Universität des Saarlandes FR 6.2 - Informatik

Prof. Dr. W.J. Paul

Dipl.-Ing. Christoph Baumann

5. Übungsblatt Informatik II

(Abgabe: 26.05.2008)

Aufgabe 1: (Basisoperator NOR)

(8 Punkte)

Ein neuer Operator NOR $\overline{\vee}$ für Boolsche Ausdrücke ist durch die folgende Wertetabelle gegeben:

x_1	x_2	$x_1 \overline{\vee} x_2$
0	0	1
0	1	0
1	0	0
1	1	0

Jede Boolsche Funktion f lässt sich mit der Konjunktion, der Disjunktion und der Negation realisieren, deshalb nennt man $\{\neg, \land, \lor\}$ eine Basis.

Zeige: Der NOR- Operator bildet eine Basis, d.h. mit ihm kann jede Schaltfunktion f dargestellt werden.

Aufgabe 2: (signed neg-Bit)

(5 Punkte)

Bei der Definition des neg-Bit der Arithmetic Unit hatten wir das exakte Ergebnis $r \in \mathbb{Z}$ eingeführt. Für u = 0 und $a, b \in \{0, 1\}^n$ ist es wie folgt definiert.

$$r = \begin{cases} [a] + [b] : sub = 0 \\ [a] - [b] : sub = 1 \end{cases}$$

Beweise:

$$r \in T_{n+1}$$

Aufgabe 3: (AU) $(5+(30 \div C(neg, ovf)) + (10 \div \max\{D(ovf), D(neg)\}) \text{ Punkte})$

Die Implementierung der Arithmetic Unit aus der Vorlesung ist unvollständig. Es wurden keine Schaltkreise für ovf- und neg-Bit konstruiert. Dies soll nun nachgeholt werden. Die folgenden Eingangssignale dürfen verwendet werden: $a_{n-1}, d_{n-1}, c_n, s_{n-1}, u, sub$

a) Die Definition von ovf verwendet das carry-Bit c_{n-1} . Gib eine Formel zu dessen Berechnung aus den gegebenen Signalen an! Beweise deinen Ansatz!

Tipp: Betrachte die Definition von s_{n-1} !

Was ergeben die booleschen Ausdrücke $x \oplus x$ und $x \oplus 0$ für ein $x \in \{0,1\}$?

- b) Konstruiere einen Schaltkreis zur Berechnung von ovf und neg mit möglichst geringen Kosten (siehe Tabelle 1)! Die minimalen Kosten betragen 24.
- c) Konstruiere einen Schaltkreis zur Berechnung von ovf und neg mit möglichst geringer Tiefe (siehe Tabelle 1)! Die minimale Tiefe beträgt für beide Signale 6.

Gatter	NOT	NAND/NOR	AND/OR	XOR/XNOR	MUX
Kosten	1	2	2	4	3
Tiefe	1	1	2	2	2

Tabelle 1: Die obigen Gatter mit den angegebenen Werten dürfen verwendet werden.

Aufgabe 4: (Compound Adder)

(8+6+2+6 Punkte)

Ein $Compound\ Adder$ ist ein Schaltkreis, der die folgende Funktion f berechnet:

$$f: \{0,1\}^{2n} \to \{0,1\}^{2n+2}, (a_{n-1},\dots,a_0,b_{n-1},\dots,b_0) \mapsto (s_n,\dots,s_0,t_n,\dots,t_0)$$

mit $\langle s \rangle = \langle a \rangle + \langle b \rangle$ und $\langle t \rangle = \langle a \rangle + \langle b \rangle + 1$.

a) Es seien C(1) = a und $C(n) = 2 \cdot C(\frac{n}{2}) + b \cdot n + d$. Zeige für Zweierpotenzen n:

$$C(n) \in \mathcal{O}(n \log n)$$

Hinweis: $\mathcal{O}(g(n))$ bezeichnet die Komplexitätsklasse einer Funktion f(n). Formal:

$$f(n) \in \mathcal{O}(g(n)) \iff \exists n_0 \in \mathbb{N}, c > 0 : \forall n \ge n_0 : f(n) \le c \cdot g(n)$$

Weiterhin darf die folgende Annahme für eine Funktion f(n) und Konstante d verwendet werden.

$$f(n) \in \mathcal{O}(n \log n) \implies f(n) + d \cdot \log n \in \mathcal{O}(n \log n)$$

- b) Gib eine Konstruktion für Compound Adder mit Kosten $\mathcal{O}(n \log n)$ für Zweierpotenzen n an. **Tipp**: Teile die Eingangsbits in zwei Teilmengen auf und berechne zunächst die Teilsummen mit Hilfe von Compound Addern, die eine geringere Bitbreite aufweisen. Der Aufbau ist ähnlich dem eines *Conditional Sum Adders*.
- c) Konstruiere mit Hilfe des Compound Adders einen n-Addierer der über Eingänge $a, b \in \{0, 1\}^n$, $c_0 \in \{0, 1\}$ und Ausgänge $s \in \{0, 1\}^n$, $c_0 \in \{0, 1\}$ verfügt, so dass gilt:

$$\langle c_n s[n-1:0] \rangle = \langle a[n-1:0] \rangle + \langle b[n-1:0] \rangle + c_0$$

d) Berechne und beweise die genauen Kosten und Tiefe deiner Konstruktion (siehe Tabelle 1)!