btarget(c) jbtaken(c)

c.pc+32 432 otherwise.

Jump and Link. The two jump instructions jal and jalr are used to implement calls of procedures.
Besides setting the PC to the branch target they prepare the so called link address by saving the
incremented PC

linkad(c) = c.pc+32 432

in a register. For the R-type instruction jalr this register is specified by the rd field. J-type
instruction jal does not have an rs field, and the incremented PC is stored in register 31 (= 〈15〉).
Branch and jump instructions do not change the memory.

For the update of registers in branch and jump instructions we therefore have

bj(c) →

c′.gpr(x) =

{
linkad(c) jalr(c) ∧ x = rd(c) ∨ jal(c) ∧ x = 15

c.gpr(x) otherwise

c′.m = c.m.

8.2.6 Loads and Stores

A byte is a string x ∈ B8. Let n = 8 · k be a multiple of 8, let a ∈ Bn be a string consisting of k
bytes. For i ∈ [k − 1 : 0] we define byte i of string a as

byte(i, a) = a[8 · (i+ 1)− 1 : 8 · i].
The load and store operations of the basic MIPS instruction set each access four of bytes of

memory starting at a so called effective address ea(c). Addressing is always relative to a register
specified by the rs field. The offset is specified by the immediate field:

ea(c) = c.gpr(rs(c)) +32 sxtimm(c).

Note, that the immediate constant is sign extended, thus negative offsets can be realized in the same
way as negative branch distances. Effective addresses are required to be aligned. If we interpret them
as binary numbers they have to be divisible by 4:

4 | 〈ea(c)〉

or, equivalently,
ea(c)[1 : 0] = 00.

If this condition is violated a misalignment interrupt mal is raised. The treatment of interrupts are
postponed to chapter ??.

86

Stores. A store instruction takes register specified by the rt field and stores it in the 4 consecutive
bytes of memory starting at address ea(c) md(c)(ea(c)). Other memory bytes and register values are
not changed. The PC is incremented by 4 (but we have already defined that).

s(c) →

c′.m(x) =

{
byte(i, c.gpr(rt(c))) x = ea(c) +32 i32 ∧ i < 4

c.m(x) otherwise

c′.gpr = c.gpr

3

Loads. Loads like stores access 4 bytes of memory starting at address ea(c). The result is stored
in the destination register, which is specified by the rt field of the instruction. The load result
lres(c) ∈ B32 is computed as

lres(c) = c.m4(ea(c))

The general purpose register specified by the rt field is updated. Other registers and the memory
are left unchanged:

l(c) →

c′.gpr(x) =

{
lres(c) x = rt(c)

c.gpr(x) otherwise

c′.m = c.m.

3A word of caution in case you plan to enter this into a CAV system: the first case of the “definition” of c′.m(x)
is very well understandable for humans, but actually it is a shorthand for the following: if

∃i : x = ea(c) +32 i32

then update c.m(x) with the hopefully unique i satisfying this condition. In this case we can compute this i by solving
the equation

x = ea(c) +32 i32

resp.
〈x〉 = (〈ea(c)〉+ i mod 232).

From alignment we conclude
〈ea(c)〉+ i ≤ 232 − 1.

Hence
(〈ea(c)〉+ i mod 232) = 〈ea(c)〉+ i.

And we have to solve
〈x〉 = 〈ea(c)〉+ i

as
i = 〈x〉 − 〈ea(c)〉.

This turns the above definition into

c′.m(x) =

{
byte(〈x〉 − 〈ea(c)〉, c.gpr(rt(c))) 〈x〉 − 〈ea(c)〉 ∈ [0 : d(c)− 1]

c.m(x) otherwise,

which is not so readable for humans.

87

8.2.7 ISA Summary

We collect all previous definitions of destination registers for the general purpose register file into

cad(c) =

15 jal(c)

rd(c) rtype(c)

rt(c) otherwise.

Also we collect the data gprin to be written into the general purpose register file. For technical
reasons we define on the way an intermediate result C:

C(c) =

linkad(c) jal(c) ∨ jalr(c)
sres(c) srl(c)

ares(c) otherwise

gprin(c) =

{
lres(c) l(c)

C(c) otherwise.

Finally we collect in a general purpose register write signal all situations, when some general
purpose register is updated:

gprw(c) ≡ alu(c) ∨ srl(c) ∨ l(c) ∨ jal(c) ∨ jalr(c).
Now we can summarize the MIPS ISA in three rules concerning the updates of PC, general

purpose registers and memory:

c′.pc =

{
btarget(c) jbtaken(c)

c.pc+32 432 otherwise

c′.gpr(x) =

{
gprin(c) x = cad(c) ∧ gprw(c)

c.gpr(x) otherwise

c′.m(x) =

{
byte(i, c.gpr(rs(c))) x = ea(c) +32 i32 ∧ i < 4 ∧ s(c)
c.m(x) otherwise.

8.3 A Sequential Processor Design

From the ISA spec we derive a hardware implementation of the basic MIPS processor. It will execute
every MIPS instruction in two hardware cycles: in a fetch cycle, the hardware machine fetches an
instruction from memory, in an execute cycle, the machine executes the current instruction.

In order to prove correctness of the hardware implementation with respect to the MIPS ISA
specification, we prove simulation as follows: Given a hardware computation

h0, h1, . . . , h2t, h2t+1, h2t+2, . . .

we show that there is a corresponding ISA computation

c0, c1, . . . , ct, ct+1, . . .

in such a way that a simulation relation
ci ∼ h2i

holds for all i ∈ N.
We proceed by giving the hardware construction and simulation relation, arguing that the given

construction is indeed correct at the time we introduce individual hardware components.

88

8.3.1 Hardware Configuration

A hardware configuration h of the MIPS implementation contains among others the following com-
ponents:

• program counter register h.pc ∈ B32,

• general purpose register RAM h.gpr : B5 → B32,

• word addressable (32, r, 30)-RAM-ROM h.m : B30 → B32,

More components will be specified shortly.
Recall that the ISA specification states that the hardware implementation only needs to work if

all memory accesses of the ISA computation (ci) are aligned, i.e.

∀i > 0 : ci.pc[1 : 0] = 00 ∧
ls(ci)→ ea(ci)[1 : 0] = 00).

Now consider that the RAM-ROM we use as memory of our hardware machine is word-addressable,
in contrast to the byte-addressable memory of our ISA specification. Having a word-addressable
hardware memory has the advantage that we can serve any properly aligned memory access up to
word-size in a single cycle. The reason why the hardware memory contains a ROM portion was
already explained in section 6.3: we need after power up/reset some known portion of memory,
where the boot loader resides.

We define the simulation relation c ∼ h which states that hardware configuration h encodes ISA
configuration c by

c ∼ h ≡ h.pc = c.pc ∧ h.gpr = c.gpr ∧ c.m ∼M h.m

where the simulation relation ∼M for the memory is given as the following simple embedding:

c.m ∼M d.m ≡ ∀a ∈ B32 : c.m4(a00) = h.m(a)

i.e. for word addresses a, h.m(a) contains the four bytes of ISA memory starting at address a00.
In order to prove hardware construction correctness, we perform induction on the number of steps

of the ISA specification machine: We need to show for initial configurations c0 and h0 that c0 ∼ h0

holds (we assume that in cycle −1 the reset signal is active). In the induction step, we show that,
given ci and h2i with ci ∼ h2i the simulation relation is maintained when we perform two steps of
the hardware machine and a single step of the ISA specification machine, resulting in ci+1 ∼ h2(i+1).

Since we use a RAM-ROM to implement the memory of the machine, there is another software
condition that we need to obey in order to be able to maintain the memory simulation relation:

∀i : s(ci)→ ea(ci)[31 : (r + 2)] 6= 032−(r+2)

That is, every write access to the memory must go to an address that does not belong to the ROM,
since writes to the ROM do not have any effect (recall that ROM stands for read-only-memory).

We only prove hardware construction correctness for executions of the ISA that obey our software
conditions.

Definition 20 (Hardware Correctness Software Conditions). The software conditions on ISA com-
putation (c)i are:

1. all memory accesses are aligned properly:

∀i > 0 : ci.pc[1 : 0] = 00 ∧
ls(ci)→ ea(ci)[1 : 0] = 00).

2. there are no writes to the ROM portion of memory:

∀i : s(ci)→ ea(ci)[31 : (r + 2)] 6= 032−(r+2)

89

1

reset

0

h.E

E

10

Figure 8.3: Computation of the execute signal E.

8.3.2 Fetch and Execute Cycles

Since a single MIPS instruction may perform up to two memory accesses and our main memory
can only serve a single request per cycle, we construct the hardware machine in such a way that
it performs fetch cycles and execute cycles in an alternating fashion. This is done by introducing
register E (E = 1 stands for execute) and the surrounding the circuitry given in figure 8.3. Recall
that this was the introductory example when we introduced the model of clocked circuits. Formally,
we have to include

•
h.E ∈ B

as component of the hardware configuration. In section 5.3 we already showed

ht.E = t mod 2

Even cycles t (with ht.E = 0) will be called fetch cycles and odd cycles (with ht.E) = 1) will be
called execute cycles.

The portion of the hardware relevant for reset and instruction fetch is shown in figure 8.4. Portions
with the three dots will be filled in later. The nextpc circuit computing the next program counter
will be discussed in Subsection 8.3.8.

8.3.3 Reset

Recall from the clocked circuit model that the reset signal is active in cycle t = −1 and zero
afterwards. The pc is clocked during cycle −1 and thus initially, i.e. after reset, we have

h0.pc = 032 = c0.pc.

Hence the first part of the simulation relation holds for i = 0. We take no precautions to prevent
writes to h.gpr or h.dm during cycle −1 and define

c0.gpr = h0.gpr

c0.m4(a00) = h0.m(a)

We can conclude

c0 ∼ h0

From now on, let i > 0 and assume ci ∼ h2i. We construct the hardware in such a way that we
can conclude ci+1 ∼ h2i.

90

...

30

ad Din
m

nextpc

reset

· · ·
· · ·

032

reset

E

s ∧ E

E

30

E

PC[31 : 2]

gpr

Dout

gprw ∧ E

· · ·

10

I

PC

10

Figure 8.4: Portion of the MIPS hardware relevant for reset and instruction fetch. TODO: rename
Dout to mout

8.3.4 Instruction Fetch

At the end of fetch cycles, instructions fetched from memory are clocked into a register I of the
hardware, which is called the instruction register. Formally it has to be included as a component of
the hardware configuration

•
c.I ∈ B32

For the hardware in figure 8.4 we will show: if in configuration h reset if off (reset(h) = 0, a fetch
is performed (h.E = 0) and hardware configuration h codes c i.e. h ∼ c, then in the next hardwrre
configuration h′ the simulation still holds and the ISA instruction I(c) has been clocked into the
instruction register

Lemma 42 (Correctness of fetch cycles).

reset(h) = 0 ∧ h.E = 0 ∧ c ∼ h→ c ∼ h′ ∧ h′.I == (c)

This of course implies for the induction step of the processor correctness proof

ci ∼ ci ∧ h2i+1.I

Inputs for the instruction register comes from the data output mout of memory m

Iin(h) = mout(h)

Because h.E = 0 the hardware memory is addressed with bits

h.pc[31 : 2]

From c.m ∼M h.m, we have

h.m(h.pc[31 : 2]) = c.m4(h.pc[31 : 2]00)

91

and from c ∼ h, we obtain

h.pc[31 : 2] = c.pc[31 : 2].

We conclude that the hardware instruction Iin(h) fetched by the circuitry in Figure 8.4 is

Iin(h) = mout(h.m)

= h.m(h.pc[31 : 2])

= c.m4(c.pc[31 : 2]00)

= c.m4(c.pc) (alignment)

= I(c).

Note that, by construction, the instruction fetched from memory is stored in the instruction register
h.I at the end of the cycle, since for the clock enable signal Ice of the instruction register we have

Ice(h) =∼ h.E = 1

. Thus, we have

h′.I = I(c).

The main memory and the general purpose register file are written under control of hardware
signals E ∧ s resp. E ∧ gprw. Hardware signals s and w will be defined later as the obvious
counterparts of the ISA predicates with the same name. Without knowing their exact definition we
can already conclude that hardware memory and hardware gpr can only be written in execute cycles.
Also, the program counter of the hardware is only clocked in execute cycles. Thus we have

h′.gpr = h.gpr

= c.gpr (induction hypothesis)

as well as

h′.m = h.m

∼M c.m (induction hypothesis)

Finally, in fetch cycles the pc is not updated and we get

h′.pc = h.pc

= c.pc (induction hypothesis)

This completes the proof of lemma 42

8.3.5 Proof Goals for the Execute Stage

In the analysis of the subsequent execute cycle 2i + 1 we assume Lemma ?? and need to establish
c2i+2 ∼ h2i+2. For numerous functions and predicates f(c) which are already defined as functions of
MIPS ISA configurations c we have to consider their obvious counter parts fh(d), which are functions
of hardware configurations d. In order to avoid cluttered notation caused by the subscript h we often
overload the notation and use for both functions the same name f . Confusion will not arise, because
we will use such functions f only with arguments c or h, where MIPS configurations are denoted by
c and hardware configurations by d.

92

I

instruction decoder

predicates p

instruction fields F

cad

2

4

4
5

af
sf

bf

Figure 8.5: Instruction decoder

For the remainder of this chapter we will consider hardware configurations h and ISA configura-
tions c where reset is off, an execute cycle is performed (h.E = 1), hardware configuration h codes c
i.e. h ∼ c, and the instruction register h.I contains the ISA instruction I(c)

reset(h) = 0 ∧ h.E = 1 ∧ c ∼ h ∧ h.I = I(c) (8.1)

Our general goal will be to establish for ISA functions f(c) and their counter parts f(h) in the
hardware

f(h) = f(c)

Hardware will be constructed such that we can show: if condition ?? holds, then after clocking
the next hardware configuration h′ codes the the next ISA configuration c′

Lemma 43 (Correctness of execute cycles).

reset(h) = 0 ∧ h.E = 1 ∧ c ∼ h ∧H.I = I(c)→ c′ ∼ h′

For the induction step of the processor correctness proof, we know that the hypothesis of this
lemma is fulfilled for h = h2i+1 and c = ci and we can conclude

ci+1 ∼ h2i+2

8.3.6 Instruction Decoder

The instruction decoder shown in Figure 8.5 computes the hardware version of functions f(c) that
only depend on the current instruction I(c), i.e. which can be written as

f(c) = f ′(I(c)).

For example

rtype(c) ≡ opc(c) = 0*04

≡ I(c)[31 : 26] = 0*04

rtype′(I[31 : 0]) ≡ I[31 : 26] = 0*04

or

rd(c) = I(c)[15 : 11]

rd′(I[31 : 7]) = I[15 : 11]

93

jal01

01

55

5

5

5

15

cad

rt

rd

rtype

Figure 8.6: C address computation

Predicates. Let p be an ISA predicate. By lemma 31 there is a circuit C with inputs I[31 : 1] of
the hardware instruction register and a gate g in the circuit, such that

g(I) = p′(I)

Connecting inputs I to the instruction register h.I of the hardware gives

g(h) = g(h.I) = p′(h.I)

Condition 8.1 gives

g(h) = p′(h.I)

= p′(I(c))

= p(c)

Renaming hardware signal g to p gives

Lemma 44. For all predicates p:

p(h) = p(c)

Instruction Fields. All instruction fields F have the form

F (c) = I(c)[m : n].

Compute the hardware version as

F (h) = h.I[m : n]

Condition 8.1 gives

F (h) = h.I[m : n]

= I(c)[m : n]

= F (c)

Thus we have

Lemma 45. For all function fields F :

F (h) = F (c)

94

rtype

I[1 : 0]

201

3 3

I[28 : 26]

3

itype

3

I[28 : 26]

sf [0]

I[2 : 0]

iaf [3] sf [3 : 1]

I[16]

sf [1 : 0]af [2 : 0]

rtype ∧ I[3] ∨ /rtype ∧ /I[28] ∧ I[27]

Figure 8.7: Computation of function fields for ALU, and BCE TODO: remove sf

C Address. The output cad(h) in Figure 8.6 computes the C address for the general purpose
register file. Using lemmas 44 and 45 we have

cad(h) =

15 jal(h)

rd(h) rtype(h)

rt(h) otherwise

=

15 jal(c)

rd(c) rtype(c)

rt(c) otherwise

= cad(h)

Thus we have

Lemma 46.
cad(h) = cad(c)

Extended immediate constant. The fill bit ifill(c) is a predicate and imm(c) is a field of the
instruction. Thus, we can compute the extended immediate constant in hardware as

xtimm(h) = ifill(h)16imm(h)

= ifill(c)16imm(c) (Lemmas 44 and 45)

= xtimm(c).

Hence we have

Lemma 47.
xtimm(h) = xtimm(c)

Function fields for ALU, SU, and BCE. Figure 8.7 shows the computation of the function
fields af ,i, sf , and bf for the ALU, the shift unit, and the branch condition evaluation unit.

Outputs af(h)[2 : 0] satisfy by Lemmas 44 and 45

af(h)[2 : 0] =

{
I(h)[2 : 0] rtype(h)

I(h)[28 : 26] otherwise

=

{
I(c)[2 : 0] rtype(c)

I(c)[28 : 26] otherwise

= af(c).

95

gprw ∧ E

A B

32

gprin

rt

rs

cad

in
w

a

b

c

gpr

5

5

5

32

32

outa outb

Figure 8.8: General purpose register file

One shows
bf(h) = bf(c)

in the same way. Bit af [3](c) is a predicate, thus af(h) is computed in the function decoder as a
predicate and we get by Lemma 44

af [3](h) = af [3](c).

Because i(c) = itype(c) is a predicate we get

i(h) = i(c)

directly from lemma 44. We summarize in

Lemma 48.

af(h) = af(c)

i(h) = i(c)

bf(h) = bf(c)

That finishes the bookkeeping of what the instruction decoder does.

8.3.7 Reading from General Purpose Registers

The general purpose register file h.gpr of the hardware implementation as shown in Figure 8.8 is a
3 port GPR-RAM with two read ports and one write port. The a and b addresses of the file are
connected to rs(h) and rt(h). For the data outputs gprouta and gproutb we introduce the shorthands
A and B.

Then, we have

A(h) = gprouta(h)

= h.gpr(rs(h)) (construction)

= c.gpr(rs(h)) (Equation 8.1)

= c.gpr(rs(c)) (Lemma 45)

and, in an analogous way,
B(h) = ci.gpr(rt(c)).

Thus, we have

96

BCE bf

32 32

A B

bres

4

Figure 8.9: The branch condition evaluation unit and its operands

00
30 2

1

30−inc

30

pc[31 : 2]

pcinc[31 : 2] pcinc[1 : 0]

Figure 8.10: Incrementing an aligned PC with a 30-incrementer

Lemma 49 (Correctness of Values Read From GPR).

A(h) = c.gpr(rs(c))

B(h) = ci.gpr(rt(c))

8.3.8 Next PC Environment

Branch Condition Evaluation Unit. The BCE-unit is wired as shown in Figure 8.9. By lemmas
49 and 44 as well as the correctness of the BCE implementation from Section 7.5 we have

bres(h) = bceres(A(h), B(h), bf(h)) (construction)

= bceres(c.gpr(rs(c)), c.gpr(rt(c)), bf(c)) (Lemmas 49, ??)

= bres(c). (ISA definition)

Thus, we have

Lemma 50 (Branch Result Correctness).

bres(h) = bres(c)

Incremented PC. The computation of an incremented PC as needed for the next PC environment
as well as for the link instructions is shown in Figure 8.10. Because the PC can be assumed to be
aligned4 the use of a 30-incrementer suffices. Using the correctness of the incrementer from Section

4Otherwise a misalignment interrupt would be signalled.

97

I15
14imm

30 30

32

1 0 jr ∨ jalr

1 0 jbtaken

30-Add

pc[31 : 2]

00

1 0

32 32

A

b

32 32

32

nextpc

30

s

btarget pcinc

pcinc[31 : 28]iindex00

Figure 8.11: Next PC computation

7.1 we get

pcinc(h) = (h.pc[31 : 2] +30 130)00

= (c.pc[31 : 2] +30 130)00 (Equation 8.1)

= c.pc[31 : 2]00 +32 13000 (Lemma 20)

= c.pc+32 432. (alignment)

Thus, we have

Lemma 51 (Incremented Program Counter Correctness).

pcinc(h) = c.pc+32 432

Next PC Computation. The circuit computing the next PC input, which was left open in Figure
8.4 when we treated instruction fetch, is shown in Figure 8.11.

Predicates p ∈ {jr, jalr, jump, b} are computed in the instruction decoder. Thus, we have

p(h) = p(c)

by Lemma 44.
We compute jbtaken in the obvious way and conclude with Lemma 50

jbtaken(h) = jump(h) ∨ b(h) ∧ bres(h)

= jump(c) ∨ b(h) ∧ bres(c)
= jbtaken(c).

We have

A(h) = c.gpr(rs(c)) (by Lemma 49)

nextpc(h) = c.pc+32 442 (by Lemma 51)

imm(h)[15]14imm(h)00 = imm(c)[15]14imm(c)00 (by Lemma 45)

= bdist(c).

98

itype

10

4
af

32

32-ALU

32

A
32

ares

rop

3232

rtype

Bxtimm

Figure 8.12: ALU environment

For the computation of the 30-bit adder we argue as in Lemma 51:

s(h)00 = (h.pc[31 : 2] +30 imm(h)[15]14imm(h))00

= (c.pc[31 : 2] +30 imm(c)[15]14imm(c))00 (Lemma 45)

= c.pc[31 : 2]00 +32 imm(c)[15]14imm(c)00 (Lemma 20)

= c.pc+32 bdist(c). (alignment)

We conclude

btarget(h) =

c.pc+32 bdist(c) b(c)

c.gpr(rs(c)) jr(c) ∨ jalr(c)
(c.pc+32 432)[31 : 28]iindex(c)00 j(c) ∨ jal(c)

= btarget(c).

Exploiting

reset(h) = 0

as well as the semantics of register updates we conclude

h′.pc = nextpc(h)

=

{
btarget(c) jbtaken(c)

c.pc+32 432

= c′.pc.

Thus, we have shown

Lemma 52 (Next Program Counter Correctness).

h′.pc = c′.pc

This shows the first part of c′ ∼ h′.

99

Figure 8.13: Shifter environment

8.3.9 ALU Environment

The ALU environment is shown in Figure 8.12. For the ALU’s left operand we have

lop(h) = A(h) (construction)

= c.gpr(rs(c)) (Lemma 49)

= lop(c).

For the right operand follows with Lemmas 49, 47 and ??

rop(h) =

{
B(h) rtype(h)

xtimm(h) otherwise

=

{
c.gpr(rt(c)) rtype(c)

xtimm(c) otherwise

= rop(c).

For the result ares of the ALU we get

ares(h) = alures(lop(h), rop(h), itype(h), af(h)) (Section 7.3)

= alures(lop(c), rop(c), itype(c), af(c)) (Lemmas 49, ??)

= ares(c).

We summarize in

Lemma 53 (ALU Result Correctness).

ares(h) = ares(c)

Note, that in contrast to previous lemmas the proof of this lemma is not just bookkeeping; it
involves the not so trivial correctness of the ALU implementation from Section 7.3.

8.3.10 Shifter Environment

The shifter environment is shown in figure 8.13. For the shifters left operand we have

slop(h) = B(h) (construction)

= c.gpr(rt(c)) (Lemma 49)

= slop(c).

100

Figure 8.14: Collecting results into signal C

The shift distance is
sa(h) = sa(c)

by lemma 45. The result of the shifter with these operands is

sres(h) = shres(slop(h), sa(h)) (Section 7.4)

= shres(slop(c), sa(c))

= sres(c).

We summarize

Lemma 54.
sres(c) = sres(h)

8.3.11 Jump and Link

The value linkad that is saved in jump and link instructions is identical with the incremented PC
pcinc from the next PC environment:

linkad(h) = pcinc(h) = h.pc+32 432 = linkad(c). (8.2)

8.3.12 Collecting Results

Figure 8.14 shows two multiplexers collecting results linkad, sres and ares into an intermediate
result C. Using Lemmas 53, 54 and ?? as well as Equation 8.2 we conclude

C(h) =

linkad(h) jal(h) ∨ jalr(h)

sres(h) srl(h)

ares(h) otherwise

= C().

Thus, we have

Lemma 55 (C Result Correctness).
C(h) = C(c)

101

32

32 32

32-Add

A imm[15]16imm

ea

0

Figure 8.15: Effective address computation

lres

30

01

(32, r)-ROM

in

out

32

32

s ∧ E

ea[31 : 2]

E

pc[31 : 2]
A

a
m

w

Figure 8.16: Memory environment

8.3.13 Effective Address

The effective address computation is shown in Figure 8.15. We have

ea(h) = A(h) +32 imm(h)[15]16imm(h) (Section 7.1)

= c.gpr(rs(c)) +32 sxtimm(c) (lemmas 49 and 45)

= ea(c).

Thus, we have

Lemma 56 (Effective Address Correctness).

ea(h) = ea(c)

8.3.14 Memory Environment

We implement only word accesses. Figure 8.16 shows the inputs to the ROM-RAM used as memory.
Here, one has to show

Lemma 57 (Memory Implementation Correctness).

lres(h) = lres(c)

and
h′.m ∼M c′.m

Proof. The proof of the first statement is completely analogous to the analysis of instruction fetch
using ea(h) = ea(c) and concluding ma(h) = ea(h)[32 : 2] from h.E = 1. For the second statement
we have to consider the obvious case split

102

C

10 l
3232

32

gprin

lres

Figure 8.17: Computing the data input of the GPR

• s(h) = 0, i.e. no store is performed. From lemma 44 we get s(c) = 0, hence mw(h) = 0. Using
hypothesis c ∼M h we conclude for all word addresses a

h′.m(a) = h.m(a)

= c.m4(a00)

= c′.m4(a00)

• s(h) = 1 i.e. a store with address ea(h)[32 : 2] is performed. From lemma 44 we get s(c) = 0,
hence mw(h) = 1. For word addresses a 6= ea(h)[32 : 2] one argues

h′(a) = c′.m4(a00)

as above. For a = ea(h) we use lemma 49 to conclude

min(h) = c.gpr(rs(c))

and conclude

h′.m(ea(h)[32 : 2]) = c.gpr(rs(c))

= c′4.m (software condition about ea of stores)

= c′4.m(ea(c)[32 : 2]00) (alignament)

= c′4.m(ea(h)00)

Note that in this proof we argued that both the ISA memory and the hardware memory are updated
at the locations concerned. This only works if the effective address does not lie in ROM.

8.3.15 Writing to the General Purpose Register File

Figure 8.17 shows a last multiplexer connecting the data input of the general purpose register file
with intermediate result C and the result lres coming from the memory.

Using lemmas 55 and ?? we conclude

gprin(h) =

{
lres(h) l(h)

C(h) otherwise

=

{
lres(c) l(c)

C(c) otherwise

= gprin(c).

Using h.E01 and ?? we get
gprw(h) = gprw(c)

103

With hypothesis c ∼ h we conclude for the general purpose register file:

h′.gpr(x) =

{
gprin(h) gprw(h) ∧ x = cad(h)

h.gpr(x) otherwise

=

{
gprin(c) gprw(c) ∧ x = cad(c)

c.gpr(x) otherwise

= c.gpr(x).

This concludes the proof of lemma 43 and also the induction step of the correctness proof of the
entire (simple) processor.

8.4 Example Programs

Before we present example programs, we have to say a few words about the representation of constants
in assembly language. In general, register numbers and immediate constants are represented in
decimal notation. Conversion to two’s complement representation is done by the assembler. If we
want to specify an immediate constant i[15 : 0) in binary representation we write it as

0bi[15 : 0]

We put comments in brackets. Sometimes we number lines. These numbers are comments too; they
just serve to compute jump distances

8.4.1 Simple MIPS Programs

Initializing register 0 with all zeros This is done by XORing the register with itself

xor 0 0 0

We abbreviate this program with
gpr(0) = 0

Storing a 32 bit constant in a register . Let i[31 : 0] ∈ B32. The following program loads this
constant in register k in two instruction. First it stores the upper half and then the zero extended
lower half is ORed with this

lhi k 0bi[31:16]

ori k k 0bi[15:0]

We abbreviate this program with

loadc(k, 0bi[31 : 0])

Computing sign and absolute value of an integer . Assume a two’s complement number is
stored in register gpr(i). We want to store sign and absolute value of this number in registers j and
k. For the sign we simply compare gpr(i) with zero

0: gpr(0)=0

1: slt j i 0

For the absolute value we invert and increment in case the number is negative. We invert by xoring
with the mask 132 which is obtaind by a nor of the mask 032 with itself

104

2: blez j 4

3: nor k 0 0

4: xor k k i

5: addi k k 1

8.4.2 Software Multiplication

The following program takes initially (in configuration c0) binary numbers a and b from registers
gpr(i) and gpr(j) as inputs.

c0.gpr(i) = a

c0.gpr(j) = b

It should compute finally (in some configuration cT) the product mod 232 of these numbers in some
register k. Thus we want to show

〈cT .gpr(k)〉 = (〈a〉 · 〈b〉 mod 232)

We start by setting register 0 to 032

0: xor 0 0 0 (gpr(0) = 0)

We use four auxiliary registers gpr(r) for r ∈ [24 : 27] that we abbreviate in comments as

x = gpr(24)

y = gpr(25)

z = gpr(26)

u = gpr(27)

We initialize x with 0311 and y with a and u with 032. Then we AND b and x together

0: addi 24 0 1 (x=1)

1: addi 26 i 0 (z=a)

2: addi 27 0 0 (u=0)

3: and 25 j 24 (y = b AND x)

Afterwards we have
y 6= 0↔ b[0] = 1

We add z = a to u if b[0]=1

4: bne 25 0 2 (skip next instruction if b[0]=0)

5: add 27 27 26 (u=u+z)

Afterwards we have

x = 0311

z = a

〈〉 = 〈a〉b[0]

The next lines will contain a loop. After the loop has been processed i times the following will
hold

x =

{
031−i10i i < 31

032 i = 31

〈z〉 = 〈a〉 · 2i mod 232

〈u〉 = 〈a〉 · 〈b[i : 0]〉

105

As we have seen this is true initially for i = 0, and we program the loop just to maintain this 6: beq
24 0 7 (jump over next 6 instructions if 32 iterations are over)

7: add 24 24 24 (double x mod 2^32)

8: add 26 26 26 (double a mod 2^32)

9: and 25 j 24 (y = b AND x)

we have at this point in iteration i:

y 6= 0↔ b[i] = 1

We add z to u if b[i]=1 and go back 6 instructions, i.e. to the start of the loop

10: bne 25 0 2 (skip next instruction if b[i]=0)

11: add 27 27 26 (u=u+z)

12: beq 0 0 -6 (go back 6 instructions to start of)

After 32 iterations we have the desired product in u. In the end we copy the result to from u register
j

13: addi j 27 0 (gpr(j) = u)

We abbreviate the above program with

mul(i, j, k)

Note that the program can be used literally for integer multiplication tmod 232 too. The argument
is known from the correctness of arithmetic units

By lemmas 22 and 8 we have in the end

[a] · [b] ≡ 〈a〉 · 〈b〉 mod 232

= 〈u〉 mod 232

= [u] mod 232

As [u] ∈ T32 we get by lemma 11

[u] = [a] · [b] tmod 232

8.4.3 School Method for Integer Division

For integers a and b with b 6= 0 the integer division of a by b can be defined as

a/b = max{C ∈ N : b · C ≤ a}

If a < b, then a/b = 0 and we are done. Otherwise we transfer the school algorithm for long
division of decimal numbers to binary numbers. A single step of the algorithm is justified by

Lemma 58. For a > b let

t(a, b) = max{k ∈ N : 2k · b ≤ a

then

a/b = 2t(a,b) + (a− 2t(a,b) · b)/b

106

Proof. a/b has a binary representation c[m : 0] ∈ Bm+1 without leading zeros.

a/b = 〈1c[m− 1 : 0]〉

i.e.
〈1c[m− 1 : 0]〉 · b ≤ a

and
〈(1c[m− 1 : 0]〉+ 1) · b > a

We show

m = t(A,B)

〈c[m− 1 : 0]〉 = (a− 2t(a,b) · b)/b

We prove the two equations separately.

• We have
2m · b ≤ 〈1c[m− 1 : 0]〉 · b ≤ a

Hence
m ≤ t(a, b)

Assuming m < t(a, b) gives the contradiction

〈(1c[m− 1 : 0]〉+ 1) · b ≤ 2m+1 · b ≤ a

• We have

(2m + 〈c[m− 1 : 0]〉) · b ≤ a

〈c[m− 1 : 0]〉 · b ≤ a− 2m · b
〈c[m− 1 : 0]〉 ≤ (a− 2m · b)/b

Assuming
(〈c[m− 1 : 0]〉+ 1) · b ≤ a− 2m · b

Leads to the contradiction

(〈1c[m− 1 : 0]〉+ 1) · b = (2m + 〈c[m− 1 : 0]〉+ 1) · b = a

Observe that with the notation of the above proof we have

Lemma 59.
a− 2m · b < 2m · b

Proof. The assumption
a− 2m · b ≥ 2m · b

leads to the contradiction
a ≥ 2m+1 · b = 2t(a,b)+1 · b

For a > b we obtain the school method for iterative binary division in the obvious way

107

•
A(0) = a

• For A(i) ≥ b we define

t(i) = t(A(i), b)

A(i+ 1) = A(i)− 2t(i) · b

From lemma 59 we get

A(i+ 1) < 2t(i) · b
Hence

t(i+ 1) < t(i)

t(i) ≤ t(0)− i
A(i) < 2t(0)−i · b

and the algorithm terminates after u steps with

u = max{i : A(i) ≥ b}

An easy induction on i with lemma 58 gives

a/b =
i∑

j=0

2t(i) + A(i+ 1)/b

Thus we have

Lemma 60.

a/b =
u∑
i=0

2t(i)

8.4.4 Implementing Integer Division

The following algorithm takes initially (in configuration c0) binary numbers p and q from registers
gpr(i) and gpr(j) and should finally (in some configuration cR) compute the result of the integer
division in some register gpr(k).

c0.gpr(i) = p

c0.gpr(j) = q

cR.gpr(k) = 〈p〉/〈q〉

Obviously we assume b 6= 032. In order to avoid a tedious case distinction in the case t(0) = 31 we
also assume that the leading bit of a is zero.

q 6= 032 ∧ p[31] = 0

We abbreviate

a = 〈p〉 and b = 〈q〉

108

We use auxiliary registers that we abbreviate

A = gpr(23)

B = gpr(24)

X = gpor(25)

C = gpr(26)

U = gpr(27)

We initialize gpr(0) and the result register gpr(k) with zero. With an initial test we handle the
case a < b and simply jump to the end of the routine

0: gpr(0)=0

1: add k 0 0 (gpr(k) = 0)

2: sltu 23 i j (A = (a < b))

3: bgez 23 17 (quit, i.e. goto line 20 if a<b)

We initialize

4: add 23 i 0 (A = p)

5: add 24 j 0 (B = q)

6: addi 25 0 1 (X = 0...01)

7: add 26 0 0 (C = 0)

and have after execution of this code

〈A〉 = a

〈X = b · 20

X[j] = 0 ↔ j = 0

〈C〉 = 0

Next we successively double 〈X〉 and 〈B〉 until 〈B〉 > 〈A〉. This will succeed after some number m
of iterations because q[31 : 0] contains a one and p has a leading zero.

8: add 25 25 25 (X = X + X)

9: add 24 24 24 (B = B + B)

10: sltu 27 23 24 (U = (A < B))

11: blez 27 -3 (repeat if B <= A)

This loop ends after m iterations for some m and we have

〈A〉 = a

〈B〉 = 2m · b
〈X[j] = 1 ↔ j = m

2m · b > a

m > t(0)

We write the main loop such that after i iterations the following is satisfied

〈A〉 = A(i)

〈B〉 = 2t(i−1 · b
X[j] = 1 ↔ j = t(i− 1)

〈C〉 =
i−1∑
j=0

2t(i)

This obviously holds for i = 0 and is maintained in iteration i+ 1 by the following code.

109

12: srl 25 25 1 (X = srl(X,1))

13: srl 24 24 1 (B = srl(B,1))

14: sltu 27 23 24 (U = (A < B))

15: blez 27 -3 (repeat if A >= B)

16: or 26 26 x (C = C OR X)

17: sub 23 23 24 (A = A - B)

18: sltu 27 23 j (U = (A < b))

19: blez 27 -7 (repeat outer loop if A >=b)

In the inner loop (lines 12 - 15) B and X are shifted to the right until

〈B〉 < 〈A〉 = A(i)

. At this point we have
X[j] = 1↔ j = t(i)

We OR X into C which gives a new value

〈C〉 =
i−1∑
j=0

2t(i) + 2t(i)

=
i∑

j=0

2t(i)

Finally we subtract 〈B〉 from 〈A〉 obtaining a new value A which satisfies

〈A〉 = A(i)− 2t(i) · b
= A(i+ 1)

110

Chapter 9

Context Free Grammars

9.1 Introduction to Context Free Grammars

9.1.1 Syntax of Context Free Grammars

A context free grammar G has the following components

• a finite set of symbols G.T called alphabet of terminal symbols

• a finite set of symbols G.N called the alphabet of non terminal symbols. Symbols cannot be
simultaneously terminal and nonterminal:

G.T ∩G.N = ∅

• a start symbol S ∈ G.N

• a finite set P ⊂ G.N × (G.N ∪G.T)∗ of productions

If (n,w0 . . . wk−1) is a production of grammar G, i.e. (n,w0 . . . wk−1) ∈ P we say that the string
w0 . . . wk−1 is directly derived in G from the nonterminal symbol n, and we write

n→G w0 . . . wk−1

If there are several strings w1, . . . , ws that are directly derived in G from n and if | /∈ G.N ∪ G.T ,
then we write

n→G w
1| . . . |ws

If it is clear which grammar is meant we abbreviate

T = G.T

N = G.N

S = G.S

P = G.P

→ = →G

Before we present an example a word on notation. In mathematics there is a constant shortage
of symbols. One uses capital and small letters of the Latin and Greek alphabets. It is not enough.
One borrows - in set theory - from the Hebrew alphabet. One introduces funny letters like B and N.
The shortage remains. Modification of symbols with accents and tildes is a more radical step: using
a symbol naked, with an accent or with a tilde immediately triples the number of available symbols.
In computer science one has taken the following brute force measure to generate arbitrarily many

111

Figure 9.1: Extending derivation tree T by application of production n→ w

symbols: take a non empty alphabet A not containing the symbols 〈 and 〉. There are arbitrarily
many strings w ∈ A∗. For each such w treat 〈w〉 as a new symbol. If we write down a string of such
symbols the pointed brackets permit to decide where symbols begin and end.

As an introductory example we consider the following grammar:

T = {0, 1, X}
N = {V,C, 〈CS〉}
S = V

B → 0|1
〈BS〉 → B|B〈BS〉

V → X〈BS〉|0|1

9.1.2 Quick and Dirty Introduction to Derivation Trees

Let G = (T,N, P, S) be a context free grammar. Intuitively and with the help of drawings it is
extremely easy to explain, what is a derivation tree T for grammar G. For nonterminals n ∈ N
and strings w ∈ (N ∪ T)∗ we generate the derivation trees T with root n and border word w by the
following rules, which are illustrated in figure 9.1.

1. a single nonterminal n is a derivation tree with root n and border word n.

2. if T is a derivation tree with root m border word unv and n → w ∈ P is a production with
w = w0 . . . wk−1, then the tree in figure x a) is a derivation tree with root m and border word
uwv.

3. all derivation trees can be generated by finitely many applications of the above 2 rules.

In the example grammar above we can construct a derivation tree with root V and border word
X01 by 6 applications of the above rules as illustrated in figure 9.2.

We can argue that derivation trees can be composed:

Lemma 61. If T1 is a derivation tree with root n and border word unv and T2 is a derivation tree
with root n and border word w, then the tree T from figure x is a derivation tree with root n and
border word uwv.

112

Figure 9.2: Generating a derivation tree with root V and border word X01

0

12

3 4

Figure 9.3: Drawing the rooted tree from figure 3.6 in a different way.

Proof. generate tree T by first applying the rules for generating T1 and then using the rules for
generating T2

We also can define T2 to be a subtree of T if T can be generated by the composition of T2 with
some derivation tree T1 as in lemma 61. This concept of derivation trees goes a long way. Problems
arise however, for instance if we try to make precise, when two such trees are equal. As we have done
’definitions’ by picture we would have to define: two trees are equal if they have the same drawing.
This is intuitively quite clear1 but not a mathematical definition. Much more serious problems arise
when we try to argue about the behavior of algorithms, which traverse and process derivation trees.
When we try to argue, what happens, when the algorithm visits a certain node, we have no language
to do so, simply because nodes have no names. Compilers, however, happen to work in exactly this
way. Thus we give in the next subsections a clean definition of derivation trees and relate it to the
basic graph theory from section 3.4.

9.1.3 Tree Regions

The graph theoretic definition of rooted trees from subsection 3.4.3 does not specify the order of sons.
It does not distinguish between the graphs drawn in figure 3.3 and in figure 9.3. In what follows
however we cannot ignore that order. Therefore we will formalize trees such that

• for each node u with outdegree k the sons of u are numbered from 0 to k − 1

1A picture says more than a thousand words

113

Figure 9.4: Standardized names of nodes specify the order of sons

Figure 9.5: Names of nodes correspond to edge labels on the paths from the root to the nodes

• nodes have standardized names u ∈ N∗. The root has name r = ε and the sons of a node u
with outdegree k are called u ◦ 0, . . . , u ◦ k − 1. When we draw the trees node u ◦ i is drawn to
the left of u ◦ (i+ 1) (see figure 9.4).

Actually this naming is motivated by graph algorithms working on the graphs starting at the
root. If one labels the edges of a node with k sons from 0 to k − 1 then the name v of a node now
is simply the sequence of edge labels encountered on the path from the root to v. For the graphs in
figures 3.3 and 9.3 this is illustrated in figures 9.5 a) and b). For a formal definition of tree regions
we define from sets A of sequences of natural numbers

A ⊂ N∗

graphs G(A) in the following way

• the set of nodes of G(A) is A
G(A).V = A

• for u, v ∈ A there is an edge from u to v if v = u ◦ i for an i ∈ N

(u, v) ∈ G(A).E ↔ ∃i ∈ N : v = u ◦ i

For nodes v ∈ A we can characterize their indegree and outdegree in the graph G(A) by

Lemma 62.

outdeg(v,G(A)) = #{i : i ∈ N, v ◦ i ∈ A}
indeg(ε,G(A)) = 0

indeg(v ◦ i, G(A)) =

{
1 v ∈ A
0 v /∈ A

We define again a node v to be a source of A if indeg(v,G(A)) = 0, i.e. if there is no node u ∈ A
and no i ∈ N such that v = u ◦ i. We define u to be a sink of A if outdeg(u,G(A)) = 0, i.e. if for no
i ∈ N we have v = u ◦ i ∈ A.

Now we define tree regions as the subsets A ⊂ N∗ such that the graphs G(A) are rooted trees
with root ε. Formally

114

1. A = {ε} is a tree region

2. if A is a tree region, v is a sink of A and k ∈ N then

A′ = A ∪ {(v ◦ 0), . . . (v ◦ k − 1)}

is a tree region

3. all tree regions can be generated by finitely many applications of these rules

A trivial argument shows

Lemma 63. If A is a tree region, then G(A) is a rooted tree.

The father father(u) of a node u = u[1 : n] in a tree region is defined as

father(u[1 : n]) = u[1 : n− 1]

Formally the tree region of figure 9.5 a) is specified by

A = {ε, 0, 1, 10, 11}

and the tree region of figure 9.5 b) is specified by

A = {ε, 0, 1, 00, 01}

9.1.4 Clean definition of derivation trees

A derivation tree T for grammar G has the following components

• a tree region T.A

• a labeling ` : A→ G.N ∪G.T of the elements of T.A by symbols of the grammar satisfying: if
outdeg(u,G(T.A)) = k, and `(u) = n and for all i we have `(u ◦ i) = wi then

n→G w0 . . . wk−1

i.e. the sequence of the labels of the sons of u is directly derived in G from the label of u. (see
figure 9.6 a)

There are three obvious ways to draw derivation trees T :

• For each node u ∈ T.A in the drawing, we write down u : `(u), i.e. the name and its label as
in figure 9.6 a)

• we can omit the names of the node as shown in figure 9.6 b) and only draw edge label

• we can omit the edge labels as shown in figure 9.6. This is justified as edges startig at the same
node are labeled from left to right starting with 0 . As long as the entire tree is drawn the
names of the nodes can easily be reconstructed from the drawing. Also we know, that node
labels in derivation trees are single symbols. If such a symbol happens to be an artificially
generated symbol of the form < w > we will take the freedom to omit the pointed brackets.

115

Figure 9.6: In derivation trees, nodes and their sons are labeled by productions of the grammar.
Here n→ w1 . . . wk must hold.

Figure 9.7: A derivation tree for the grammar of the introductory example. We have written CF
instead of 〈CF 〉. TODO: change C to B

A derivation tree for the grammar of the introductory example is shown in figure 9.7 a) with node
names and in figure 9.7 b) with edge labels.

Let T be a derivation tree and u ∈ T.A be a node in T . The border word bw(u, T) is obtained
by concatenating the labels of all leaves reachable from u from left to right. Formally

bw(u, T) =

{
T.`(u) u is a leaf of G(T.A)

bw(u ◦ 1, T) ◦ . . . bw(u ◦ k, T) outdegree(u,G(T.A)) = k

If it is clear which tree is meant we drop the T .

In the derivation tree T of figure 9.7 we have for instance

116

Figure 9.8: Composition of trees T1 and T2 at leaf u of T1

bw(ε) = bw(0) ◦ bw(1)

= `(0) ◦ bw(10) ◦ bw(11)

= X ◦ bw(100) ◦ bw(110)

= X ◦ `(100) ◦ bw(1100)

= X0 ◦ `(1100)

= X01

With the new precise definition of derivation trees we redefine relation n →G w. We say that a
word w is derivable from n in G and write n→∗G w, if there is a derivation tree T for G with border
word w whose root is labeled with n.

n→∗G w ↔ ∃T : T.`(ε) = n ∧ bw(ε, T) = w

9.1.5 Composition and Decomposition of Derivation Trees

The following easy theory permits now to argue about the composition and the decomposition of
derivation trees. For the composition, let T1 and T2 be derivation trees for a common grammar G.
Let u be a leaf of T1 and assume that the labels of u in T1 and the root ε in T2 are identical:

T1.`(u) = T2.`(ε) (9.1)

As illustrated in figure 9.8 we then we can compose T1 and T2 into a new tree T = comp(T1, T2, u)
in the following way. Nodes of T are the nodes of T1 as well as the nodes of T2 extended by prefix u

T.A = T1.A ∪ {u} ◦ T2.A
Labels of nodes in T are imported in the obvious way

T.`(v) =

{
T1.`(v) v ∈ T1.A
T2.`(x) v = u ◦ x

For x = ε this is well defined by equation 9.1. An easy exercise shows

Lemma 64. T = comp(T1, T2, u) is a derivation tree

For the decomposition let T be a derivation tree and u ∈ T : A be a node of the tree. As
illustrated in figure 9.9 we decompose T into the subtree T2 = sub(T, u) of T with root u and the
tree T1 = rem(T, u) remaining from T if T2 is removed. Formally

T2.A = {v : u ◦ v ∈ T : A}
T1.A = (T.A \ T2.A) ∪ {u}

T2.`(v) = T.`(u ◦ v)

T1.`(v) = T.`(v)

117

Figure 9.9: Decomposing a derivation tree into T1 and T2 at node u

An easy exercise shows

Lemma 65. T1 = rem(T, u) and T2 = sub(T, u) ar both derivation trees

Another easy exercise shows that if we decompose a tree T at node u and then compose the
trees T1 = rem(T, u) and T2 = sub(T, u) again at u we get back - words of wisdom - the original
tree.T1 = rem(T, u) and T2 = sub(T, u)

Lemma 66.
T = comp(rem(T, u), sub(T, u), u)

Figures 9.8 and 9.9 differ only in the way we draw T1. In figure 9.8 we stress that u it is a leaf of
T1. In figure 9.9 (where u is also a leaf of T1) we stress that it is some node in the tree T .

9.1.6 Generated Languages

We say that a word w is derivable from n in G and write n→∗G w if there is a derivation tree T for
G with root n and border word w.

The language generated by nonterminal n in grammar G consists of all words in the terminal
alphabet that are derivable from n in G. It is abbreviated with LG(n)

LG(n) = {w : n→∗G w} ∩G.T ∗

An easy exercise shows for the grammar G of the introductory example

LG(〈CS〉) = B+

LG(V) = XB+ ∪ B

Observe that we could drop the brackets of symbol 〈CF 〉 because the arguments of function LG
are single symbols. The language generated by grammar G is the language LG(G.S) generated by
G from the start symbol. A language is called context free if it is generated by some context free
grammar.

9.2 Grammars for Expressions

9.2.1 Syntax of Boolean Expressions

In the hardware chapters we have introduced Boolean expressions by analogy to arithmetic expres-
sions, i.e. we have not given a precise definition. We will now fill this gap by presenting a context

118

xo

Bf

XI

B
v
[
H

v

Figure 9.10: A derivation tree reflecting the usual priority rules

ras

Figure 9.11: A derivation tree not reflecting the usual priority rules

free grammar that generates these expressions. We will consider variables in XB+ and constants
in B, and we use the productions of the grammar from the introductory example to produce such
variables or constants from symbol V . Boolean expressions are derived from symbol 〈BE〉 by the
productions

〈BE〉 → 〈BE〉 ∧ 〈BE〉|〈BE〉 ∨ 〈BE〉|〈BE〉 ⊕ 〈BE〉
|/〈BE〉|(〈BE〉)

We make 〈BE〉 the start symbol of the extended grammar G. A derivation tree for the expression
X0 ∧X1 ∨X10 in G is shown – without the details for the derivation of the variables from symbol
〈V C〉 – in figure 9.10.

If we were to evaluate expressions as suggested by the shape of the tree, this tree would nicely
reflect the usual priority among the Boolean operators, where ∧ binds stronger than ∨.

However, the simple grammar G also permits a second derivation tree of the same Boolean
expression, which is shown in figure 9.11. Although grammar G nicely represents the syntax of
expressions, it is obviously not helpful for the definition of expression evaluation. For this purpose
we need grammars G generating expressions with two additional properties:

• the grammars are unambiguous in the sense that for every word w in the language generated
by G there is exactly one derivation tree for G of w from the start symbol.

• this unique derivation tree should reflect the usual priorities between operators

In the next subsection we exhibit such a grammar for arithmetic expressions.

119

Figure 9.12: The grammar determines the order in which division signs are applied

9.2.2 Grammar for Arithmetic Expressions with Priorities

Evaluation of arithmetic expressions is more interesting meets the eye. People tend to believe that
they have learnt expression evaluation at high school. Readers feeling this way are encouraged to
solve the following

Exercise evaluate 2/2/2/2 and 2 − − − −2. We give two hints: i) evaluate first 2 − 2 − 2 − 2.
This gives you an idea about the order of operators. Then evaluate 2 − (−2). You will recognize,
that there are two minus signs: a unary operator −1 and a binary operator −2. So you are really
evaluating 2 −2 (−12). As in Boolean Algebra unary operators tend to have higher priority than
binary operators. This will help you to evaluate 2 − −2 and then solve the exercise. We postpone
the problem how to identify unary and binary minus sign to a series of exercises in subsection 9.2.4.

For the time being we do not bother how constants or variables are generated and temporarily
take V as a terminal symbol. A grammar G taking care of the above problems has the following
terminal symbols

G.T = {+,−2, ∗, /,−1, (,), V }
For each of the priority levels we have a nonterminal symbol

G.N = {F, T,A}

F like ’factor’ stands for the highest priority level of the unary minus or an expression in brackets

F → V | −1 F |(A)

T like ’term’ stands for the priority level of multiplication and division

T → F |T ∗ F |T/F

A like ’arithmetic expression’ is the start symbol and stands for the priority level of addition and
subtraction

A→ T |A+ T |A−2 T

We illustrate this grammar by a few examples: in figure 9.12 we have a derivation tree for
V/V/V/V . This tree suggests evaluation of the expression from left to right. For our first exercise
above we would evaluate

2/2/2/2 = ((2/2)/2)/2 = 1/4

120

Figure 9.13: A derivation tree reflecting the usual priority rules

Figure 9.14: A derivation tree reflecting the usual priority rules

In figure 9.13 we have a derivation tree for V −2 −1 −1 −1V . According to this tree we would
evaluate

2−−−−2 = 2− (−(−(−2))) = 4

We postpone the problem how to distinguish between unary and binary minus until later. In
figure 9.14 a) we have a tree for V ∗ V + V suggesting that * binds more strongly than +. An
attempt to start the construction of a derivation tree as in figure 9.14 b) apparently leads into a dead
end. Indeed one can show for the above grammar G

Lemma 67. G is unambiguous.

This lemma is nothing less than fundamental, because it explains, why expression evaluation is
well defined. The interested reader can find the proof in the next subsection.

9.2.3 Proof of Lemma 67

We proceed in 4 fairly obvious steps, showing successively that derivation trees are unique for

1. factors without brackets

121

Figure 9.15: Deriving V from F

Figure 9.16: Decomposition of a derivation tree Tn for a border word with n ≥ 1 unary minus signs
from F

2. terms without brackets

3. arithmetic expressions without brackets

4. arithmetic expression with brackets

Lemma 68. Let F →∗ w and w ∈ {V,−1}+. Then the derivation tree T

of w from F is unique

Proof. Fist observe that production F → (A) cannot be used, because w contains no brackets,
productions T → T ◦F and A→ A ◦ T cannot be used, because ∗, /,+,−2 do not occur, and we are
left with productions

F → V | −1 F T → F A→ T

Now we prove the lemma by induction over the number n occurrences of the unary minus. For
n = 0 we have w = V and only production F → V can be used to derive the V as shown in figure
9.15. The symbol F shown in that figure must be at the root of the tree. Otherwise there would be
an ancestor of F which is labeled F . The production F → −1F would produce a unary minus, thus
it cannot be used. Thus with the productions available ancestors of a node labeled F can only be
labeled with T and A.

For the induction step let n > 0 let Tn be a derivation tree for −n1V and consider the first
occurrence of symbol −1 in w. It can only be derived by production F → −1F as shown in figure
9.16. We claim that the node labeled with F at the bottom of this figure is the root. If it would
have a father labeled F , then the −1 in the figure would not be the leftmost one. Other labels of
ancestors can only be T and A.

Decompose the derivation tree Tn into U = sub(Tn, 1) and the rest (that we just have determined)
as shown in the figure. U is unique by induction hypothesis. Hence the composition is unique. By
lemma 66 this composition is Tn.

Lemma 69. Let T →∗ w and w ∈ {V,−1, ∗, /}+. Then the derivation tree Tn of w from T is unique

122

UU ' -U-

F
l
T

Figure 9.17: Deriving a border word without multiplication and division signs from T

Figure 9.18: Deriving a border word with n ≥ 1 multiplication and division signs from T

Proof. We can only use productions

F → V | −1 F

T → F |T ∗ F |T/F
A → T

because the other productions produce terminals not in the border word of Tn.
We prove the lemma by induction over the number n of occurrences of symbols ∗ and /. For

n = 0 the derivation must start at the root labeled T with an application of production T → F as
shown in figure 9.17 because other productions would produce terminals ∗ or / not in the border
word. The remaining part U of the tree is unique by lemma 68

For n > 0 consider the last occurrence ◦ of a multiplication or division sign. Then w = w′ ◦ w”.
It can only be generated by production T → T ◦ F as shown in figure 9.18. We claim that the lower
node in the figure labeled T is the root. If it has a father labeled T , then ◦ in the picture is not the
rightmost one in the border word. Thus ancestors can only be labeled with A. Subtree U” is unique
by lemma 68. Subtree U” is unique by induction hypothesis.

Lemma 70. Let T →∗ w and w ∈ {V,−1, ∗, /,+,−2}+. Then the derivation tree of w from T is
unique

Proof. We can only use productions

F → V | −1 F

T → F |T ∗ F |T/F
A → T |A+ T |A−2 T

We prove the lemma by induction over the number n of occurrences of symbols + and −2. For
n = 0 the derivation must start at the root labeled A with application of production A → T as
shown in figure 9.19 because other productions would produce terminals + or −2 not in the border
word. The remaining part U of the tree is unique by lemma 69

For n > 0 consider the last occurrence ◦ of an addition or binary minus sign. Then w = w′ ◦w”.
It can only be generated by production A→ A ◦ T as shown in figure 9.20. We claim that the lower

123

Figure 9.19: Deriving a border word without addition and subtraction signs from A

Figure 9.20: Deriving a border word with n ≥ 1 addition and subtraction signs from A

node in the figure labeled A is the root. If it has a father labeled A, then ◦ in the picture is not the
rightmost one in the border word. Thus there are no ancestors. Subtree U” is unique by lemma 69.
Subtree U” is unique by induction hypothesis.

Now we prove lemma 67 by induction on the number n of bracket pairs. For n = 0 we get the
uniqueness of the derivation tree from lemma 70. For n > 0 decompose

w = w1(w2)w3

where the pair of brackets shown is an innermost bracket pair, i.e. w2 contains no brackets. The
bracket pair shown is generated by production F → (A) as shown in figure 9.21. Subtree U ′ of
the derivation tree is unique by lemma 70. Assume there are two different derivation trees U1 and
U2 deriving w1Fw3 from A. Applying production F → V in both trees to the leaf F shown gives
two derivation trees for w1V w3 which has n − 1 pairs of brackets. This is impossible by induction
hypothesis.

9.2.4 Distinguishing Unary and Binary Minus

The theory of this chapter cannot yet be applied directly to ordinary arithmetic expressions, simply
because in ordinary expressions one does not write −1 or −2. One simply writes −. Fortunately
there is a very simple recipe how to identify a binary Minus: it only stands to the right of symbols
V or), whereas the unary Minus never stands to the right of these symbols. The reader can justify
this rule in the following series o

exercises

1. if a ∈ L(F) ∪ L(T) ∪ L(A) is any expression, then a ends with symbol) or V

2. if u−2 v ∈ L(A) is an arithmetic expression, then u ends with) or V

3. if u−1 v ∈ L(A) is an arithmetic expression, then u ends with −1,+,−2, ∗ or /

124

(/*""

U/ L u.i >

^) t/ i
f r

Figure 9.21: Deriving a border word without addition and subtraction signs from A

125

126

Chapter 10

The Language C0

10.1 Grammar of C0

We present syntax and semantics of an imperative programming language called C0. In a nutshell it
is PASCAL with C syntax. Although C0 is powerful enough to do some serious programming work,
its context free grammar G shown in figure 10.1 fits on a single page. Start symbol of the grammar
is

G.S = 〈prog〉
For the remainder of this chapter and the next chapter this grammar stays fixed. Thus we drop

all subscripts G. The language L(prog) generated by the grammar is a superset of all C0 programs.
Numerous restrictions on the syntax will be defined later when we define the semantics, i.e. the
meaning of C0 programs. In the context of program semantics the restrictions will appear most
natural: they are just the conditions which happen to make the definition of semantics work. In order
to give the reader some overview of the language we proceed first with a brief, preliminary and quite
informal discussion of the grammar. The language uses well known key words like int or typedef etc.
We treat these as single symbols of the terminal alphabet. Similarly, certain mathematical operators
like ! = or && are treated like single symbols of the terminal alphabet.

10.1.1 Names and Constants

Symbol 〈Di〉 generates decimal digits

L(Di) = {0, . . . , 9}

and symbol 〈DiS〉 generates sequences of digits

L(DiS) = {0, . . . , 9}+

Symbol 〈Le〉 generates small and capital letters

L(Le) = {a, . . . , z, A, . . . , Z}

Symbols 〈DiLe〉 generates digits, small letters and capital letters. Symbol 〈DiLeS〉 generates se-
quences of such symbols

L(DiLeS) = {0, . . . , 9, a, . . . , z, A, . . . , Z}+

Names are generated by symbol 〈Na〉. They are sequences of digits and letters starting with a letter

L(Na) = L(Le) ◦ {0, . . . , 9, a, . . . , z, A, . . . , Z}∗

127

〈Di〉 −→ 0 | . . . | 9 digit
〈DiS〉 −→ 〈Di〉 | 〈Di〉〈DiS〉 digit sequence
〈Le〉 −→ a | . . . | z | A | . . . | Z letter

〈DiLe〉 −→ 〈Le〉 | 〈Di〉 alphanumeric symbol
〈DiLeS〉 −→ 〈DiLe〉 | 〈DiLe〉〈DiLeS〉 sequence of symbols
〈Na〉 −→ 〈Le〉 | 〈Le〉〈DiLeS〉 name
〈C〉 −→ 〈DiS〉 | 〈DiS〉u | null int-/uint-/null-pointer-constant
〈CC〉 −→ ’!’ | . . . | ’ ∼ ’ char-constant with ASCII code
〈BC〉 −→ true | false bool-constant
〈id〉 −→ 〈Na〉 | 〈id〉.〈Na〉 | 〈id〉[〈E〉] | 〈id〉∗ identifier
〈F 〉 −→ 〈id〉 | −1〈F 〉 | (〈E〉) | 〈C〉 | 〈id〉& factor
〈T 〉 −→ 〈F 〉 | 〈T 〉 · 〈F 〉 | 〈T 〉/〈F 〉 term
〈E〉 −→ 〈T 〉 | 〈E〉+ 〈T 〉 | 〈E〉 −2 〈T 〉 expression

〈Atom〉 −→ 〈E〉 > 〈E〉 | 〈E〉 ≥ 〈E〉 | 〈E〉 < 〈E〉 | atom
〈E〉 ≤ 〈E〉 | 〈E〉 == 〈E〉 | 〈E〉 6= 〈E〉 | 〈BC〉

〈BF 〉 −→ 〈id〉 | 〈Atom〉 |∼〈BF 〉 | (〈BE〉) boolean factor
〈BT 〉 −→ 〈BF 〉 | 〈BT 〉 ∧ 〈BF 〉 boolean term
〈BE〉 −→ 〈BT 〉 | 〈BE〉 ∨ 〈BT 〉 boolean expression
〈St〉 −→ 〈id〉 = 〈E〉 | 〈id〉 = 〈BE〉 | 〈id〉 = 〈CC〉 | assignment statement

if 〈BE〉 {〈StS〉} else {〈StS〉} | cond. statement
if 〈BE〉 {〈StS〉} |
while 〈BE〉 {〈StS〉} | loop
〈id〉 = 〈Na〉(〈PaS〉) | function call
〈id〉 = new 〈Na〉∗ allocation of memory

〈rSt〉 −→ return 〈E〉 | return 〈BE〉 | return 〈CC〉 return-statement
〈PaS〉 −→ ε | 〈ParS〉 parameter sequence
〈ParS〉 −→ 〈E〉 | 〈E〉, 〈ParS〉 | 〈BE〉 | 〈BE〉, 〈ParS〉 non empty sequence
〈StS〉 −→ 〈St〉 | 〈St〉; 〈StS〉 statement sequence

〈program〉 −→ 〈TyDS〉; 〈V aDS〉; 〈FuDS〉 | C0-program
〈V aDS〉; 〈FuDS〉 | no type declaration
〈TyDS〉; 〈FuDS〉 | no variable declaration
〈FuDS〉 only function declaration

〈TyDS〉 −→ 〈TyD〉 | 〈TyD〉; 〈TyDS〉 type declaration sequence
〈TyD〉 −→ typedef 〈TE〉 〈Na〉 type declaration
〈Ty〉 −→ int | bool | char | unint | 〈Na〉 type names
〈TE〉 −→ 〈Ty〉[〈DiS〉] type expression, array

〈Ty〉∗ | struct{〈V aDS〉} pointer, struct
〈V aDS〉 −→ 〈V aD〉 | 〈V aD〉; 〈V aDS〉 variable declaration sequence
〈V aD〉 −→ 〈Ty〉 〈Na〉 variable declaration
〈FuDS〉 −→ 〈FuD〉 | 〈FuD〉; 〈FuDS〉 function declaration sequence
〈FuD〉 −→ 〈Ty〉 〈Na〉(〈PaDS〉){〈V aDS〉; 〈body〉} | function declaration

〈Ty〉 〈Na〉(〈PaDS〉){〈body〉} no local variables
〈PaDS〉 −→ ε | 〈ParDS〉 parameter declaration sequence
〈ParDS〉 −→ 〈V aD〉 | 〈V aD〉, 〈ParDS〉 non empty
〈body〉 −→ 〈rSt〉 | 〈StS〉; 〈rSt〉 function body

Table 10.1: Grammar of C0

128

Constants are generated by symbol 〈C〉. They are decimal representations of numbers, possibly
followed by the letter u.

L(C) = L(Di)+ ∪ L(Di)+ ◦ {u}
Without the letter u they specify so called integer constants representable by twos complement
numbers of appropriate length. With the letter u they specify so called unsigned integer constants
representable by binary numbers of appropriate length. Constants of type character are generated
by symbol 〈CC〉. They are digits or letters enclosed by quotation marks. The two boolean constants
generated by symbol 〈BC〉 are true and false. Names are required to be different from key words.

Printable symbols with an ASCII-code are

!"#$%&’()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

‘abcdefghijklmnopqrstuvwxyz{|}~

Using three dots we sometimes write the set of printable ASCII symbols as

{! . . . ∼}

We have used this in the grammar for the definition of character symbols. We denote the set of all
ASCII symbols as ASC and thus have

L(CC) ⊂ {’α’ : α ∈ ASC}

With
ascii : ASC → B8

we denote the function which maps every ASCII symbol α ∈ ASC to its ASCII code ascii(α). For
later reference we remark that the non printable symbol NUL has ASCII code 08

ascii(NUL) = 08

10.1.2 Identifiers

Variables and subvariables are specified by identifiers generated by symbol 〈id〉1. Identifiers are
composed of the following five components:

• plain variable names x,

• struct component accesses of the form x.n where x is an identifier and n is the name of a struct
component,

• array accesses of the form x[e] where x is an identifier and e is an arithmetic expression,

• memory access x∗ performed by dereferencing an identifier x, and

• taking address of x&, which results in a pointer to the variable or subvariable specified by
identifier x.

The names .n of struct component accesses and the indices [n] of array accesses select subvariables
of variables or, if applied repeatedly, of subvariables. We stress the fact that we have not defined
variables or subvariables yet. Thus far, we have only specified names and identifiers for variables and
subvariables.

1Except for the address-of operation which is generated by rule 〈F 〉 → 〈id〉&. By this, we ensure that there is
only a single address-of operation in any given identifier.

129

10.1.3 Arithmetic and Boolean Expressions

The productions for the arithmetic expressions were basically discussed in the previous chapter.
Factors can now be identifiers and constants.

The productions for boolean expressions have exactly the same structure. Boolean factors are
identifiers, boolean expressions in brackets and atoms; atoms are either boolean constants or they
have the form a ◦ b where a and b are arithmetic expressions and ◦ is a comparison operator.

10.1.4 Statements

There are six kinds of statements

• assignment statements. They have the form

id = e

where identifier id on the left hand side specifies a variable or subvariable to be updated. On the
right hand side e can be an arithmetic expression, a boolean expression or a character constant.
The value of the variable or subvariable specified by the current value of id is updated by the
current value of e. The reader should recall that at this point of the discussion we have not
defined yet what variables or subvariables are. Thus we clearly don’t have a formal concept of
their current values yet.

• conditional statements. They can have the form

if e {ifpart} else {elsepart}

or

if e {ifpart}
where e is a boolean expression and ifpart as well as elsepart are sequences of statements
without return statements. If expression e evaluates to true the ifpart is executed. If e
evaluates to fales then the elsepart is executed if it exists.

• while statements. They have the form

while e {loop body}

where e is a boolean expression and {loop body} is a sequence of statements without return
statements. Expression e is evaluated. If it evaluates to false the loop body is skipped and
execution of the while loop is complete. If it evaluates to true, the loop body is executed and
the while loop is executed again. Thus the body is repeatedly executed while expression e
evaluates to true (which might be forever).

• function calls. They have the form

id = f(e1, . . . , ep)

where f is the name of a declared function. Function f is called with parameters given by the
current values of expressions ei. The sequence of parameters can be empty. The value returned
by the (return statement of the) function is assigned to the variable or subvariable specified by
the current value of identifier id on the left hand side.

130

• return statements. They have the form

return e

where e is an arithmetic or boolean expression. Always executed at the end of the execution
of a function it returns the current value of expression e.

• new statements. They allocate new variables in a memory region called the heap and have the
form

id = new t∗
where t is the name of an elementary or declared type. The newly generated variable has type
t. A pointer to that variable of type t∗ is assigned to the variable or subvariable specified by
the current value of identifier id.

10.1.5 Programs

Programs have three parts:

• a sequence of type declarations ∈ L(TyDS),

• a sequence of declarations of so called global variables ∈ L(V aDS), and

• a sequence of function declarations ∈ L(FuDS).

Type declarations and declarations of global variables can be absent.

10.1.6 Type and Variable Declarations

A type x ∈ L(Ty) belongs either to set ET of elementary types

ET = {int, uint, bool, char}

or it is a (declared) type name x ∈ L(Na).
Types are declared by means of type declaration sequences ∈ L(TyDS) (which are sequences of

type declarations ∈ L(TyD)). A type declaration has the form

typedef te x

where x ∈ L(Na) is the declared type and te ∈ L(TE) is a type expression specifying the declared
type. Type expressions come in three flavors:

• array type expressions of the form
t[z]

specify array types. An array variable X of this type consists of array elements X[i] of type t
and its length is specified by (decimal number) z, i.e. we have i ∈ [0 : 〈z〉Z − 1]

• pointer type expression of the form
t∗

specify pointer types. Variables of type t∗ are pointers to variables or subvariables of type t.

• struct types of the form
struct{t1 n1; . . . ; ts ns}

specify struct types. A struct variable X of this type consists of components X.n where
n ∈ {n1, . . . , ns}. The type of component X.ni is type ti.

131

Note that, in a well-formed C0 program, type declarations are non-circular, i.e. any type declaration
uses only type names declared earlier in the type declaration sequence (in addition to the elementary
types that may be used freely).

Variable declaration sequences ∈ L(V aDS) are sequences of variable declarations ∈ L(V aD)
separated by semicolons. A variable declaration has the form

t x

where t is the type of the declared variable and x is its name. We will see that variable declaration
sequences occur in three places: i) in the declarations of the global variables of a program, ii) in
the declaration of local variables of a function, and iii) in the declarations of struct components.
Later we will be able to treat the first two cases as a special case of the third case. Note that, in a
well-formed C0 program, every non-elementary type name used in a variable declaration is declared
by a corresponding type declaration.

10.1.7 Function Declarations

Function declaration sequences ∈ L(FuDS) are sequences of function declarations ∈ L(FuD) sepa-
rated by semicolons. A function declaration has the form

t f (t1x1, . . . , tpxp){tp+1xp+1; . . . ; tsxs; body}

where

• f is the name of the declared function

• t is the type of the result returned by the declared function

• t1x1, . . . , tpxp is the sequence of parameter declarations. It differs from variable declaration
sequences in the profound aspect that parameter declarations are separated by commas instead
of colons.

• tp+1xp+1; . . . ; tsxs is the sequence of declarations of local parameters

• body ∈ L(body) is a sequence of ordinary statements ∈ L(St) followed by a return statement.

10.1.8 Representing and Processing Derivation Trees in C0

Later in this text we will present numerous algorithms that work on derivation trees T for the above
C0 grammar G. In case one wishes to implement these algorithms in C0, one has to assume that
the tree T is represented as a C0 data structure. We describe such a representation. To do that, we
prefer to switch temporarily to the clean representation of derivation trees from section ??. There,
we defined derivation trees as a pair T.A and T.`, where

• T.A is the set of nodes of the tree

• mapping T.` : T.A → N ∪ T assigns to each node i ∈ T.A its label T.`(i). In drawings we
represent a node i with its label n = T.`(i) as i : n

• nodes i ∈ T.A are sequences of integers (i1, . . . , is) ∈ N∗

• edges are implicitly coded in the names of the nodes. If node i has k sons, they are included
into T.A as i ◦ 0, i ◦ (k − 1), where the last indices specify the order of the sons. Thus if i ◦ x
is one of these nodes, its brother to the right is i ◦ (x+ 1)

132

Nodes i of a derivation tree T will be stored as struct variables X(i) of type DTE (for derivation
tree element). Type DTE and the type of pointers to DTE are declared in the following way

typedef DTE* DTEp;

typedef struct {uint label; DTEp father; DTEp fson; DTEp bro} DTE;

Figure 10.1 illustrates how a node i with nonterminal n and its sons with Nonterminals or Ter-
minals w[0 : k − 1] are represented by structs of type DTE. We switch to a precise

The interpretation of the components of a struct variable X(i) of type DTE representing node
i = (i1, . . . , is) in the tree is as follows

• X(i).label contains label T.`(i) coded as a string in B32

• X(i).father points to the struct variable X(i1 . . . is−1) representing the father of node i in T.A.
If i is the root we make X(i).father the null pointer

• X(i).fson points to the struct variable representing X(i ◦ 0), i.e. to the first son of i. If i is a
leaf we make x.fson the null pointer

• X(i).bro points to the next brother X(i1 . . . is−1is + 1) to the right of i in the tree if there is
such a brother. Otherwise we make X(i).bro the null pointer

As a first programming example we specify a function nson with two parameters:

• a pointer p to a variable X(i) of type DTE; we assume that X represents a node i ∈ T : A of
a derivation tree T with at least one son.

• a number j ∈ N representing a possibly existing son i ◦ j of i in T

The function is supposed to return a pointer to X(i◦j), i.e. to the struct variable representing the
son number j of i, if such a son i◦ j exists and the null pointer otherwise. In the implementation the
’first son’ component X.fson of X is dereferenced in order to let p point to (a struct representing)
the first son of X. In the while loop ’brother pointers’ are chased and j is decremented as long as
there is a brother and j > 0. If the loop ends with j = 0 the son i ◦ j exists and p points to the
struct variable X(i ◦ j) representing this son. Otherwise the null pointer is returned.

DTEp nson (DTEp p, uint j)

{ DTEp result

p = p*.fson;

while p*.bro != null && j != 0

{

p = p*.bro;

j = j-1

};

if j != 0 {result = null} else {result = p};

return result

}

As a second programming example uses a data type LEL for linked lists of unsigned integers
specified by

typedef LEL* LELp;

typedef struct {uint label; LELp next} LEL;

133

Figure 10.1: Representing a node in a derivation tree and its sons by structs of type DTE

134

Figure 10.2: Appending a list to a list element U . Pointer q always points to the end of the list.

We specify a function BW which has two parameters:

• a pointer p to a variable X(i) of type DTE representing a node i in the tree.

• a pointer q pointing to a variable U of type LEL

Function BW appends to list element U a linked list, whose .label components code the border
word bw(T, i) of the subtree with root i. Pointer q always points to the last list element appended
so far (see figure 10.2). The implementation quite literally follows the recursive definition of border
words for derivation trees from section ?? where we defined

• if i is a leaf of tree T , then its border word is its label:

bw(i, T) = T.`(i)

• the border word of a node i with k sons is obtained by concatenating the border words of its
sons

bw(i, T) = bw(i ◦ 0, T) ◦ . . . ◦ bw(i ◦ (k − 1), T)

Thus new list elements are appended whenever the function is called with a parameter p pointing
to a leaf X, i.e. when p ∗ .sons = null. If X is not a leaf, its sons are processed recursively from left
to right until one arrives at a last son Y , which has no brother. The return result is a pointer to the
last list element inserted so far.

LELp BW (DTEp p, LELp q)

{

if p*.sons == null

{

q*.next = new LEL;

q = q*.next;

q*.label = p*.label

}

else

{

p = p*.fson;

while p != null

{

q = BW(p,q);

p = p*.bro

}

}

return q

}

135

u : XS

X XS

X XS

XS

X

0 1 2

0

1 2

0

o

ose(u,2) :

se(u,1) :

se(u,n) :

Figure 10.3: Deriving a sequence of elements X at nodes se[u, i] from XS at node u

10.1.9 Sequence Elements and Flattened Sequences in the C0 Grammar

The C0 grammar has at many places productions for X-sequences of the form

〈XS〉 → X | X ◦ 〈XS〉

where ◦ is a comma or a colon separating the sequence elements X. Figure 10.3 shows a derivation
tree with a node u labeled XS and n nodes labeled X. For these nodes we introduce the notation
se(u, i) with ı ∈ [1 : n]. We obviously have An easy exercise shows for all i

se(u, i) = u2i−10

where 2i is a sequence of i twos. The flattened sequence u[1 : n] of the nodes u[i] is denoted by

fseq(u) = se(u, [1 : n])

If we want to advance a pointer p from X(se(u, i)) to X(se(u, i+ 1)) we simply follow the father
pointer and then select son number 2.

p=nson(p.*father,2)

10.2 Declarations

We split the presentation of the C0 semantics into two parts: static and dynamic semantics. In the
section on static semantics we only treat concepts which can be defined by looking at the program
without running it. In the section on dynamic semantics we continue the definition of semantics by
defining C0 configurations c and a transition function δC , which computes for C0 configuration c the
next configuration

c′ = δ(c)

As usual one then defines C0 computations as sequences (ci) of configurations satisfying

ci+1 = δ(ci)

10.2.1 Type Tables

Programs begin with type declaration sequences

typedef te1 n1; . . . ; typedef tes ns

136

where the ti ∈ L(Ty) are type expressions and the ni are the names of the declared types. We
collect the set of names of declared types into the set TN

TN = {ni : i ∈ [1 : s]}

Type expressions te ∈ L(Ty) can be of the form t′[w] or t′∗ where t′ is a type name or of the
form struct{t1 n1; . . . ; ts ns} where the ti are type names. We transform such expressions t into
a mathematically more convenient form. For declarations of struct types we delete the key word
struct. For array type declarations we replace decimals number w[k − 1 : 0] by the natural number

〈w〉Z =
k−1∑
i=0

wi · Zi

where Z is the number of toes of humans.

τ(te) =

{t1 n1; . . . ; ts ns} te = struct{t1 n1; . . . ; ts ns}
t′[〈w〉Z] te = t′[w]

te te = t′∗

The type table tt simply maps the names ni to the encoding τ(ti) of the defining type expressions.

tt(ni) = τ(ti)

It is extremely tempting to abbreviate tt(ni) = τ(ti) to ni = τ(tei) Thus the type declaration for
list elements and their pointers in an earlier example can be written as

LELp = LEL ∗
LEL = {uint label;LELp next}

We will give in to this temptation because it simplifies notation. However, the only equations we
will ever write are of the form

e = e′

where the left hand side is an expression evaluating to a type name t ∈ ET ∪TN and the right hand
side is a type table entry. The equations e = e′ of this form are simply abbreviations defined by

e = e′ ↔ tt(e) = e′

We will not do or attempt to justify any computations of the form

LEL = {uint label;LEL ∗ next}

or
LEL = {uint label; {uint label;LEL ∗ next} ∗ next}

We call a type t = t′∗ a pointer type; we call a type t simple if it is elementary or a pointer type.

pointer(t) ↔ ∃t′ : t = t′ ∗
simple(t) ↔ t ∈ ET ∨ pointer(t)

Otherwise, i.e. if it is an array or struct type, we call it composite.
An obvious context condition requires types to be uniquely defined

Context Condition 1.
i 6= j → ni 6= nj

137

W I/J

i>

\
\

l

;
(

^\j=» v

Ja
1

V" ri/ v

\

El

x
X

^?

c LnQ

Figure 10.4: Labels TyDS, V aDS and FuDS are at nodes 0, 1 and 2 of the derivation tree.

i

se(i, 0) : TyD

TE Na

0
1

te i
n

Figure 10.5: Name ni and type expression tei of the i’th declared type are the border words of nodes
0[i]1 and 0[i]1

A second context condition requires that declarations of composite types only uses elementary or
previously defined types.

Context Condition 2. If ti is an array type, we require t′ to be elementary or to be previously
defined

ti = t′[n]→ t′ ∈ ET ∨ ∃j < i : nj = t′

If ti is a struct type, we require the types of components to be previously defined

ti = {t1 n1, . . . , ts ns} → ∀k : (tk ∈ ET ∨ ∃j < i : tk = nj)

Pointer must point to elementary types or to types declared elsewhere but not necessarily previously

ni = t′∗ → t ∈ ET ∨ ∃j : t′ = nj

Indeed in all our examples we declared typeDTE afterDTEp and LEL after LELp. We explicitly
encourage readers to feel slightly worried about future consequences of this definition. This is not
an ordinary recursive definition where we define new types strictly from known types, and this will
indeed produce certain technical complications. Unfortunately, such a definition cannot be avoided,
because we wish to have struct types X, which have components X.n pointing to variables of type
X.

Implementation hints A programmer wishing to extract the names ni from the derivation tree
should observe that label TyDS is at node 0 of the tree (see figure 10.4). Sequence element j with
label TyD is at node 0[j]; the name ni can be found as the border word of son 1 of 0[i] (see figure
10.5) and the corresponding type expression tei as the border word of son 0 of 0[i]. Thus

nj = bw(0[j]1)

tej = bw(0[j]0)

Computing a list of these names is an easy exercise with the small portions of C0 programs given
so far. Inspection of the labels of sons 1 of node 1[j]0 allows to test, what kind of a type is defined:
a struct if `(1[j]01) = {, an array if `(1[j]01) = [and a pointer if `(1[j]01) = ∗. If one were to
program a data structure for the type table one would store the binary representation of 〈w〉Z; thus
one would have to write a conversion algorithm from decimal to binary numbers.

138

10.2.2 Global Variables

In programs the type declaration sequence is followed by a variable declaration sequence

t1 x1; . . . tr xr

for the global variables. We collect the names of the global variables in a set

V N = {x1, . . . , xr}

Except for the missing keyword struct and the brackets this looks very much like the declaration
of a struct type. Indeed it turns out that both in semantics and in compiler construction global
variables x are treated exactly like components gm.x of a struct variable gm for the global memory.
We therefore introduce for the type of this variable gm a new name $gm, extend the range of the
type table to include gm and define

tt($gm) = {t1 x1; . . . tr xr}

resp. shorter

$gm = {t1 x1; . . . tr xr}

10.2.3 Function Tables

The sequence of function declarations of a program has the form

t1 f1 d1; . . . ; ti fk dk

where for alli: ti is the type of the returned result, fi is the name of the declared function and di is
everything else. We collect the names of declared functions into a set

FN = {f1, . . . fk}

and create a function table ft mapping function names f ∈ FN to function descriptors ft(f) which
consist of several components ft(f).y. In order to specify these components and what is recorded
there we expand a function declaration to

t f(t1 x1, . . . , tp xp)tp+1 xp+1; . . . tr xr; body

We record in the function table ft(f) the following information

• the type of the result

ft(f).t = t

• the set of declared parameters and local variables

ft(f).V N = {x1, . . . , xr}

• the number of parameters

ft(f).p = p

• the body body of function f

ft(f).body = body

139

Figure 10.6: The body of a function with a non empty variable declaration sequence is generated by
son number 8

Implementation hints: Although quite intuitive, this is not yet a complete definition. It is easily
made precise. The function declaration sequence is generated by node 2 (figure x) of the entire
derivation tree. If f = fi then its declaration is generated by node se(2, i), and figure 10.6 shows
that the body is generated by son 8 of se(2, i) if the variable declaration sequence for the local
parameters is present. Otherwise it is generated by son 6. The parameter declaration sequence is
absent if the label of son 6 is body. Thus the root nbody(fi) of the derivation tree of the body of fi is

nbody(fi) =

{
se(2, i)8 `(se(2, i)6) 6= body

se(2, i)6 otherwise

and the body of f is the border word of this node

body(fi) = bw(nbody(fi)

Basically we are using the edge labels of the derivation tree as a table of contents of the program
text. When people read in a table of contents that the body of function fi is found in chapter 2,
section i, subsection 8 they tend to find nothing wrong with this. Readers who nevertheless find this
’too technical’ are strongly encouraged to look for a precise definition of the body of the i’th function
of a program in less than 3 short lines.

In the same spirit the name fi of the i′th declared function can be obtained from the derivation
tree as

fi = bw(2[i]1)

When programs start running, they start by executing the body of a parameterless function main.
In order for this to work function main has obviously to be defined.

Context Condition 3.

main ∈ FN fi = main→ `(se[2, i]6) = body

Also functions with names fi should not be defined twice.

Context Condition 4.
i 6= j → fi 6= f : j

During program execution, every call of function f will create a so called function frame for f
containing a new copy of the parameters and local variables of the function. We proceed as we did
in the case of global memory and treat all parameters and local variables xi of a function frame for
f as components of a single struct variable. Thus we record in the type table

$f = {t1 x1, . . . , tp xp, tp+1 xp+1, . . . , tr xr}
that we record in the type table.

140

10.2.4 Variables and Subvariables of C0 Configurations

Recall that - for the purpose of defining semantics - we treat global variables as components of the
global memory and we treat parameters and local variables of functions as components of function
frames. The only other C0 variables are created by the new statement; they belong to the so called
heap and have no name. Therefore the set V variables of all C0 programs contains at the top level
only three kinds of variables (see figure u).

• the global memory frame gm. Thus
gm ∈ V

• the heap variables. They have no name, so we simply number them with elements j ∈ N. Thus

N ⊂ V

• function frames for declared functions f ; they belong to the so called em stack. Because
functions can be called recursively, several function frames (f, i) can be present for the same
function f . Using indices i ∈ N and observing that f ∈ L(Na) is a name we get

L(Na)× N ⊂ V

Other variables will not occur. Thus we define the set of all possible C0 variables as

V = {gm} ∪ N ∪ L(Na)× N

Next, we define the set SV of all possible subvariables in all C0 programs. Variables of struct
or array type can have subvariables. Subvariables of structs are selected by selectors of the form .n
where n is a name Subvariables of arrays are selected by selectors of the form [n] with n ∈ N. We
define the set S of all selectors of all C0 programs as

S = {.n : n ∈ L(Na)} ∪ {[n] : n ∈ N}

Subvariables can be of struct or array type too. Thus selectors can be applied repeatedly (to variables
of appropriate type). The set of finite sequences of selectors is S+ and we get

V S+ ⊂ SV

Allowing empty selector sequences ε we consider each variable X as the subvariable

X = X ◦ ε

Thus we define
SV = V S∗

10.2.5 Range of Types and Default Values

For elementary or declared types t we define the range of t, i.e. the set of values that variables of
type t can assume. As the reader will expect, the definition is recursive. The obvious base case are
the elementary types

ra(t) =

B32 t = uint

T32 t = int

ASC t = char

B t = bool

141

Figure 10.7: Matrices are in C0 declared as arrays of rows ai,0, . . . , ai,m−1

It is quite common practice to define in textbooks ra(int) = Z and ra(uint) = N. This has
the advantage of being elegant but also a crucial disadvantage: for real programs running on real
computers it is simply wrong. Real computers are finite and can only represent finitely many numbers.
In an n bit processor unsigned integer arithmetic is usually modulo 2n and for n bit unsigned integers
we get

(2n − 1) + 1 = 0

which violates the Peano axiom, that 0 is not the successor of of any natural number.
For arrays and struct types t we define the set sel(t) of their selectors as

sel(t) =

{
[0 : n− 1] t = t′[n]

{n1, . . . , ns} t = {t1 n1; . . . ; ts ns}

A value of an array of type t′[n] is then defined as a mapping f assigning to selectors i ∈ sel(t)
values in the range of t′. Values of struct types are mappings from sel(t) to the union of the ra(ti)
with the restriction, that a component .ni must be mapped into the range of ti.

ra(t) =

{
{f |f : sel(t)→ ra(t′)} t = t′[n]

{f |f : sel(t)→ ∪ira(ti) ∧ ∀i : f(ni) ∈ ra(ti)} t = {t1 n1; . . . ; ts ns}
Example: we can declare the type of an n by m matrix of integers such that we get from the type

table

row = int[m]

matrix = row[n]

If g ∈ ra(matrix) is a value of type matrix, then for i ∈ [0 : n− 1]

g(i) = fi

is a value of type row. In order to represent row i of the matrix in figure 10.7, we set

fi(j) = ai,j

for j ∈ [0 : m− 1]. Then we get for all i and j

g(i)(j) = f(i)(j) = ai,j

which fortunately matches intuition. Pointers are the null pointer or they point to subvariables.
Thus we define the range of pointer types t as

ra(t) = SV ∪ {null} if pointer(t)

and can show

142

Lemma 71. Let TN = {t1, . . . , ts} be the set of declared types in the order of their declaration. Then
for all i the range ra(ti) is well defined.

Proof. For elementary types and for pointer types, the definitions are not recursive, thus there is
nothing to show. For array and struct types the lemma follows by induction on i. If ti = t′[n], then
we required t′ to be elementary, in which case ra(t′) is obviously well defined, or to be previously
defined, i.e. t′ = tj with j < n, in which case ra(tj) is well defined by induction hypothesis. Similarly,
if ti = {ru n1; . . . ; rv nv} then we required component type rw to elementary, in which case ra(rw)
is obviously well defined, or to be previously defined, i.e. rw = tk with k < i, in which case ra(rw) is
well defined by induction hypothesis.

For every simple type t we define in an obvious way a default value dft(t) ∈ ra(t). This default
value dft(t) is later used to initialize subvariables of type t that are created without an immediate
assignment of their value. This will happen to concern all variables except parameters of functions.

dft(t) =

0 t ∈ {int, uint}
NUL t = char

0 t = bool

null t = t′∗

The definition of default values is extended to composite types in an obvious way. The default value
of array type t′[n] maps every index i to the default value dft(t′) of the array elements.

t = t′[n] ∧ i ∈ [0 : n− 1]→ dft(t)(i) = deft(t′)

The default value of a struct type {t1 n1; . . . ; ts ns} maps every sector ni to the default value
dft(ti) of the corresponding component type.

t = {t1 n1; . . . ; ts ns} ∧ i ∈ [1 : s]→ dft(t)(ni) = deft(ti)

10.3 C0 Configurations

All previous definitions are implicitly part of the definitions made in this section, but as they don’t
change in the course of computations, we don’t list them explicitly in the mathematical formalism.
As announced previously we will keep introducing context conditions at the places, where they help
in an obvious way to make certain mechanisms work, although they can be checked statically.

10.3.1 Variables, Subvariables and their Type in C0 Configurations c

In order to provide intuition for the following formal definitions we sketch the use of the stack and
of the concept of recursion depth in the future definitions: computations start with recursion depth
0 and a single function frame (main, 0) on the stack. If a function f is called in a computation of
recursion depth rd , then frame (f, rd+ 1) is put on the stack and rd+ 1 is made the new recursion
depth. Conversely, if a return statement is executed in a computation of recursion depth rd, then
the top frame (with second component rd) is removed from the stack and the recursion depth is
decreased by 1. A frame (f, i) on the stack is called a frame at recursion depth i. C0 configurations
have among others the following components (see figure 10.8)

• the recursion depth
c.rd ∈ N

It counts the number of functions that have been called and that have not returned yet.

143

Figure 10.8: Top level variables in the C0 semantics: the global memory frame gm, the heap variables
numbered 0, 1, . . ., and the function frames (st(i), i) of the stack. The bottom frame of the stack
belongs to function main.

• a stack function
c.st : [0 : c.rd]→ FN

specifying for each recursion depth i ∈ [0 : c.rd] the name of the function c.st(i) ∈ FN such
that stack frame

ST (c, i) = (c.st(i), i)

is the frame with recursion depth i on the stack. We will see later that we always have
c.st(0) = main, i.e. the bottom frame of the stack is always (main, 0) The top frame, i.e. the
frame with maximal recursion depth on the stack is denoted by

top(c) = ST (c, c.rd)

and the function c.st(c.rd) belonging to the maximal recursion depth on the stack is called the
current function cf(c) of configuration c

cf(c) = c.st(c.rd)

• a result destination function
rds : [1 : c.rd]→ SV

specifying for every recursion depth i ≥ 1 the subvariable c.rds(i), where the result of function
c.st(i) is returned.

• the number
c.nh ∈ N

of variables on the heap. Recall that we refer to variables on the heap simply by numbers.
Thus the set of heap variables in configuration c is [0 : c.nh− 1]

• a function
c.ht : [0 : c.nh− 1]→ ET ∪ TN

assigning to each heap variable j its type c.ht(i), which is either elementary or declared.

With these definitions we can define the set V (c) of (top level) variables of a configuration c as
the global memory frame, the stack frames and the heap variables in c:

V (c) = {gm} ∪ [0 : c.nh− 1] ∪ {ST (c, i) : i ∈ [0 : c.rd]}

144

The variable type of vtype(x, c) of variable x in configuration c is defined in the obvious way. The
type of the global memory frame gm is $gm as defined in the type table. Similarly, the type of a
function frame (f, i) is $f as defined in the type table. The type of a heap variable j is defined by
the heap type function as c.ht(j)

vtype(x, c) =

$gm x = gm

$f x = (c.st(i), i) ∧ c.st(i) = f

c.ht(x) x ∈ [0 : c.nh− 1]

We define the set of subvariables SV (c) of configuration c and the variable type vtype(x, c) of
such subvariables x ∈ SV (c) by the obvious recursive definitions.

• variables x of configuration c are subvariables of configution c and their variable type vtype(x, c)
is already defined

V (c) ⊂ SV (c)

• if x ∈ SV (c) is a subvariable of array type, then elements x[i] are subvariables with the
corresponding element type

vtype(x, c) = t′[n]→ ∀i ∈ [0 : n− 1] : x[i] ∈ SV (c) ∧ vtype(x[i], c) = t′

• if x ∈ SV (c) is a subvariable of struct type, then components x.ni are subvariables with the
corresponding element type

vtype(x, c) = {t1 n1; . . . ts ns} → ∀i ∈ [1 : s] : x.ni ∈ SV (c) ∧ vtype(x.ni, c) = ti

A subvariable x ∈ SV (c) is called simple if its variable type is simple; it is called a pointer if its
variable type is a pointer type.

simple(x, c) ≡ simple(vtype(x, c))

pointer(x, c) ≡ pointer(vtype(x, c))

Subvariables x ∈ SV (c) have the form x = ys where x ∈ V (c) is a variable and s ∈ S∗ is
a selectors sequence. Subvariables ys can belong to the global memory, the heap or the stack iff
the corresponding variable y belongs to the global memory, heap or stuck. Thus we define for
x ∈ SV (c)predicates

ingm(x, c) ≡ ∃s ∈ S∗ : x = gm.s

onheap(x, c) ≡ ∃i ∈ N, s ∈ S∗ : x = is

onstack(x, c) ≡ ∃i ∈ N, s ∈ S∗ : x = (c.st(i), i)s

10.3.2 Value of Variables, Type Correctness and Invariants

Variables and subvariables have types
t ∈ ET ∪ TN

Subvariables of type t should assume values in ra(t). Thus the set

V A =
⋃

t∈ET∪TN
ra(t)

should include all possible values that variables and subvariables can assume.
The value of variables x ∈ V (c) is specified by a new ’memory content’ component of the config-

uration

145

•
c.m : V (c)→ V A

mapping simply variables x of type t to a value c.m(x)

.
We call a configuration c type correct for variables and write tc − V (c) if for variables x of the

configuration their value c.m(x) lies in the range of vtype(x, c)

tc− V (c) ≡
x ∈ V (c) ∧ vtype(x, c) = t→ c.m(x) ∈ ra(t))

Function c.m is extended to subvariables x by the obvious definitions

x ∈ SV (c) ∧ vtype(x, c) = t→ c.m(x) ∈ ra(t) (10.1)

holds. If x ∈ SV (c) is a subvariable of array type t = t′[n]. Then its value c.m(x, c) ∈ ra(t) is a
mapping

c.m(x) : [0 : n− 1]→ ra(t′)

For the subvariables x[i] we define
c.m(x[i]) = c.m(x)(i)

Similarly, if x ∈ SV (c) is a subvariable of struct type t = {t1 n1; . . . ; ts ns}. Then its value
c.m(x) ∈ ra(t) is a mapping

c.m(x) : {n1, . . . , ns} → ∪ira(ti)

For the subvariables x.ni we define

c.m(x.ni) = c.m(x)(ni)

Type correctness can now be extended to subvariables. We define

tc− SV (c) ≡ x ∈ V (c) ∧ vtype(x, c) = t→ c.m(x) ∈ ra(t))

tc− V (c) ≡
(∀x ∈ V (c) : vtype(x, c) = t→ c.m(x) ∈ ra(t))

and get by a trivial induction that type correctness - if it holds - is extended to subvariables by the
above definition.

Lemma 72.
tc− V (c)→ tc− SV (c)

Conversely, we can also conclude type correctness of all subvariables from the type correctness of
all simple subvariables. We define

tc− s(c) ≡
x ∈ SV (t)vtype(x, i) ∈ ET → c.m(x) ∈ ra(t)))

and conclude

Lemma 73.
tc− s(c)↔ tc− SV (c)

146

Proof. As type correctness for simple subvariables is a special case of type correctness, the direction
from left to right is trivial. The proof in the other direction is intuitively a straight forward induction,
but a little bit of technical work has to be invested for defining the induction scheme used. For this
purpose the define the height h(t) of a type in the following way: the height of simple types is 1

simple(t)→ h(t) = 1

The height of an array type is the height of the element type + 1:

t = t′[n]→ h(t) = h(t′) + 1

The height of a struct type is the maximum of its component types +1

t = {t1 n1; . . . ; ts ns} → h(t) = 1 + maxh(ti)

Now the obvious induction i shows that type correctness holds for subvariables x with h(vtype(x, c)) =
i.

For variables of pointer type t we were forced to define the range ra(t) = V ∪ {null} in a rather
broad way in order to make the definition of ra(t) well defined. We now are able to formulate the
requirement, that pointers of type t′∗ which are not null should point to subvariables of type t′. More
precisely: subvariables x of variable type t′∗ should point to (have as value) a subvariable in SV (c)
of variable type t′. We call configurations satisfying this requirement type correct for pointers

tc− p(c) ≡
x ∈ SV (c) ∧ vtype(x, c) = t′ ∗ ∧c.m(x) 6= null→
c.m(x) ∈ SV (c) ∧ vtype(c.m(x), c) = t′)

A pointer variable x with a value c.m(x) /∈ SV (c), i.e. outside the subvariables of configuration c
is called a dangling pointer and violates type correctness for pointers. In order to show the absence of
dangling pointers we will later define (quite restrictive) context conditions which permit us to show
that pointers only point to the global memory or the heap. We define the corresponding predicate

p− targets(c) ≡ x ∈ SV (c) ∧ pointer(x, c) ∧ va(x, c) 6= null→
(ingm(c.m(x), c) ∨ onheap(c.m(x), c))

We define a configuration c to be type correct if it is type correct for subvariables and in the
strengthened sense for pointers

tc(c) ≡ tc− s(c) ∧ tc− p(c)
We will define the transition function δC add context conditions such that in the end we will be

able to show that all C0 computations are type correct

Lemma 74. Let (ci) be a c0 computation. Then

∀i : tc(ci)

The proof will obviously proceed by induction on i showing i) that the initial configuration c0 is
type correct and ii) - once transition function δC for C0 is defined - that ci+1 is type correct, if ci is
type correct. Properties which hold for all configurations c of a computation are called invariants,
and lemma 74 can be reformulated as

Invariant 1. tc(c)

We will also show

Invariant 2.
p− targets(c)

Obviously, invariants are simply parts of induction hypotheses about computations (ci) where the
index i has been dropped.

147

Figure 10.9: Statement s of expression e in the body of function f

10.3.3 Expressions and statements in function bodies

We wish do define when an expression e or a statement s occurs in the body of a function f .
Overloading the ∈-sign we will denote this by

e ∈ f resp. s ∈ f

Intuitively we consider the subtree T ′ of the derivation tree whose border word is the body of f , and
we say that e or s occurs in f if there is a subtree T” , if e or s is the border word of a subtree T”
of T ′. This is illustrated in figure 10.9. For the definition of semantics this is precise enough. But
later, when we argue about compiler correctness, we need to be able to distinguish between possibly
multiple occurrences of the same statement or expression (see e.g. figure 10.10). In the full model of
derivation trees this is easily done via the roots of the aforementioned subtrees T ′ We call a node
i ∈ T.A of the derivation tree a statement node if it is labeled with St or rSt, and we collect the
statement nodes of the tree into the set

stn = {i ∈ T.A : `(i) ∈ {St, rSt}}

Similarly we define the set en of expression nodes as

en = {i ∈ T.A : `(i) ∈ {CC,BC, id, F, T, E,Atom,BF,BT,BE}}

We show that every occurrence of an expression is part of an occurrence of a statement, and that
every occurrence of a statement is part of a function body, which has been declared in the function
declaration sequence. Formally

Lemma 75. • Every expression node i has an ancestor (prefix) j which is a statement node

i ∈ en→ ∃j ∈ stn : prefix(j, i)

• Every statement node j has a predecessor k which is labeled with FuD

j ∈ stn→ ∃k : prefix(k, j) ∧ `(k) = FuD

148

Figure 10.10: Multiple occurrences of the same expression in a function body

rj

;
7

jf

r\

hg

(1

1

\

j

A(.

"1-

M

y-~i

i1
t

i

((
D
D/

? 9
,
1

•it

i ,
i"
(

îi• ^
/^

-sj

Sj

. i

'i

^
i
;
)

^̂

(

|
\

/'

^-

7

^,j

i

/

^

u

^^i
./

»

l

(

1 o

4\

/

1
4 /
''C

S
ä
0

^/

Figure 10.11: Sequences of labels on paths in the derivation tree. Every expression or statement node
i has a unique ancestor Fud(i) labeled FuD, which produces the corresponding function declaration.

• ancestors r of nodes k labeled FuD are not labeled FuD

`(k) = body ∧ prefix(r, k)→ `(r) 6= body

Proof. Inspection of the grammar shows that fathers of expression nodes are either expression nodes
or statement node (see figure 10.11). This shows the first statement. Fathers of statement nodes are
labeled StS or body; fathers of nodes labeled StS are labeled StS or body. Fathers of nodes labeled
body are labeled FuD. This shows the second statement. Fathers of nodes labeled FuD are labeled
FuDS. Fathers of nodes labeled FuDS are labeled FuDS or prog and a node labeled prog has to
father. This shows the third statement.

Let i be an expression or statement node as shown in figure 10.12. By lemma 75 we can define
the unique ancestor FUD(i) of j which is labeled FuD as

FuD(i) = ε{r : prefix(r, i) ∧ `(r) = FuD}

The name fu(i) of the function, to which node i belongs is the border word of son 1 of FuD(i).

fu(i) = bw((FuD(i)1))

149

Figure 10.12: Every statement or expression node i belongs to a function body of some declared
function fu(i).

For expressions e we define formally, that e occurs in f , if it is the border word of an expression
node i with fu(i) = f

e ∈ f ≡ ∃i ∈ en.e = bw(i) ∧ fu(i) = f

Similarly, we define for statements s:

e ∈ f ≡ ∃i ∈ stn.e = bw(i) ∧ fu(i) = f

Different occurrences of the same expressionor statement are border words of subtrees with different
roots i.

10.3.4 Program Rest

As the next component of C0 configurations c we introduce the program rest or continuation c.pr of
configuration c. Program rests are sequences of statements separated by colons, i.e. they have the
form

•
c.pr = c.pr[1 : n] = c.pr[1]; . . . ; c.pr[n]) where ∀i.c.pri ∈ L(St) ∪ L(rSt)

The length n of the program rest is denoted by |c.pr|. The last element of the program rest is
denoted by

last(c.pr) = c.pr[|c.pr|]

Intuitively speaking this is the sequence of statements and return statements (separated by colons)
that is yet to be executed. The statement to be executed in configuration c is the first statement
hd(c.pr) of the program rest. Recall that called the top function name c.st(c.rd) on the stack the
current function cf(c) of configuartion c:

ct(f) = c.st(c.rd)

Stack c.st and program rest c.pr are coupled by the crucial

Lemma 76. The statement hd(c.pr) executed in configuration c belongs to the current function cf(c)
of configuration c

hd(c.pr) ∈ cf(c)

Once the definition of the semantics is complete we can show this lemma by induction on the steps
i of the computation (ci). In order to be able to perform the induction step we have to strengthen
the induction hypothesis considerably. We first have to show that number of return statements in
the program rest equals c.rd+ 1; intuitively speaking every function frame of the stack belongs to a
function whose execution has started and which has not returned yet. Moreover the last statement
in a program rest is always a return statement

150

Figure 10.13: Decomposing the indices of the program rest into intervals Irt(j). A statement node
pr(k) with k ∈ Irt(j) belongs to function st(j). Argument c is omitted in this figure.

Invariant 3.

{i : c.pr[i] ∈ L(rSt)} = c.rd+ 1

and

last(c.pr) ∈ L(rSt)

We now locate from right to left the indices irt(j, c) such that node c.pr(irt(j)) is labeled with
rSt (see figure 10.13):

irt(0, c) = |c.pr|}
irt(j + 1, c) = max{j : j < irt(j, c) ∧ (c.pr(j)) ∈ L(rSt)}

and divide the indices of program rest elements into intervals Irt(j, t) by

Irt(j, c) =

{
[irt(j + 1, c) + 1 : irt(j, c)] j < c.rd

[1 : irt(j, c)] j = c.rd

i.e. interval Irt(j, t) extends to the left of return statement j until the next return statement if there
is such a statement and otherwise to the head of the program rest. Now we simply formulate an
invariant stating that statements c.pr[k] with index k in interval Irt(, c) belong to the function of
stack frame c.st(j)

j ∈ [0 : c.rd] ∧ k ∈ Irt(j, c)→ c.pr[k] ∈ c.st(j)

We collect the above conditions into an invariant about the program rest

Invariant 4. We say that inv − pr(c) holds if the following conditions are fulfilled

1.

{i : c.pr[i] ∈ L(rSt)} = c.rd+ 1

2.

last(c.pr) ∈ L(rSt)

3.

j ∈ [0 : c.rd] ∧ k ∈ Irt(j, c)→ c.pr[k] ∈ c.st(j)

Proving that statement execution maintains this invariant will be very easy once the definition
of the semantics is completed.

151

10.3.5 Result destination Stack

As a last component of C0-configurations c we introduce a stack for storing the destination of results
to be returned by function calls.

• the return destination stack
c.rds : [1 : rd]→ SV (c)

stores for all recursion depths i ∈ [1 : c.rd] the subvariable, where the result of function c.st(i)
will be returned.

Clearly, we want the type of the subvariable c.rds(i), where function f = c.st(i) returns its result,
to be the type of this result. It is recorded in the function table at ft(f).t:

vtype(c.rds(i), c) = ft(c.st(i)).t

Also it is highly desirable, that the result of the function c.st(i) at recursion depth i is returned
to a subvariable, that still exists, after the function has returned. Indeed we will show that entries
x = c.rds(i) on the return destination stack are either i) on the heap, or ii) in the gloabal memory or
iii) in a subvariable (specified by a selector sequence s ∈ S∗) of function frame ST (j, c) below frame
ST (i, c).

c.rds(i) = x→ onheap(x, c) ∨ ingm(x, c) ∨ existss ∈ S∗, j < i : x = ST (j, c)s

We collect these two conditions into an invariant for the return destination stack.

Invariant 5. We say, that inv − rds(c) holds, if for all i ∈ [1 : c.rd] the following conditions are
fulfilled

1.
vtype(c.rds(i), c) = ft(c.st(i)).t

2.
c.rds(i) = x→ onheap(x, c) ∨ ingm(x, c) ∨ existss ∈ S∗, j < i : x = ST (j, c)s

We collect all invariants concerning the well formedness of c0-configurations into a single invariant

Invariant 6.

inv − conf(c) ≡ tc(c) ∧ ptargets(c) ∧ inv − pr(c) ∧ inv − rds(c)

In what follows we aim at a definition of the successor configuration c′ = δC(c) of c that permits
to show

inv − conf(c)→ inv − conf(c′)

10.4 Initial Configuration

Initial configuration configurations c0 are defined in the following way: the recursion depth is zero.

c0.rd = 0

The only stack frame present is a frame for function main.

c0.st(0) = main

152

Figure 10.14: Initial configurations c0 have only two top level variables: the global memory frame
gm and the function frame ST (0, c) = (main, 0). The heap is initially empty.

The heap is empty:
c0.nh = 0

and thus there are no arguments for function c0.ht and we have

V (c0) = {gm, (main, 0)}

as shown in figure 10.14. Simple subvariables are initialized with their default values. Pointers are
null.

x ∈ SV (c0) ∧ simple(vtype(x, c))→ c.m(x) = dft(vtype(x, c))

Hence configuration c0 is type safe for simple subvariables and invariants tc(c0) and ptargets(c)
hold initially. The program rest of c0 is the body of function main

c0.pr = ft(main).body

This sequence has a single return statement at the last node, thus the number of returns equals the
number of stack frames. Also, all nodes c0.pr[k] of the program rest belong to function main:

(∀k.c0.pr[]) ∈= main) ∧main = c0.st(0)

Thus invariant inv−pr(c) holds initially. Finally, invariant inv−rds(c) holds trivially, because stack
indices i ≥ 1 are not present. WE summarize

Lemma 77.
inv − conf(c0)

10.5 Expression Evaluation

In this chapter we define how to evaluate statements e in configurations c which satisfy invariant
inv − conf(c); among other things this will involve determining the type etype(e, c) of expressions e
in configurations c. Expression evaluation is part of the semantics of statement execution, and we
will later define the first statement hd(c.pr) of the program rest as the statement to be executed
in configuration c. By invariant inv − pr(c) this statement belongs to the function cf(c) currently
executed in function c:

hd(c.pr) ∈ cf(c)

Thus at first glance it suffices to define expression evaluation for expressions e ∈ cf(c), and if all
we want to do is define the semantics of programs, this is indeed good enough. Also evaluation of e
will certainly hinge on the derivation tree of e, particularly in order to handle priorities of operators;
and this tree is already a subtree of the entire derivation tree T of the program as long as e ∈ f for
any function f ∈ FN . However defining semantics without doing something with it is like building
a car and not driving it. With our semantics we want to do two things:

153

• show that the compiler we construct is correct. Indeed we will use the C0 semantics as a
guideline for the construction of the compiler.

• prove that programs written in C0 do what they are supposed to do.

For both applications of the semantics it turns out that we better define expression evaluation in a
slightly more general way.

• the code generated by a compiler for an expression depends on the type of the expression. But
at compile time we do not know the configurations c in which e will be evaluated. All we know
is the function f to which e belongs. Thus we should better be able to define the type of an
expression e in function f as a function etype(e, f).

• when we want to argue about the correctness of programs, it is often convenient to consider
expressions e, which are formed with the variable names x and identifiers of the program but
which are not part of the program. Fortunately we can refer to the unique derivation trees T ′

of arbitrary expressions even if they are not subtrees of the derivation tree T of the program.

Let e be an expression with derivation tree T ′, and let e′ be an expression. For later use we define
that e′ is a subexpression of e and write e′ ∈ e, if in the derivation tree T ′ of e there is a node i
labeled NA such that e′ is the border word of i in T ′.

e′ ∈ e ≡ ∃i ∈ T ′.N : T ′.`(i) = NA ∧ bw(i, T ′) = e

The following small example illustrates that this definition of subexpressions respects the priorities
of operators . We have

1 ∈ 1 + 2 ∗ 3 {mbox}2 ∗ 3 ∈ 1 + 2 ∗ 3

but
1 + 2 /∈ 1 + 2 ∗ 3

because the derivation tree of 1 + 2 ∗ 3 does not contain a derivation tree for 1 + 2 as a subtree.

10.5.1 Type, Right Value and Left Value of Expressions

The following definitions are quite obvious: however we will need a somewhat strong context condition
to guarantee the absence of dangling pointers. For expressions functions f ∈ FN , e ∈ f and and C0
configuration c satisfying invariants inv − conf(c) we will simultaneously define three values:

• the expression type etype(e, f) of the expression e evaluated in function f .

• the right value va(e, c) of bw(i) in configuration c. This is a value in the intuitive sense

• the left value lv(e, c) in case e is an identifier, i.e. e ∈ L(id). In this case lv(e, c) ∈ SV (c) is
the subvariable specified by e in configuration c.

The names ’left value’ and ’right value’ are motivated by the semantics of assignment statements
x = e (where x ∈ L(id) and e ∈ L(E) ∪ L(BE) ∪ L(CC)) which will be defined in section 10.6. The
’ordinary’ value of the right hand side is assigned to the subvariable specified by the left hand side.

Left values lv(e, c) and right values va(e, c) of expressions e ∈ f will only be defined for configu-
rations c, where statements from f are executed, i.e. where

cf(c) = f

in which case the top frame has the format

top(c) = (f, c.rd)

Whenever the left value lv(e, c) ∈ SV (c) of an expression e is defined, its right value is always
determined by the current memory content of subvariable lv(e, c).

154

•
va(i, c) = c.m(lv(i, c))

As we proceed with the definitions we show (by induction on the derivation tree of e) that the
following invariant inv− expr(e, c) concerning the type correctness and pointer targets of expression
hold for all expressions e und consideration

Invariant 7. We say that invariant inv − expr(e, c) holds, if the following conditions are fulfilled:

1. Left values lv(e, c) - if they exist - are subvariables of the current configuration

lv(e, c) ∈ SV (c)

2. The variable type of the left value of an expression is the expression type of the expression

vtype(lv(e, c)) = etype(e, f)

3. The value of an expression is in the range of its expression type

va(e, c) ∈ ra(etype(e, f))

4. expressions with a pointer type t′∗ and a non null value point to a subvariable of c which has
type t′

etype(e, f) = t′ ∗ ∧va(e, c) 6= null→ va(e, c) ∈ SV (c) ∧ vtype(va(e, c)) = t′

5. non null pointers in expression evaluation point to the global memory or the heap

etype(e, f) = t′ ∗ ∧va(e, c) 6= null→ ingm(va(e, c), c) ∨ onheap(va(e, c), c)

If an expression e has a left value lv(e, c), then one only has to check parts 1 and 2 of inv−expr(c).
Parts 3 to 5 follow:

Lemma 78. Assume inv−cons(c), let e have a left value lv(e, c) ∈ SV (c), and assume vtype(lv(e, c)) =
etype(e, f). Then

1.
va(e, c) ∈ ra(etype(e, f))

2.
etype(e, f) = t′ ∗ ∧va(e, c) 6= null→ va(e, c) ∈ SV (c) ∧ vtype(va(e, c)) = t′

3.
etype(e, f) = t′ ∗ ∧va(e, c) 6= null→ ingm(va(e, c), c) ∨ onheap(va(e, c), c)

Proof. Let x = lv(e, c)

1. By definition of va(c, e) and invariant tc(c) we have

va(e.c) = c.m(x) ∈ ra(vtype(x)

By hypothesis we have
vtype(x) = etype(e, f)

Hence
va(e, c) ∈ ra(etype(e, f)

155

2. Let etype(e, f) = t′∗ and assume va(e, c) 6= null. We conclude

t′∗ = etype(e, f)

= vtype(x) (hypothesis)

va(e, c) = c.m(x) (definition of va(e, c))

∈ SV (c) (invariant tc− p(c))
vtype(va(i, c)) = vtype(c.m(x))

= t′ (invariant tc− p(c))

3. Let etype(i) = t∗ and va(e, c) = c.m(x) 6= null. Invariant p− targets(c) gives

ingm(c.m(x), c) ∨ onheap(c.m(x), c)

resp.

ingm(va(e, c), c) ∨ onheap(va(e, c), c)

10.5.2 Constants

Evaluation of constants e is independent of the current configuration c and function f . Left values
of constants are not defined. There are four kinds of constants e.

• boolean constants ∈ true, false. We define

etype(true, f) = etpe(false, f) = bool

and

va(false, c) = 0

va(false, c) = 1

• Character constants ′a′ where a is a digit or a letter. We denote by ascii(a) ∈ B8 the ASCII
code of a and define

etype(′a′, f) = char and va(′a′, c) = ascii(a)

• integer constants e =∈ [0 : 9]+. We set

etype(e, z) = int

We identify e with a number e ∈ N and take its value tmod232

va(e, c) = (etmod232)

This leaves e unchanged only if we have

〈e〉Z ∈ [−231 : 231 − 1]

156

• unsigned integer constants e =∈ [0 : 9]+ ◦ {u}. We set

etype(e, z) = uint

We identify e with a number e ∈ and take its value mod232

va(e, c) = (e mod 232)

This leaves e unchanged only if we have

e ∈ [0 : 232 − 1]

Invariant 7.3 obviously holds for e. Parts 1 of the invariant concerns left values and does not
apply. Parts 4 and 5 of the invariant concern pointers and don’t apply either.

10.5.3 Variable Binding

We want to evaluate variable names X in functions f resp. configurations c. Variable names X ∈ f
occurring in the body of function f have to be declared either as global variables ∈ V N or as
parameters or local variables ∈ ft(f).V N

Context Condition 5.
X ∈ f → X ∈ ft(f).V N ∪ V N

For variable names X ∈ e occurring in expressions e 6 inf , that we want to evaluate for function
f even if they do not occur in the body of f , the same context condition applies. Let

$f = {t1 n1, . . . , ts ns}
$gm = {t′1 n′1, . . . , t

′
r n′r}

We take the expression type etype(X, f) of X from the type table for $f if X is a parameter or local
variable of function f . Otherwise we take it from the type table of $gm

etype(X, f) =

{
∈ {ti : ni = X} X ∈ ft(f).V N

∈ {t′i : n′i = X} XinV N \ ft(f).V N

We bind variable name X ∈ f to a subvariable lv(i, c) ∈ SV (c) of configurations c satisfying
top(c) = (f, c.rd). Thus we know

(f, c.rd) ∈ SV (c)

This permits us bind variable name X to a local (sub)variable top(c).X of fu(i), if X is the name
of a local variable of function fu(i). Otherwise we bind X to global (sub)variable gm.X. THis is
illustrated in figure 10.15.

lv(X, c) =

{
top(c).X X ∈ ft(f).V N

gm.X otherwise
(10.2)

Equation 10.2 is called the visibility rule of C0 (and of C) because it defines how variables are
’visible’ from a function body: the local (sub) variable or parameter top(c).X obscures, if it exists,
the global variable gm.X.

We have lv(X, c) ∈ SV (c), thus invariant 7.1 holds for X. If X ∈ ft(f).V N let X = ni; for the
variable type of lv(X, c) we get

vtype(lv(X, c)c) = vtype(top(c).X, c)

= vtype((f, c.rd).ni, c)

= ti

= etype(X, f)

157

Figure 10.15: Variable name X is bound by the lv function to a local variable or parameter top(c).X
in the top frame, if a local variable or parameter with that name exists. Otherwise it is bound to
component gm.X with this name in global memory

Otherwise let X = n′i. We get

vtype(lv(X, c)c) = vtype(gm.X, c)

= vtype(gm.n′i, c)

= t′i
= etype(X, f)

Thus invariant 7.2 holds for X. Parts 3 to 5 follow from lemma 78

10.5.4 Pointer Dereferencing

Let e = e′∗ where subexpression e′ ∈ e has an expression type etype(e′, f). We require that this is a
pointer type and we do not dereference null pointers

Context Condition 6.

etype(e′, f) = t′ ∗
va(e′, c) 6= null

Note that the second condition cannot be tested statically. We set

lv(e, c) = va(e′, c)

etype(e) = t′

158

Using invariant 7.4 for e′ we get

vtype(lv(e, c)) = vtype(va(e′, c))

= t′

= etype(e, c)

This is invariant 7.2 for e. Because va(i0, c) 6= null we get from invariant 7.4 for e′

lv(e, c) = va(e′, c) ∈ SV (c)

This is invariant 7.1 for e. Parts 3 to 5 of the invariant follow from lemma 78

10.5.5 Struct Components

Let e = e′.n where subexpression e′ ∈ e has an expression type etype(e′, f). We require that this is
a struct type and that n is one of the declared selectors for this type

Context Condition 7.

etype(i0) = {t1 n1; . . . ; ts ns} ∧
∃j : n = nj

We define

etype(e, f) = tj

lv(e, c) = (lv(e′, c)).n

From invariant 7.1 for e′ we know lv(e′, c) ∈ SV (c), hence

lv(e, c) = lv(e′, c).n ∈ SV (c)

i.e. we have invariant 7.1 for e.
Using invariant 7.2 for e′ we get

vtype(lv(e, c)) = vtype(lv(e′, c).n))

= tj

= etype(e, f)

This is invariant 7.2 for e. Parts 3 to 5 of the invariant follow from lemma 78

10.5.6 Array Elements

Let e = e′[e”] where subexpressions e′, e” ∈ e have expression types etype(e′, f) resp etype(e”, f) We
require that etype(e′, f) is an array type and that the expression type etype(e”, f) of son e” is int or
uint.

Context Condition 8.

etype(i0) = t′[n] ∧
etype(i2) ∈ {int, uint}

Moreover we require that the current value va(e”, c) specifies an index within the array bounds
[0 : n− 1]

159

Context Condition 9.

〈va(i2, c)〉 ∈ [0 : n− 1] if etype(i2) = uint

[va(i2, c)] ∈ [0 : n− 1] if etype(i2) = int

Note that there is no general method to check the latter condition at compile time. We define

etype(e, f) = t′

lv(e, c) = lv(e′, c)[va(e”, c)]

From invariant 7.1 for e′ we know lv(e′, c) ∈ SV (c), hence

lv(e, c) = lv(e′, c).[va(i2, c)] ∈ SV (c)

i.e. we have invariant 7.1 for e.
Using invariant 7.2 for e′ we get

vtype(lv(e, c), c) = vtype(lv(e′, c)[va(e”, c)])

= t′

= etype(e, f)

This is invariant 7.2 for e. Parts 3 to 5 of the invariant follow from lemma 78.

10.5.7 ’Address of’

This is slightly more involved. Let e = e′& be an expression where subexpression e′ ∈ L(id). By the
previous subsections identifiers e′ have left values in lv(e′, c) ∈ SV (c). Thus e′ has the form

e′ = Xs[1 : n]

with a variable name
X ∈ V N ∪ ft(f).V N

For the components s[i] holds

s[i] ∈ {.n|n ∈ L(Na)} ∪ {[a] : a ∈ L(E)} ∪ {}

The intention of the following context condition is to forbid, that subvariable lv(e′, c) whose
address is about to be taken, lies on the stack, because stack frames can disappear from the set of
variables on a function return, and this could leave dangling pointers.

Context Condition 10. We forbid the following situation, which can be checked statically:

•
X ∈ ft(f).V N

i.e. X is the name of a parameter or global variable and hence

lv(X, c) = top(c).X

lies on the stack

•
∀i ∈ [1 : n] : s[i] ∈ {.n|n ∈ L(Na)} ∪ {[a] : a ∈ L(E)}

i.e. by the sequence s[1 : n] only struct components .n and array elements [v] are computed.
Hence lv(e′, c) is a subvariable of top(c).X and lies on the stack too.

160

We define only

etype(e, f) = etype(e′, f) ∗
va(e, c) = lv(e′, c)

The left value lv(i, c) is not defined. Thus invariants 7.1 and 7.2 do not apply for e.
By invariant 7.1 for e′ we have

va(e, c) = lv(e′, c) ∈ SV (c)

Since
SV (c) ⊂ ra(t∗) for any pointer type t∗

we have invariant 7.3 for e.
By invariant 7.2 for e′ we have

vtype(va(e, c)) = vtype(lv(e′, c)) = etype(e′, c)

Thus we have invariant 7.4 for e.
It remains to show invariant 7.5. Reconsider the form of e′ = Xs[1 : n]. There are three cases:

• X is the name of a local variable and only struct components and array elements are selected.
This is the forbidden situation, so we have to prove nothing.

• X ∈ V N \ ft(f).V N is the name of a global variable and only struct components and array
elements are selected. We conclude

ingm(lv(e′, c), c)

and hence
ingm(va(e, c), c)

• there is at least one index j such that s[i] = ∗, i.e. e” = Xs[1 : j − 1] is a pointer that is
dereferenced by s[j]. Formally

∃t′ : etype(e”, f) = t′∗
Consider the last (i.e. largest) such index j. By invariant 7.5 for e” we conclude

ingm(va(e”, c), c) ∨ onheap(va(e”, c), c)

By the rules for pointer evaluation we get

va(Xs[1 : j] = va(e”∗, c) = lv(e”∗, c) = lv(Xs[1 : j]

Hence
ingm(lv(Xs[1 : j], c), c) ∨ onheap(lv(Xs[1 : j], c), c)

Because sequence s[j + 1 : n] contains not further components s[i] = ∗ we know, that lv(e′, c)
is a subvariable of lv(e”, C). We conclude

ingm(lv(e′, c), c) ∨ onstack(lv(e′, c), c)

and hence
ingm(va(e, c)c) ∨ onstack(lv(e, c), c)

i.e. we have invariant 7.5 for e

161

10.5.8 Unary Operators

From now on, neither new left values nor new pointers are introduced. Thus only invariant 7.3. is
relevant. The trivial proof that it holds is in all remaining cases omitted.

Let e = ◦e′ with subexpression e′ ∈ e and unary operator ◦.
There are two subcases

• unary minus: ◦ = −1. We require

Context Condition 11.
etype(e′, f) ∈ {int, uint}

and set

etype(e, f) = etype(e′f)

va(e, c) =

{
−va(e, c)tmod232 etype(e′, f) = int

−va(e′, c) mod 232 etype(e′, f) = uint

This definition looks ’natural’, but if one has no experience with modulo arithmetic one might
be up for surprises. Let etype(e′, t) = int and

e′ = −12147483648 = −231

We get

va(−e′, c) = (231tmod232)

= −231

= va(e′, c)

• negation: ◦ = ¬. We require

Context Condition 12.
etype(e′, f) = bool

and set

etype(i, f) = bool

va(e, c) = ¬va(e′, c)

10.5.9 Binary Operators

Let e = e′ ◦ e” with subexpressions e′, e” ∈ e and binary operator ◦. Recall that subexpressions
were defined via subtrees of the derivation tree of e, thus the decomposition of e into e′ and e”
reflects the priorities of the operators. Because we want to avoid type casting we require here, that
subexpressions e′ and e” have the same type. For arithmetic operations and comparisons we require
this type to be int or uint, and for boolean operations we require it to be bool.

Context Condition 13.

etype(e′, f) = etype(e”, f)

(etype(e′, f) ∈
{
{bool} ◦ ∈ {∧,∨,⊕}
{int, uint} otherwise

162

The type of the result is the type of the operands for arithmetic operations and bool for compar-
isons or boolean operators:

etype(e, f) =

{
etype(e′, f) ◦ ∈ {+,−2, ∗, /}
bool otherwise

Now we make the obvious case split.

• addition, subtraction and multiplication: ◦ ∈ {+,−2, ∗}. We define

va(e, c) =

{
(va(e′, c) ◦ va(e”, c)tmod232 etype(e′, f) = int

(va(e′, c) ◦ va(e”, c)mod232 etype(e′, f) = uint

We have mentioned it before and we stress it again: this is modulo arithmetic, which is very
different from arithmetic in N. For instance if

etype(e, f) = uint

va(e′, c) = 232 − 1

va(e”, c) = 1

◦ = +

we compute for va(e, c) the binary representation of

va(e, c) = (232 − 1 + 1) mod 232 = 0

• division: ◦ = /. Of course we forbid division by zero

Context Condition 14.

◦ = /→ va(e”, c) 6= 0

For y ∈ Z we define sign(y) ∈ B as {
0 y ≥ 0

1 y < 0

and have

y = (−1)sign(y) · |y|

Let

y′ = va(e′, c)

y” = va(e”, c)

Now we proceed in two steps

1. we determine the exact result as

y = (−1)sign(y)⊕sign(y
′) · (|y′|/|y”|)

where / denotes integer division.

163

2. we determine the result in the usual way

va(e, c) =

{
ytmod232 etype(e′, f) = int

ymod232 etype(e′, f) = int

Note that integer division can overflow (in a nasty way) due to the non symmetric range
Tn of two’s complement numbers. We already know the relevant example

e = −231

e′ = −1

y = 231

ytmod232 = −231

• computation of atoms: ◦ ∈ {==, ! =, <,>,<=, >=} is a comparison operator. We convert the
operator in the obvious way into an operator

◦′ ∈ {=, 6=, >,>,≤,≥}

and define

va(i, c) =

{
1 va(e′, c) ◦′ va(e”, c)

0 otherwise

• Boolean operators: ◦ ∈ &&, ||. We define

va(e, c) =

{
va(e′, c) ∧ va(e”, c) ◦ = &&

va(e′, c) ∨ va(e”, c) ◦ = ||

• Boolean OR.

10.6 Statement Execution

The semantics of statement execution is defined by a case split on the first element hd(c.pr) of the
program rest of configuration c. The current configuration is denoted by c; the new configuration
is denoted by c′. We assume invariant inv − conf(c) which imply invariant inv − expr(e, c) for the
expressions e ∈ c.pc evaluated in configuration c. Let f = cf(c) be the name of the function executed
in configuration c. Definitions will be fairly straight forward. As there are 6 kinds of statements we
get the obvious cases:

10.6.1 Assignment

The head of the program rest has the form

hd(c.pr) : e = e′

We require that the types of left hand hand right hand side of the assignment statement match
and that these types are simple2

Context Condition 15.

etype(e, f) = etype(e′, f) ∧ simple(etype(e, f)

2This is a usual restriction in programming languages; relaxing this restriction is a fairly easy exercise.

164

The execution of the statement does not create or delete variables and it does not manipulate
the result destination stack. Formally

X ∈ {rd, st, rds, nh, ht} → c′.X = c.X

which implies
SV (c′) = SV (c)

The memory content c.x of the single simple subvariable lv(e, c) ∈ SV (c) specified by the left hand
side is updated by assigning it the value va(e′, c) specified by the right hand side. All other simple
subvariables keep their previous value. The assignment statement is dropped from the program rest.

x ∈ SV (c) ∧ simple(vtype(x, c))→

(c′.m(x) =

{
va(e′, c) x = lv(e, c)

c.m(x) otherwise
)

c′.pr = tail(c.pr)

The set of variables does not change and hence

SV (c) = SV (c′)

A single simple subvariable lv(e, c) is updated. For this subvariable tc−SV (c′) follows from invariant
7.3 for the right hand side e′ of the assignment. If it is a pointer,tc−p(c′) follows from invariant 7.4 for
e′ and p−targets(c′) follows from invariant 7.5. For all other simple subvariables x ∈ SV (c)\{lv(e, c)}
the memory content stays the same

simple(x, c) ∧ x ∈ SV (c) \ {lv(e, c)} → c.m(x) = c′.m(x)

Thus for these subvariables tc− SV (c′), tc− p(c′) and p− targets(c′) follows by induction from the
corresponding invariants for c.

No returns are added to or deleted from the program rest, the recursion depth stays the same,
rds is not manipulated. Thus invariant inv − rds is preserved. Dropping the first statement, which
is not a return statement from a program rest preserves invariant inv − pr.

10.6.2 Conditional Statement

The head or the program rest can have two forms: if-statements

hd(c.pr) : ifethen{if − part}

or if-then-else-statements

hd(c.pr) : ifethen{if − part}elas{else− part}

Conditional statements only change the program rest

X 6= pr → c′.X = c.X

Condition e is evaluated. We require it to be of type bool.

Context Condition 16.
etype(e, f) = bool

165

• if-statements: If the condition evaluates to 1 , the conditional statement is replaced in program
rest by the if-part. Otherwise the statement is simply dropped from the program rest.

c′.pr =

{
if − part; tail(c.pr) va(e, c) = 1

tail(c.pr) va(e, c) = 0

• if-then-else-statements . If the condition evaluates to 1, the conditional statement is replaced
in the program rest by the if-part. Otherwise it is replaced by the else-part.

c′.pr =

{
if − part ◦ tail(c.pr) va(e, c) = 1

else− part ◦ tail(c.pr) va(e, c) = 0

Thus invariants tc, p − targets and invrds are obviously preserved. Statements s if parts or
else parts which are added to the program rest belong to function f , i.e. s ∈ cf(c). Hence
invariant inv − pr is preserved.

subsectionWhile Loop
The head of the program rest has the form

hd(c.pr) : whilee{body}

It changes only the program rest.
X 6= pr → c′.X = c.X

The loop condition e is evaluated. We require it to be of type bool

Context Condition 17.
etype(e, f) = bool

If it evaluates to 0 the while statement is dropped from the program rest. Otherwise the flattened
loop body is put in front of the program rest.

c′.pr =

{
tail(c.pr) va(e, c) = 0

body; c.pr va(e, c) = 1

There is a certain analogy of this rule with the use of a (potentially limitless) role of toilet paper.
One tests if wether one is done and if so one can forget about the entire roll. Otherwise one unrolls
a single piece of toilet paper (the loop body) and iterates. Preservation of invariants is shown as for
conditional statements

10.6.3 ’New’ Statement

The head of the program rest has the form

hd(c.pr) : newe = t∗

We require t to be an elementary or declared type. Moreover the subvariable lv(e, c) defined by
the left hand side should have type t∗.

Context Condition 18.
t ∈ TN ∪ ET ∧ etype(e, f) = t∗

166

Figure 10.16: A ’new’ statement creates a new nameless variable d.nh−1 = c.nh on the heap, records
its type t at d.ht(c.nh) and stores c.nh into the pointer variable lv(e, c) designated by e. This makes
lv(e, c) point to the newly created variable c.nh.

Execution of a ’new’ statement does not change recursion depth, stack and result destination
stack.

X ∈ {rd, st, rds} → c′.X = c.X

The other components of the configuration change in the following way, which is illustrated in
figure 10.16

• the number of heap variables in increased by 1.

c′.nh = c.nh+ 1

This creates the new heap variable c.nh and we have

V (c′) = V (c) ∪ {c.nh}

• the type of this new heap variable is fixed to t. The type of the previously existing heap
variables stays the same

c.ht(x) =

{
t x = c.nh

c.ht(x) x < c.nh

• the new heap variable is initialized with its default value.

c′.m(c.nh) = deft(t)

• the pointer variable lv(e, c) specified by the left hand side is made to point to the newly created
variable. The content of all other simple subvariables in SV (c) remain unchanged

x ∈ SV (c) ∧ simple(vtype(x, c))→

c′.m(x) =

{
c.nh x = lv(e, c)

c.m(x) otherwise

• the new statement is dropped from the program rest

c′.pr = tail(c.pr)

167

One new heap variable c.nh is created. It is initialized with its default value. Default values for
subvaribales of the new variable of pointer type are initialized with null. Thus invariants tc(c′) and
p− targets(c′) hold trivially for the new variable.

The pointer subvariable x = lv(e, c) has by invariant 7.2 type

vtype(x, c) = (vtype(lv(e, c), c) = etype(e, f) = t∗

and gets assigned the value

c′.m(x) = c′.m(lv(e, c′)) = c.nh

of type

vtype(c′.m(x), c′) = vtype(c.nh, c′) = c′.ht(c.nh) = t

Because

c′.m(x) ∈ SV (c′) ∧ onheap(c′.m(x), c′)

we have tc − p(c′) and p − target(c′) for subvariable x. All other subvariables of c stay unchanged,
thus their invariants are maintained. Only the first statement is dropped from the program rest.
Thus invariants inv − pr and inv − rds are maintained by the known arguments.

10.6.4 Function Call

If a function g is called, the number p of its parameters is specified in the function table as

p = ft(g).p

The head of the program rest has the form

hd(c.pr) :

{
e = g(e1, . . . , ep) p ≥ 1

g() p = 0

The type of function frames for g is specified in the type table table as

type($g) = {t1 x1; . . . ; ts ns}

The type t of the result returned by g is specified in the function table as

t = ft(f).t

There are several requirements:

Context Condition 19. • the expression type of the left hand side is simple and matches the
type t of the functions return value

simple(etype(e, f)) ∧ etype(e, f) = t

• for j ∈ [1 : p] the type of the j’th parameter is simple and matches the type tj of the j′th
parameter xj in the function declaration.

simple(ej, f)) ∧ etype(ej, j)) = tj

The execution of a function call has several effects as illustrated in figure 10.17.

168

',isyt

': ±M

! :

&

5S

Figure 10.17: A function call increases recursion depth creating a new stack frame top(c′′) and a new
entry c′rds(c′.rd) on the return destination stack. It passes parameter values va(ei, c) to paramater
xi of the new top function frame and intializes local variables of the new frame to their default value.
A pointer to the result destination lv(e, c) of the call is stored at the new entry c′.rds(c′.rd) of the
result destination stack.

• the heap stays the same. The recursion depth is increased to c.rd+1 and a new function frame
for g is created at the top of the stack

c′.nh = c.nh

c′.ht = c.ht

c′.rd = c.rd+ 1

c′.st(x) =

{
g x = c′.rd

c.st(x) x ≤ c.rd

Thus the new top frame of the stack is

top(c′) = (g, c′.rd)

The variables of c′ are the old variables together with the new top frame

V (c′) = V (c) ∪ {top(c′)}

• Parameters are initialized with their values

j ≤ p→ c′.m(top(c′).xj = va(ej, c)

• local parameters are initialized with their default value

j > p→ c′.m(top(c′).xj = dft(tj))

169

• the subvariable lv(e, c) where the functions result is returned, is recorded in the new entry
c′.rds(c′.rd) of the return destination stack. Old parts of this stack stay unchanged.

c′.rds(x) =

{
lv(e, c) x = c′.rd

c.rds(i) x ≤ c.rd

• in the program rest the function call is replaced by the body of g, which is recorded in the
function table

c′.pr = ft(g).body; ◦tail(c.pr)

The new variable top(c′) is initialized. This involves two different cases:

• parameters: one argues that tc − SV (c′), tc − p(c′) and p − targets(c′) hold for each of them
them as in the case of assignment statements.

• local variables: they are initialized with their default values. One argues that their invariants
hold as in the case of the new heap variable in a ’new’ statement.

For the new entry c′.rds(x) at argument

x = c′.rd

of the return destination stack we argue

vtype(c.rds(x)) = vtype(lv(e, c))

= etype(e, f) (part 2 of inv − expr(e, c))

= t (context condition)

= ft(g).t

= ft(c.st(x)).t

This shows part 1 of inv − rds(c′). The value lv(e, c) assigned to c.rds(x) by part 1 of invariant
inv − expr(e, c) to the old subvariables

c′.rds(x) = lv(e, c) ∈ SV (c)

Thus in c′ it lies on the heap, in global memory or in the stack under the new to frame. This shows
part 2 of inv − rds(c′).

Old subvariables are not changed, thus their invariants are preserved. The number of returns
in the program rest and recursion depth are both increased by 1. The new front portion of the
program rest until the first return from the left (which is the new last return from the right) comes
from statements s ∈ g belonging to the function g of the new top frame, thus invariant inv − pr is
preserved.

10.6.5 Return

The head of the program rest has the form

hd(c.pr) = return e

We require that the type etype(e, f) of the expression in the return statement matches the type
t of the return result of the function f containing the return statement

170

Figure 10.18: A return statement assigns the return value va(e, c) to the subvariable pointed to by
the top entry c.rds(c.rd). Then it decreases recursion depth, hereby dropping the old top frame and
the old top entry in the return destination stack c.rds.

Context Condition 20.
t = etype(e, f) = ft(f).t

That type t is simple was already required by the context conditions of the function call. Execution
of the return statement has the following effects as illustrated in figure 10.18

• the value va(e, c) is assigned to the subvariable

y = c.rds(c.rd),

which is destination of the return result.

c′.m(y)) = va(e, c)

By inv − rds subvariable y has type

vtype(y, c) = t

And thus is y is simple.

• the top frame is deleted from the stack, and the heap is unchanged

c′.rd = c.rd− 1

c′.st(x) = c.st(x) for x ∈ [0 : c′.rd]

c′.nh = c.nh

c′.ht = c.ht

Thus
V (c′) = V (c) \ {top(c)}

• Subvariables of c other than the return destination do not change

x ∈ SV (c′) ∧ simple(x, c) ∧ x 6= y →
c′.m(x) = c.m(x)

171

• the return statement is dropped from the program rest

c′.pr = tail(c.pr)

The old top frame disappears. The simple subvariable y is assigned value va(e, c) which has
expression type

etype(e, c) = t

Now tc(c′) and -in case t is a pointer type - p − targets(c′) are concluded for y as in the case of
assignments. The number of returns in the program rest and the recursion depth both decrease by
one. The return statement, which is dropped from the program rest was the last statement belonging
to the function f of the old top frame. Thus invariant inv − pr(c′) follows from inv − pr(c).

10.7 Correctness of C0-Programs

We use the C0-semantics to analyze a some small programs. These examples serve several purposes:
i) they simply illustrate the constructs of the semantics. ii) they show that properties of C0 compu-
tations, i.e. of program runs can be rigorously proven as mathematical theorems. iii) When using
computer arithmetic, one always has to keep in mind that it is finite. Several examples were chosen
to highlight this fact.

10.7.1 Assignment and Conditional Statement

Consider the following program

int x;

int main()

{

x=3;

x=x+1;

if (x>0) then {x=1} else {x=2};

return -1

}

It produces a finite computation (ci). There are no function calls and no new statements. Thus for
all ci we have

ci.rd = 0

ci.nh = 0

ci.st(0) = main

V (ci) = {gm, (main, 0)}

Function main has no parameters and no local variables. A single global variable x is declared.
Thus, global memory and function frames for Main have types

$gm = {int x}
$main = { }

As illustrated in figure 10.19 in the body of function main variable name x is always bound to

lv(x, ci) = gm.x

172

Figure 10.19: Value of gm.x in various configurations

and its value and expression type are

va(x, ci) = ci.m(gm.x)

etype(x,main) = int

We va(x, ci) and ci.pr for i = 0,

• Initially we have

va(x, c0) = dft(int) = 0 and c0.pr = ft(main).body

• After execution of the first assignment we have

va(x, c1) = 3

The program rest c1.pr is

x=x+1;if (x>0) then {x=1} else {x=2};return -1

• After the next step we have
va(x, c2) = 4

The program rest c2.pr is

if (x<=0) then {x=1} else {x=2};return -1

• Execution of the conditional statement only changes the program rest. Expression x > 0 is
evaluated to

4 > 0

which is true, thus The program rest c3.pr is

{x=1};return -1

• After the assignment statement we have

va(c4.x) = 1

and the program rest is

return -1

• Execution of the return statement of function main at recursion depth 0 has no semantics yet.
In theory we might say the program halts. In practice it should return to the operating system.
In later sections we will see how this can be implemented.

173

10.7.2 Computer Arithmetic

We change in the previous example the first assignment in the body of function main to

x=2147483647

Clearly, in ordinary arithmetic the test x > 0 in configuration c2 would evaluate to true, because

2147483647 + 1 > 0

However in two’s complement arithmetic we get

va(x, c1) = 2147483647

= 231 − 1

va(x, c2) = (231tmod232)

= −231

< 0

10.7.3 While Loop

We consider the following example program

int n;

int res;

int main()

{

n=32768;

res=0;

while (n>0) do

{

res=res+n;

n=n-1;

}

return -1

}

We would hope to show that after a certain number of steps T the program ends with a program
rest

ct.pr : return − 1

and for the result holds

va(res, cT) =
1024∑
i=1

i

Variable names n and res are bound in all configurations to global memory componenets

lv(n, c) = c.gm.x

lv(res, c) = c.gm.res)

After 2 steps we have

va(n, c2) = 32768

va(res, c2) = 0

and the program rest is

174

Figure 10.20: Global memory in various configurations of the execution of a while loop

while (n>0) do

{

result=result+n;

n=n-1;

}

return -1

Now let c be a configuration, where ’n is positive’

va(n, c) > 0

and the program rest is the same as above

c.pr = c2.pr

Let
d = δ3C(c)

the configuration obtained after 3 more C0-steps. Analysis along the lines of subsection 10.7.1 gives

d.pr = c.pr

va(n, d) = (va(n, c)− 1 tmod 232)

va(res, d) = (va(res, c) + va(n, ct) tmod 232

This is illustrated in figure 10.20 By induction on j ∈ [0 : 32768] one shows

c1+3·j.pr = c1.pr

va(n, c1+3·j) = 1024− j

va(result, c1+3·j) =
1024∑

i=1024−j+1

i

The proof is not completely trivial: for the last line one needs to use the formula on arithmetic sums
of subsection 3.3.2 to show the absence of overflows:

32768∑
i=1

i = 1024 · (32768 + 1)/2

≤ 327682

= 230

= 231

175

For j = 32768 we have

va(n, c1+3·j = 0

The condition of the while loop is false and with t = 2 + 3 · 1024 we get the desired result.
If we would change the initial assignment to n to a number with well known bad properties

n = 2147483648

we would of course never execute the loop body because

va(n, c1) = (231tmod232

= −231

= −231 < 0

10.7.4 Linked Lists

We consider programs with the following declarations of types and global variables

typedef LEL* u;

typedef struct{int content, u next} LEL;

Type LEL for list element and the type u = LEL∗ of pointers to list elements were already informally
studied in the introductory examples of subsection 10.1.8. Let

x[0 : n− 1] ∈ [0 : c.nh− 1]n

be a sequence of n heap variables of configuration c. We say that x[0 : n − 1] is a linked list and
write

llist(x[0 : n− 1], c)

if the following conditions hold

1. the xi are distinct
i 6= j → xi 6= xj

2. the xi have type LEL
vtype(xi, c) = c.ht(xi) = LEL

3. for i < n − 1 the next component of xi points to xi+1 and the next component of xn−1 is the
null pointer (see figure x)

c.m(xi.next) =

{
xi+1 i < n− 1

null i = n− 1

This is illustrated in figure 10.21.
The following program initializes variable n to a natural number N . We assume 0 < N < 231.

We show that it creates a linked list of length N .

typedef LEL* u;

typedef struct{int content, u next} LEL;

u first;

u last;

int n;

int main()

176

Figure 10.21: Linked list on the heap of a configuration c

{

n=N;

first=new LEL*;

last=first;

n=n-1;

while N>0

{

last*.next= new LEL*;

last=last*.next;

n=n-1

}

return -1

}

After 4 steps of the C0 semantics variable n has value N − 1, there is a single variable of type LEL
on the heap; it is initialized with default values. Both pointers point to this variable

va(n, c4) = n

c4.nh = 1

c4.ht(0) = LEL

c.m(0.content) = 0

c4.m(0.next) = null

va(first, c4) = 0

va(last, c4) = 0

The program rest c4.pr is

while N>0

{

177

Figure 10.22: In configuration c4 the heap contains a list of length 1. Pointers first and last point
to the single element of this list.

last*.next= new LEL*;

last=last*.next

n=n-1

}

return -1

As illustrated in figure 10.22 there is a list of length 1 in c with the single element x0 = 0

llist(0, c4)

We define the list x of length N by

x[0 : N − 1] = (0, 1, . . . , N − 1)

and prove a lemma that is illustrated in figure 10.23

Lemma 79. For i ∈ [0 : N − 1] let
c = c4+4·i

be the configuration after i iterations of the loop. Then

1. c has the above program rest ii
c.pr = c4.pr

2. it has i+ 1 heap variables
c.nh = i+ 1

3. x[0 : i] is a linked list in c
llist(x[0 : i], c)

4. pointers first and last point to x1 and xi

va(first, c4) = 0

va(last, c4) = i

5. variable n has value N − i− 1
va(n, c) = N − i− 1

Proof. For i = 0 and c = c4 the statement of the lemma was shown above. The induction step is
illustrated in figure ?? Assume the lemma holds for c = c4+3·i.

178

Figure 10.23: In configuration c after i iterations of the loop. The heap contains a list of length i+1.
Pointers first and last point to the first and last elements of this list.

• The loop condition evaluates to 1 and thus the next program rest δC(c).pr is

last*.next= new LEL*; last=last*.next; n=n-1; c.pr

• Let
c′ = δ2C(c)

be the configuration after execution of the new statement. Execution of the new statement
increases the number of heap variables

c′.nh = c.nh = i+ 2

The new heap variable
xi+1 = i+ 1 /∈ [0 : i]

is distinct from the elements of the existing linked list x[1 : i + 1]. It has type LEL and is
initialized to its default value

vtype(i+ 1, c′) = LEL

va((i+ 1).content, c′) = c′.m(i+ 1).content = 0

va((i+ 1).next) = c′.m(i+ 1).next = null

Applying rules of expression evaluation and applying the induction hypothesis we find that the
left hand side of the new statement has left value

lv(last ∗ .next, c′) = lv(last∗, c′).next
= va(last, c′).next

= i.next

To this subvariable of pointer type the new heap variable i+ 1 is assigned as value and we get

va(i.next, c′) = i+ 1

Thus we have a linked list of length i+ 1 in c′:

llist(x[1 : i+ 1], c′)

The program rest c′.pr is

179

Figure 10.24: In configuration c′ the heap contains a list of length i + 2. In configuration c” last
points to the last elements of this list.

last=last*.next; n=n-1 c.pr

• let
c” = δC(c′) = δ3C(c) = c4+3·(i+1)

be the configuration after execution of the assignment statement. Expression evaluation gives

va(last ∗ .next, c′) = va(last ∗ .c′).next
= c.m(lv(last∗, c′)).next
= c.m(va(last, c′)).next

= c.m(i).next

= va(i, c).next

= va(i.next, c)

= i+ 1

Execution of the assignment gives

va(last, c”) = i+ 1

One instruction later n is decremented. Thus the lemma holds for i+ 1

180

For i = N − 1 we get

llist(x[0 : N − 1], c1+3·i) ∧ va(n, c1+3·i) = 0

The loop condition evaluates to 0 and the loop is dropped in the next program rest c2+3·i.pr, which
is

return -1

10.7.5 Recursion

Next we analyze a program with recursive function calls. For natural numbers n the Fibonacci
numbers fib(n) are defined by

fib(0) = 0

fib(1) = 1

fib(n) = fib(n− 2) + fib(n− 1)

A trivial induction gives
fib(n) < 2n

This implies that in the calculations below modulo arithmetic coincides with ordinary arithmetic.
For the computation of Fibonacci numbers we consider the following program

int x; int main()

int Fib(int n) {

{ x=fib(31);

int res; return -1

int f1; }

int f2;

if (n<2) then {res=n} else

{

f1=Fib(n-2);

f2=Fib(n-1);

res=f1+f2;

};

return res

};

We want to show

∃t : va(x, ct) = fib(32) ∧ ct.pr = return − 1

In configurations c for this program, global memory gm and frames for function Fib have types

$gm = {int x}
$Fib = {int n, int res, int f1, int f2}

Function main has no local variables or parameters. For z ∈ [0 : 31] we prove by induction on z the
following

Lemma 80. Let f ∈ {Fib,main}. Let

181

hd(c.pr): y = Fib(e)

be a call of function Fib with parameter e and result destination y. Let

z = va(e, c) ≤ 31

and let

hd(c.pr): y = Fib(e)

Then there is a step number t such that for the configuration t steps later

c′ = δt(c)

the following holds

• only configuration components m and pr changed:

X /∈ {m, pr} → c′.X = c.X

• the function call is dropped from the program rest

c′.pr = tail(c.pr)

• simple variable lv(y, c) is updated with Fibonacci number fib(va(e, c)). Other simple variables
keep the old value.

x ∈ SV (c) ∧ simple(x, c) →

c′.m(x) =

{
fib(va(e, c)) x = lv(y, c)

c.m(x) otherwise

The effect of calling function Fib as specified by the lemma is illustrated in figure 10.25.

Proof. Execution of the function call gets to a configuration d illustrated in figure 10.26 with

d.rd = c.rd+ 1

c.st(c.rd) = Fib

cf(d) = Fib

V (d) = V (c) ∪ {top(d)}
top(d) = (Fib, d.rd)

a ∈ {n, f1, f2, res} → lv(a, d) = top(d).a

lv(x, d) = d.gm.x

lv(y, d) ∈ SV (c)

va(n, d) = d.m(va(top(d)).n)

= va(e, c)

d.rds(d.rd) = lv(y, c)

d.pr = ft(F).body ◦ tail(c.pr)
The base case of the induction occurs with

z = va(n, d) < 2

After execution of the condition statement we are in configuration e program rest e.pr

182

Figure 10.25: Effect of calling function Fib in configuration c. a) If Fib is called from function main
with left hand side x, then gm.x is updated. b) If Fib is called recursively from function Fib with
left hand side f1, then the instance of local variable f1 in the top frame is updated.

res = n; return res; tail(c.pr)

Execution of the assignment leads to configuration f with

va(res, f) = n = fib(n)

which is illustrated in figure 10.27.
Execution of the return statement gives a configuration h with

h.rd = d.rd− 1

= c.rd

SV (h) = SV (f) \ {top(d)}
= SV (c)

va(y, h) = h.m(lv(y, c))

= h.m(f.rds(f.rd))

= va(res, h)

= fib(va(e, c))

h.pr = tail(c.pr)

183

Figure 10.26: Configuration d after the call. The parameter value z is passed to the instance of
parameter n in the new top frame. If the call was from function main with y = x, we have
lv(y, c) = gm.x. If the call was recursive with y = f1 resp. y = f2 we have lv(y, c) = (Fib, c.rd).f1
resp lv(y, c) = (Fib, c.rd).f1, which is in the previous top frame.

This is the situation specified at the right sides of in figure ??. The case

z = va(e, c) ≥ 2

is handled in the induction step. After execution of the condition statement one gets to a configuration
f with program rest f.pr:

f1=Fib(n-2); f2=Fib(n-1); res=f1+f2;return res; tail(c.pr)

The two function calls have parameters with values

va(n− 1, e) = va(n, c)− 1

va(n− 2, c) = va(n, c)− 2

Both are smaller than z = va(n, c), thus we can apply the lemma inductively for z− 1 and z− 2.
We conclude for the configuration h after the two calls, which is illustrated in figure 10.28

va(f1, h) = fib(va(n, c)− 1)

va(f2, h) = fib(va(n, c)− 2)

The program rest h.pr is

res = f1 + f2; return res; tail(c.pr)

Execution of the assignment statement gives a configuration u with

va(res, u) = va(f1, h) + va(f2, h)

= fib(va(n, c)− 1) + fib(va(n, c)− 2)

= fib(va(n, c))

For the return statement one argues exactly as in the base case.

184

Figure 10.27: Configuration f before the return in the base case . Local variable res in the top
frame contains the result z = fib(z). The variable to be updated by the following return statement
is lv(y, c) which was stored in the top entry d.rds(d.rd) of the result destination stack

Figure 10.28: Configuration h after 2 recursive calls of function Fib . Local variables f1 and f2 of
the top frame have been updated as illustrated in figure ?? b) with fib(z − 1 and fib(z − 2)

185

186

Chapter 11

A C0-Compiler

Compilers translate source programs p from high level languages L into target programs code(p) from
some instruction set architecture ISA, such that the target program simulates the source program.
Of course, here we are interested in C0 as the source language and MIPS − ISA as the target
language. Thus, roughly speaking our C0 compiler will compute a translation function function

code : L(prog)→MIPS − ISA

In section 11.1 will define a simulation relation

consis(c, d)

coupling C0 configurations c with MIPS configurations d, which will formalize the idea, that the low
level MIPS configuration d encodes (more or less) the high level C0 configuration c. We are aiming
at a step by step simulation of source programs p by target programs code(p). Formally we compare
C0 computations (ci) and MIPS computations (di) which start in a consistent pair of configurations

consis(c0, d0)

∧∀i : ci+1 = δC(ci)

∧∀i : di+1 = δM(ci)

We then show: if C0 configuration c and MIPS configuration d are consistent, and c progresses in
one C0 step to c′ = δC(c), then in some number s of MIPS steps d progresses to a configuration
δsM(d) which is consistent with c′

Lemma 81.
consis(c, d) ∧ c′ = δC(c)→ ∃s : consis(c′, δsM(d))

By induction we get a simulation theorem stating the correctness of non optimizing compilers

Lemma 82. There exists a sequence (s(i)) of steps such that

∀i : consis(ci, ds(i))

Proof. by trivial induction on i. For the induction step from i to i+ 1 apply lemma 81 with

c = ci

d = ds(i)

and define
s(i+ 1) = s(i) + s

187

Code generation for expressions is specified in section 11.2 . For expressions we will extend
consistency to expressions in a natural way and then generate the obvious code which achieves this.
Showing that consistency for expressions is maintained by the generated code will be a bookkeeping
exercise. For the order of evaluation of subexpressions we use a simple and elegant algorithm due
to Aho and Ullman [?], which permits to evaluate expressions with up to 1048567 binary operators
using not more than 20 processor registers.

Code generation for statements in section 11.3 will of course aim at maintaining consistency as
required in lemma 81 and will also be completely intuitive. The proof of lemma 81, however, will
be more than a bookkeeping exercise. This comes from the fact, that code generation is defined by
induction over the derivation tree of the program, whereas the program rest is a nice and flat sequence
of statements. After the code of a statement hd(c.pr) has run on a MIPS machine (whatever that
means), one wishes to show that the program counter δs(d).pc points to the code of hd(c′.pr), but
this requires finding (the right instance of) statement hd(c′.pr) in the derivation tree.

In the final section 11.4 of this chapter we study how much of a C0 configuration we can recon-
struct from a consistent MIPS configuration. With the results of this section we will later be able to
define the semantics of C0 programs with assembly portions in a surprisingly straight forward way.

11.1 Compiler Consistency

11.1.1 Mememory Map

In general a memory map indicates what is stored where in the memory of a processor. We specify
here a memory map for processor configurations d which encode MIPS configurations c. Recall that
the variables of C0 configurations are i) the global memory gm ii) the nameless variables [0 : c.nh−1]
on the heap and the stack frames ST (i, c) = (c.st(i), i) for i ∈ [0 : c.rd]. Figure 11.1 shows how these
variables and the translated program will be mapped into the memory d.m of MIPS configurations
d.

• code: the translated code starts at address a and does not occupy addresses beyond b.

• global memory gm starts at address sbase. We maintain a pointer to this address in general
purpose register gpr(28).

sbase = d.gpr(bpt) with bpt = 28

• the stack frames are stored in order ST (0, c), ST (1, c) . . . , top(c) starting at the first address
behind the space for global memory. During a computation the stack grows an shrinks. It
should stay below address hbase. We maintain a pointer sptr to the first free location after the
top stack frame in register gpr(29).

sptr(d) = d.gpr(spt) with spt = 29

• heap memory starts at an address hbase and should not extend beyond address hmax. During
the computation the heap can only grow (unless we do garbage collection as sketched in section
11.4). We maintain a pointer hptr to the first free location on the heap in register gpr(30).

hprt(d) = d.gpr(hpt) with spt = 30

188

Figure 11.1: Memory map for the compiler. Code is stored between addresses a and b. Global
memory starts at address sbase. The stack is stored on top of global memory. The stack starts at
address hbase. Pointers sptr and hprtr are maintained to the first free addresses after the occupied
portions of the stack resp. the heap.

11.1.2 Size of Types, Displacement and Base Address

We compute for each type t ∈ ET ∪ TN the number of bytes size(t) allocated to store a value from
the range ra(t) of type t. The definition is straight forward: for values with simple types we will
allow 4 bytes. The size of composite types is the sum of the sizes of their components and this
is not all: frames for functions f without parameters and local variables have an empty struct type

$f = { }

with no components. This type has size 0.

size(t) =

0 t = { }
4 simple(t)

n · size(t′) t = t′[n]∑s
i=1 size(ti) t = {n1 t1, . . . ts ns}

With the sizes we can define for each C0-variable x ∈ V (c) the base address ba(x, c) in the MIPS
memory where x is stored.

• Global memory starts at address sbase.

ba(gm, c) = sbase

• Add to this the size of global memory + 8and you have the base address of stack frame ST (0, c).
Increase the base address of ST (i, c) by 8 plus the size size($c.st(i)) of the stack frame and

189

N

^

s

J)
.4

j^
i

i
«-

0
0

f

—
-—

-v \ i

.._..
Ĵ
N

,̂ ?
r \

\

£
:

. «
. —

\̂ 'v
.

^>

:;
S

N \ v \
.

:̂
Figure 11.2: Memory map for the stack. Stack frames ST (i, c) are stored in the order of their indices
in top of the global memory frame c.gm. Below the base address of each frame 2 words = 8 bytes
are reserved for auxiliary data.

obtain the base address of the next stack frame. At the two words below the base address
of each stack, we reserve room for auxiliary data for the frame; this will be the return result
destination and the address where we jump when the function returns.

ba(ST (i, c)) =

{
sbase+ 8 + size($gm) x = ST (0, c)

ba(ST (i, c) + 8 + size($c.st(i)) x = ST (i+ 1, c)

The resulting details of the memory map are shown in figure 11.2

• Nameless heap variable 0 starts at address hbase. Increase the base address of heap variable i
by the size size(c.ht(i)) of this variable and obtain the base address of the next heap variable

ba(i, c) =

{
hbase i = 0

ba(i, c) + size(c.ht(i))) x = i+ 1

The resulting details of the memory map are shown in figure 11.3

So far our definitions are illustrated by figure x. For the base addresses of subvariables, we zoom
into the composite variables and subvariables as shown in figure y. Assume x is a composite variable
of type

vtype(x) = t

with base address ba(x, c) and components x[i] if t = t′[n] is an array type and t.ni if t = {n1 t1, . . . ts ns}
In variables x of type t we store components x[i] or x.ni successively starting at low addresses as

190

ä.

l

^U,

l i '

m

Figure 11.3: Memory map for the heap. Nameless variables i ∈ [0 : c.nh− 1] are stored in the order
of their indices in top of address hbase.

shown in figure y. The distance where component x[i] resp. x.ni starts relative to the base address
ba(x, c) is called the displacement displ(i, t) resp. displ(ni, t). It equals the sum of the sizes of the
components to the right. For the two cases we define the displacements as

displ(i, t) = i · size(t′) if t = t′[n]

displ(ni, t) =
∑
j<i

size(ti) if t = {n1 t1, . . . ts ns}

and the base addresses of the components as

ba(x[i], c) = ba(x, c) + displ(i, t) if t = t′[n]

ba(x.ni, t) = ba(x, c) + displ(ni, t) if t = {n1 t1, . . . ts ns}

We extend interval notation [a : b] to bit strings a, b ∈ B32 by defining

[a : a] = {a}
[a : b+32 132 = [a : b] ∪ {b+32 132}

and for subvariables x we define the address range ar(x, c) as the set of addresses allocated to
subvariable x:

ar(x, c) = [ba(x, c) : ba(x, x) +32 size(vtype(x, c))]

Note that the address range of simple variable x are the 4 byte addresses of the memory word
starting at the base address of the subvariable.

simple(x, c)→ ar(x, c) = [ba(x, c) : ba(x, x) +32 4

From the definitions we infer that the address ranges of variables are disjoint

x, y ∈ V (c)→ ar(x, c) ∩ ar(y, c) = ∅

191

For a subvaribale x ∈ SV (c) with array type t = t′[n] the address ranges of subvariables x[i] are
disjoint and lie all in the address range of x.

vtype(x) = t′[n] ∧ 0 ≤ i < j < n →
ar(x[i], c) ∩ ar(x[i], c) = ∅

∧ar(x[i], c) ⊆ ar(x, c)

A similar statement holds if x has struct type:

vtype(x) = {n1 t1, . . . ts ns} ∧ 1 ≤ i < j ≤ s →
ar(x.ni, c) ∩ ar(x.nj, c) = ∅

∧ar(x.ni, c) ⊆ ar(x, c)

For subvariables x, y ∈ SV (c) we say that x is a subvariable of y if x = ys for some selector
sequence s ∈ S+

subvar(x, y) ≡ ∃s ∈ S+ : x = ys

An easy induction shows for subvariables x, y ∈ SV (c) shows: i) if x, is a subvariable of y, then
the address range of x is contained in the address range of y. If neither x is a subvariable of y nor y
is a subvariable of x, then their address ranges are disjoint.

Lemma 83. Let x, y ∈ SV (c). Then

subvar(x, y) → ar(x, c) ⊆ ar(y, c)

∼ subvar(x, y)∧ ∼ subvar(y, x) → ar(x, c) ∩ ar(y, c) = ∅

11.1.3 Consistency for Data, Pointers and Stack

For elementary data types t ∈ ET we define an encoding enc(va) ∈ B32 encode values va ∈ ra(t)
in the range or t into B32 in an obvious way. Integers are encoded as two’s complement numbers,
unsigned integers are encoded as binary numbers. Boolean values are zero extended. Character
constants are coded in ASCII code and then zero extended

enc(va) =

twoc32(va) t = int

bin32(va) t = uint

031va t = bool

024ascii(va) t = char

Let c be a C0 configuration and let d be a MIPS configuration.

• We say that configurations c and d are consistent with respect to elementary subvariables and
write e − consis(c, d) if for all subvariables x with an elementary data type vtype(x, c) ∈ ET
the obvious encoding of its value c.m(x) is stored in the MIPS memory d.m at the address
range of x (see figure 11.4).

vtype(x) ∈ ET → enc(c.m(x)) = d.m4(ba(x, c))

• We say that configurations c and d are consistent with respect to pointers and write p −
consis(c, d) if for all subvariables u with pointer(u, c) the following holds: if u points in con-
figuration c to subvariable v, i.e. c.m(u) = v, then the base address ba(v, c) is stored in the
MIPS memory d.m at the address range of u (see figure 11.5)

(pointer(u, c) ∧ c.m(u) = v → d.m4(ba(v, c)) = ba(u, v))

192

Figure 11.4: Illustration of e− consistenc(c, d). The value c.m(x) of elementary variables x is stored
in d.m at the memory word starting at the base address ba(x, c)

Figure 11.5: Illustration of p − concis(c, d) . Pointer u points in c to subvariable v. Then the base
address ba(v, c) is stored in d.m at the memory word starting at the base address ba(u, c)

• We say that c and d are consistent with respect to base, stack and heap pointers and write
bsp − consis(c, d) if i) the pointers point to sbase, the first free address on the stack and the
first free address on the heap. Moreover ii) the pointers should not be out of range (see figures
11.2 and 11.3)

d.gpr(bpt) = sbase

d.gpr(spt) = ba(top(c), c) + size($cf(c)) < hbase

d.gpr(hpt) = ba(c.nh− 1) + size(c.ht(c.nh− 1) ≤ hmax

• Entries c.rds(i) of the return destination stack are treated like pointers which are stored in the
memory word below the base address ba(ST (i, c),) of stack frame ST (i, c). I.e. if c.rds(i) = u
then the base address ba(u, c) of u is stored in the MIPS memory at d.m4(ba(ST (i, c),)−32 432

(see figure 11.6). Thus we say that c and d are consistent with respect to the return destination
stack and write rds− consis(c, d) if

c.rds(i) = u→ d.m4(ba(ST (i, c),)−32 432 = ba(c, u)

193

Figure 11.6: Illustration of rds − concis(c, d) . Pointer c.rds(i) points in c to subvariable u. Then
the base address ba(, c) is stored in d.m at the memory word below the base address ba(ST (i, c), c)
of stack frame ST (i, c)

11.1.4 Consistency for Code

We simply want to formalize, that the target program of the compilation process is stored in the
address range [a : b] and that the code is not changed while to code is running. Code generation will
proceed recursively (from sons to fathers) along the nodes n of the derivation tree T of the program,
that is translated. For such nodes n we define code(n) as the code generated for the subtree with
node n (see figure 11.7). We define its length (measured in bytes) by |code(n)|.

code(n) ∈ B8·|code(n)|

This code occupies in the initial configuration d0 of the MIPS computation |code(n)| addresses fromm
address start(code(n)) to address end(code(n))

d0.m|code(n)|(start(code(n)) = code(n)

end(code(n)) = start(code(n)) +32 (|code(n)| − 1)32

Let

FN = {f1, . . . , fk}

be the names of the declared functions in the order they are declared functions in the program and
recall, that for i ∈ [1 : k) we defined in subsection 10.2.3 the node

nbody(fi) as the node in the derivation tree, from which the body of function fi is derived. For
the root ε of the derivation tree we get the target program tp as the code of the translated source
program as

tp = code(ε) = code(nbody(f1)); . . . ; codenbody(fk)

We say that c and d are code consistent and write code− consis(c, d) if the following conditions
hold

194

Figure 11.7: The code code(n) generated for node n in the derivation tree is stored at |code(n)|
consecutive addresses in d.m from start(code(n)) to end(code(n)).

• in the initial configuration d0 the target program tp lies in the code region [a : b]

quad[start(tp) : end(tp) ⊆ [a : b]

d0.m|tp|(start(tp)) = tp

• the target program did not modify itself and is still there

d.m|tp|(start(tp)) = tp

Note that defining code(s) for statements s in the source program or code(e) for expressions will
in general not be well defined. We might have instances of the assignment x = x+ 1 in two functions
of the program: in one function f with local variable x and in another function f ′ without local
variable or parameter x. The statements are executed in configurations c resp c′ with cf(c) = fi and
cf(c′) = fj. In these configurations the binding

lv(x, c) = top(c).x

lv(x, c′) = gm.x

are computed in a different way, and this will be reflected in the compilation. Thus code(x+1) would
be ambiguous. However, if the two instances of assignment x + 1 are border words of nodes n and
n′ as shown in figure 11.8 , then code(n) refers to the code for the instance of the statement in the
body of f and code(n′) to the instance in the body of f ′.

11.1.5 Consistency for the PC and the Caller Stack

Before we define consistency for the program counter we introduce two so called ghost components
to C0 configurations. They are not needed to define semantics; we obviously have done it without
them. They are also not needed to define the compilation process. We only will need them to prove
that the compilation is correct, i.e. to establish a simulation theorem between runs of source and

195

Figure 11.8: Different instances of statement x = x + 1 are generated in the bodies of functions f
and f ′. The instances will be translated differently into code(n) and code(n′).

target program. Intuitively we want to define that c and d are pc-consistent, if the program counter
d.pc points to the start of the code of the first statement of the program rest

d.pc = start(code(hd(c.pr)))

Unfortunately, components c.pr[i] are statements; we have seen that different instances of the same
statement can exist in the same program, and thus we have to disambiguate code(c.pr[i]) by specifying
the nodes

c.prn[i] ∈ T.V
which identify for each i the instance of c.pr[i] which is meant and to whose code the program counter
should point. Thus we will define a ghost component

•
c.prn ∈ T.V +

of C0 configurations c with these nodes and we will call c and d pc-consistent and write pc −
consis(c, d) if the program counter points to the start of the code generated by the subtree with root
hd(c.prn) (see figure 11.9)

d.pc = start(code(hd(c.prn))

For the formal definition the definition of this program rest nodes component we proceed in the
obvious way: we translate the definition of the program rest c′.pr for the next configuration c′ after
c into a definition for c′.prn which uses nodes in the derivation tree T = (V, `) instead of statements.
Details are slightly technical.

Before we do this we remind the reader of a concept from subsection 10.1.9. Let n ∈ V be a node
labeled `(n) = StS and with border word

bw(n) = s(i1); . . . ; s[m] with s(i) ∈ L(St)

196

Figure 11.9: Illustration of pc− consis. The pc points to start of the code generated for the subtree
with root c.prn[1]

Let x[1 : m] ∈ V m be the sequence of descendants of n labeled with `(xi) = St such that we have for
all i

s(i) = bw(x[i])

Thus we have

bw(n) = bw(x[1]); . . . ; bw(x[m])

We have seen, that we get from n in the tree to x[i] by following i− 1 times label 2 and then label 0
(see figure 11.10)

x[i] = n2i−10

and we called the sequence x[1 : m] of these nodes the flattened sequence of n

fseq(n) = x[1 : m]

Now consider the body of function f as shown in figure 11.11

ft(f).body = s(1); . . . s(m); returne

It is derived from node n = nbody(f) labeled body. Following edge 0 we arrive at a node deriving the
statement sequence s[1 : m] and following edge 2 we arrive at a node deriving the return statement.
Thus we define the sequence of statement nodes of the body of f as

snodes(f) = fseq(nbody(f)0);nbody(f)2

initial configuration. For the initial configuration c0 we define c0.prn as the sequence of statement
nodes in the body of function main

c0.prn = snodes(main)

197

Figure 11.10: If n is labeled StS then descendant xm with label St is reached following 2i−1 times
label 2 and then label 0. For each i the border word of xi is statement s(i).

Assignments, new statements and return statements. If hd(c.pr is an assignment statement,
a new statement or a return statement, then the first node in c.prn is dropped

c′.prn = tail(c.prn)

While loops. Let

hd(c.pr): while e { body }

As shown in figure 11.12 this statement is derived by node n = hd(c.prn) labeled St; following edge
3 we arrive at a node labeled StS which derives the loop body. We define

c′.prn =

{
fseq(hd(c.prn)3); c.prn va(e, c) = 1

tail(c.prn) va(e, c) = 0

If then else. Let

hd(c.pr): if e then {if-part} else {else-part}

As shown in figure 11.13 this statement are derived by node n = hd(c.prn) labeled St; following edge
5 we arrive at a node labeled StS which derives the if-part and following edge 9 we arrive at a node
labeled StS which derives the else- part. We define

c′.prn =

{
fseq(hd(c.prn)4); tail(c.prn) va(e, c) = 1

fseq(hd(c.prn)7; tail(c.prn) va(e, c) = 0

198

Figure 11.11: Node n generates body s[1 : m]; return e of a function. The statement sequence is
generated by node n0 and the return statement by node n2.

Figure 11.12: Node n generates a while statement. The body is generated by node n3.

If then. Let

hd(c.pr): if e then {if-part}

We define

c′.prn =

{
fseq(hd(c.prn)4); tail(c.prn) va(e, c) = 1

tail(c.prn) va(e, c) = 0

Function call. Let

hd(c.pr): e = f(e_1,...,e_p)

We set

c′.prn = snodes(f); tail(c.prn)

Trivially the invariant

Invariant 8.

foralli : c.pr[i] = bw(c.prn(i))}

holds initially and is maintained.
As a second ghost component of C0-configurations c we introduce a caller stack

199

Figure 11.13: Node n generates a conditional statement statement. The if-part is generated by node
n4 and the else-part is generated by node n7 .

•
c.clr : [1 : c.rd]→ T.V

In entry c.clr(i) ∈ T : V of this stack we record the node whose border word generated the function
call at recursion depth i. Formally we change this stack only at function calls and returns.

Calls At function calls we have

c.pr[1]: e = f(e_1,...,e_p)

and
c.pr[1] = bw(c.prn[1])

We push node c.prn[1] on the caller stack

c′.clr(x) =

{
c.prn[1] x = c′.rd

c.clr[x] x ≤ c.rd

Return At the execution of return statements the recursion depth is decreased and the top entry
of the caller-stack is dropped

c′.clr(x) = c.clr(x) for x ≤ c′.clr

We say that c and d are consistent for the caller stack and write clr − consis(c, d) if for all i the
second memory word under the base address of ST (i, c) stores the ’return address’ where the MIPS
program execution should continue after the return of the function. This should be the instruction
behind the end of the code code(n), that created the stack frame with the function call bw(n). The
node n is recorded in c.clr(i). Thus we require

d.m4(ba(ST (i, c)− 32832) = end(code(c.clr(i)) +32 132

Figure 1 illustrates how this works in a configuration c which performs a function call. If we connect
alle consistency relations X− consis(c, d) by logical ANDs we obtain the overall consistency relation

consis(c, d) =
∧
X

X − consis(c, d)

200

Figure 11.14: Maintaining clr − consis at a function call generated by node n = c.prn[1]. The node
n is recorded in the new top entry c′.clr(c′.rd) of the caller stack. A new top frame top(c′) is created
in the MIPS memory. In the second word below the base address we store the return address for the
pc after the call. It should 1 byte behind end(code(n)) .

11.2 Translation of Expressions

11.2.1 Aho-Ullman Algorithm

11.3 Translation of Statements

11.4 Reconstructing Consistent C0 configurations from MIPS

configurations

201

202

Chapter 12

Operating System support in MIPS
processors

203

204

Bibliography

[KMPar] M. Kovalev, S.M. Müller, and W.J. Paul. A Pipelined Multi-core MIPS Machine: Hardware
Implementation and Correctness Proof. Springer, 2013, to appear.

[MP98] Silvia M. Müller and Wolfgang J. Paul. On the correctness of hardware scheduling mecha-
nisms for out-of-order execution. Journal of Circuits, Systems, and Computers, 8(02):301–
314, 1998.

[MP00] S.M. Müller and W.J. Paul. Computer Architecture, Complexity and Correctness. Springer,
2000.

205

	Introduction
	Understanding Decimal Addition
	Experience versus Understanding
	The Natural Numbers
	 2+1=3 is a Definition
	1+2 =3 is a Theorem
	 9+1 = 10 is a Brilliant Theorem

	Summary

	Basic Mathematical Concepts
	Basics
	Numbers and Sets
	Sequences, their indexing and overloading
	Logical connectives and vector notation

	Modulo Computation
	Sums
	Geometric sums
	Arithmetic Sums

	Graphs
	Directed Graphs
	Directed acyclic graphs and the depth of nodes
	Rooted Trees

	Number Formats and Boolean Algebra
	Binary Numbers
	Two's Complement Numbers
	Boolean Algebra
	Identities
	Solving Equations
	Disjunctive Normal Form

	Hardware
	Gates and Circuits
	Some Basic Circuits
	Clocked Circuits
	Registers
	Finite State Transducers
	Realization of Moore Automata
	Precomputing Outputs of Moore Automata

	Five Shades of RAM
	Basic Random Access Memory
	Read Only Memory (ROM)
	Combining RAM and ROM
	Three Port RAM for General Purpose Registers
	SPR RAM

	Arithmetic Circuits
	Adder and Incrementer
	Carry-Chain Adder
	Conditional-Sum Adder and Incrementer
	Parallel Prefix Circuits
	Carry-Look-Ahead Adders

	Arithmetic Unit
	Arithmetic Logic Unit (ALU)
	Shifter
	Branch Condition Evaluation Unit

	A Basic Sequential MIPS Machine
	Tables
	I-Type
	R-type
	J-type

	MIPS ISA
	Configuration and Instruction Fields
	Instruction Decoding
	ALU-Operations
	Shift
	Branch and Jump
	Loads and Stores
	ISA Summary

	A Sequential Processor Design
	Hardware Configuration
	Fetch and Execute Cycles
	Reset
	Instruction Fetch
	Proof Goals for the Execute Stage
	Instruction Decoder
	Reading from General Purpose Registers
	Next PC Environment
	ALU Environment
	Shifter Environment
	Jump and Link
	Collecting Results
	Effective Address
	Memory Environment
	Writing to the General Purpose Register File

	Example Programs
	Simple MIPS Programs
	Software Multiplication
	School Method for Integer Division
	Implementing Integer Division

	Context Free Grammars
	Introduction to Context Free Grammars
	Syntax of Context Free Grammars
	Quick and Dirty Introduction to Derivation Trees
	Tree Regions
	Clean definition of derivation trees
	Composition and Decomposition of Derivation Trees
	Generated Languages

	Grammars for Expressions
	Syntax of Boolean Expressions
	Grammar for Arithmetic Expressions with Priorities
	Proof of Lemma 67
	Distinguishing Unary and Binary Minus

	The Language C0
	Grammar of C0
	Names and Constants
	Identifiers
	Arithmetic and Boolean Expressions
	Statements
	Programs
	Type and Variable Declarations
	Function Declarations
	Representing and Processing Derivation Trees in C0
	Sequence Elements and Flattened Sequences in the C0 Grammar

	Declarations
	Type Tables
	Global Variables
	Function Tables
	Variables and Subvariables of C0 Configurations
	Range of Types and Default Values

	C0 Configurations
	Variables, Subvariables and their Type in C0 Configurations c
	Value of Variables, Type Correctness and Invariants
	Expressions and statements in function bodies
	Program Rest
	Result destination Stack

	Initial Configuration
	Expression Evaluation
	Type, Right Value and Left Value of Expressions
	Constants
	Variable Binding
	Pointer Dereferencing
	Struct Components
	Array Elements
	'Address of'
	Unary Operators
	Binary Operators

	Statement Execution
	Assignment
	Conditional Statement
	'New' Statement
	Function Call
	Return

	Correctness of C0-Programs
	Assignment and Conditional Statement
	Computer Arithmetic
	While Loop
	Linked Lists
	Recursion

	A C0-Compiler
	Compiler Consistency
	Mememory Map
	Size of Types, Displacement and Base Address
	Consistency for Data, Pointers and Stack
	Consistency for Code
	Consistency for the PC and the Caller Stack

	Translation of Expressions
	Aho-Ullman Algorithm

	Translation of Statements
	Reconstructing Consistent C0 configurations from MIPS configurations

	Operating System support in MIPS processors

