
Integration of Group Membership with Clock Synchronization in

Time-Triggered Architecture (TTA)

presented by: Cosmin Condea
supervised by: Eyad Alkassar

The FlexRay Communication Protocol

Prof. Dr. Wolfgang J. Paul

Universität des Saarlandes
SS, 2005



Contents

1 Introduction 2

2 Outline of the Approach 2
2.1 Benefits of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Abstract Principle of Integration 4

4 Proof of Integrated Services 7

5 Refinement of Untimed Synchronous System View 9
5.1 Constraints on Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Summary and Conclusions 11

1



1 Introduction

Time Triggered Architecture (TTA) is a distributed computer architecture designed for highly-
dependable systems. Two essential algorithms that lay within this protocol are the clock synchro-
nization and group membership. For both algorithms the correctness proof has been carried out in
isolation. Consequently, it is of utmost importance to inquire whether the results of the separate
analyses hold for the integration of the two services within TTA.
An in-depth view on the formal model, make us notice that there exists a mutual dependency between
these two algorithms. First of all, group membership is described withing the untimed synchronous
system model where the notion of time is abstracted away. Processors are assumed to be synchronized
and run in lock step. Clearly, the service provided by clock synchronization in reality is actually
hidden into the model, thus simplifying the formal analysis. As a result, group membership depends
on clock synchronization.
On the other, clock synchronization is dealt with on the time-triggered system model, which takes
into account explicit time issues. Furthermore, in TTA, a processor receives information about the
other processors’ clock readings via the normal exchange of data messages. Since a processor only
accepts messages from processors it considers non-faulty (belonging to the same membership set),
evidently clock synchronization depends on group membership.
A simple combination of the correctness proofs is not feasible due to the fact that the levels of
abstraction at which the services are modeled do not match. For this reason, one has to develop a
novel method that allows the integration of the two properties. Most importantly, given that the
untimed synchronous system model is an abstraction of the time triggered system model under the
assumption that processors are synchronized within a small bound, one should concretely apply this
relationship with respect to clock synchronization and group membership in order to show that they
both hold on the time triggered system layer.

2 Outline of the Approach

The first step in order to achieve the correctness proof of the integrated services, namely the group
membership and clock synchronization, is to split the analysis into a series of successive intervals
corresponding to synchronization intervals. The same ”granularity” of the analysis was used in the
proof of the clock synchronization and it also kept here because the synchronization algorithm is only
executed on synchronization intervals. As a side note, keep in mind that a synchronization interval
consists of several slots. The ultimate goal is then to show by induction on the synchronization
intervals i, that for all i, clock synchronization and group membership hold concomitantly , as
expressed by the following theorem:

Theorem 2.1. (INTEGRATION)
The clock synchronization property and the group membership property hold in all synchronization
intervals i:

∀i : cs prop(i) ∧mem prop(i)

This is the theorem exactly as it is stated in the PhD thesis of H. Pfeifer, my main source information.
However, we have already mentioned that both properties have to hold on the concrete level, that is
on the time-triggered system level. Still, group membership was proved on the more abstract level,
that of synchronous time system. Taking into account the above mentioned aspects and for reasons
of clarity of expression the theorem would, in my opinion, better be expressed in a way that clearly
points out that we refer to the ”refined” membership property which holds on the time-triggered
level. My suggestion is to introduce another predicate mem propREFINED and state the theorem as
below:

2



Theorem 2.2. (INTEGRATION - my version)
The clock synchronization property and the group membership property hold on the time-triggered
system level in all synchronization intervals i:

∀i : cs prop(i) ∧mem propREFINED(i)

Note: I will continue the explanation of the approach using my additional predicate which, in my
honest belief, is helpful in providing us with a better insight into the matter. So, from now on:

• mem prop : Group Membership on the untimed synchronous system level

• mem propREFINED : Group Membership on the timed triggered system level

The next step is crucial for the integration. It is concerned with the ”mapping” of the membership
proof from the synchronous system model down to the time triggered system model which is unerringly
entailed due to the differences between the two abstraction levels. Formally, this mapping(refinement)
can be expressed in the following form:

∀i : mem prop(i) ∧ cs prop(i) ⇒ mem propREFINED(i)

This relation, as it is written above, is expressed for synchronization intervals i. However, since
membership is proved on a slot basis, the refinement relation will also be valid for all slots. The
cs prop conjunct is motivated by the fact that this ”transformation” requires that synchronized clocks
are present.
Now we can reason about the main theorem with respect to its two consisting parts.

Group Membership Part: is trivially true; applying the refinement, we obtain that the mem-
bership holds not only on each synchronization interval, but actually on every slot in the
time-triggered model.

Clock Synchronization Part: the proof of the clock synchronization goes along the following for-
mulas:

cs req(i) ∧ cs prop(i) ⇒ cs prop(i + 1)

In words, if clock synchronization requirements and clock synchronization property hold in
interval i, then the clock synchronization holds in the (i + 1)th interval. The cs req predicate
was kept as a precondition that had to be unavoidably satisfied when clock synchronization
was detachedly proved. However, to serve the scope of the integration, this predicate must be
interpreted now and, furthermore, we shall assure that it directly relies on the availability of
the membership service, as the following formula reflects it:

∀i : mem propREFINED(i) ⇒ cs req(i)

Additionally, we assume the clocks to be initially synchronized, that is:

cs prop(0)

Finally, the desired integration proof of the group membership and clock synchronization can be
accomplished by an easy induction on the number os synchronization intervals using the formulas
above.

3



2.1 Benefits of the Approach

As stressed earlier, the synchronization service and the membership service depend on each other.
The key point in their integration proof is to break this apparent circular dependency which has been
completely achieved in the outlined approach by introducing an abstraction in two flavors.
First, group membership abstracts from clock synchronization by lifting the analysis to a higher,
more abstract system model - the untimed synchronous system model. At this level, processors
operate in lock step, that is, are completely synchronous and events such as message passing or state
transitions occur instantaneously. Hence, no aspects of the actual synchronization proof were needed
since synchronization is already part of the model.
The other form of abstraction is used in the analysis of the clock synchronization service. The
dependency on group membership is abstracted away by introducing an abstract precondition that
must be satisfied in order to complete the proof. In our case this abstract precondition involves an
assumption about the correct reception of messages - an issue that is directly linked to membership.
The actual interpretation of what a correct message reception means was kept uninterpreted, that is
abstract, thus avoiding the need to include any detail from the membership service into the analysis
of synchronization.
With this organization of the various models the efforts to integrate the two services have to con-
centrate only on resolving the abstractions. This means, on one hand, to show that the proof of
group membership is valid within the time-triggered and, on the other hand, to show that group
membership provides an adequate interpretation of correct message reception such that presupposed
hypotheses for clock synchronization are satisfied. This is an enormous advantage of the presented
approach. Inherently, this proof method totally eliminates the need of performing double or parallel
induction like a standard approach would surely necessitate.
Moreover, as a concluding remark regarding the benefits, it is naturally more intuitive when one
proves an integration theorem of two or more properties to attempt to reuse the standalone proofs
of properties. This way, the complexity of the proof is kept feasible for formal analysis by employing
some kind of modularization.

3 Abstract Principle of Integration

To emphasize the outlined approach at a higher level, the author introduces a general abstract
principle that allows to integrate two mutually dependent properties that separately hold on two
different levels of abstraction - one abstract and one concrete - such that in the end it can be proved
that they both hold on the same (concrete) abstraction level. Certain requirements have to be
fulfilled by the two properties for the principle to be applicable. Since clock synchronization and
group membership will meet all the requirements, as it will be seen later on, their integration proof
is actually an instance of this abstract principle.
For now, let us define all the entities of this abstract principle:

• uninterpreted types A(abstract), C(concrete) and State

• ”initial” elements initA : A and initC : C

• ”successor” functions nextA : A → A and nextC : C → C. These functions map an element of
A or C to its successor.

• refinement function refine : A → C. This function is intended to reflect the relationship
between index types A and C.

• state accessor functions stateA : A → State and stateC : C → State. These functions are
intended to create a sequence of states with the index being of type A or C, respectively.

4



• predicates PropA and PropC over type state expressing the properties to be integrated. PropA
is supposed to be expressed on an abstract whereas PropC on a more concrete level.

• predicates ReqA and ReqC over type State expressing certain conditions necessary to complete
the proofs of PropA and PropC, respectively.

We are interested in the scenario when PropA and PropC can be proven independently of each other
at different levels of abstraction but their proofs rely on particular preconditions ReqA and ReqC,
where the preconditions for PropA can be satisfied by PropC and vice-versa. As the next theorem
expresses it, the aim is to finally prove that PropA and PropC hold simultaneously on the concrete
level of C.

Theorem 3.1. (Integration of Properties)

∀a : c = stateC(refine(a)) ⇒ PropA(c) ∧ PropC(c)

Given the way we express the theorem and the fact that we need to prove propositions over state
sequences, we need an induction principle over A.

Requirement 1. (Induction over A)
For all predicates P over type A, the following induction principle holds:

P (initA) ∧ (∀a : P (a)) ⇒ P (nextA(a))) ⇒ ∀a : P (a)

The initial element of A should be refined into the initial element of C and furthermore, refine
should commute with the successor function: refining the successor of an element a of A is the same
as refining a and then applying the successor function in C.

Requirement 2. (Refinement Function)
The refine function refine must satisfy the following two conditions:

• refinement of initial elements:
refine(initA) = initC

• refinement of successors:

∀a : refine(nextA(a)) = nextC(refine(a))

The following two requirements state that both PropA and PropC can be proven in an induction-like
manner at their respective abstraction level.

Requirement 3. (Proof of PropA)
The proposition PropA can be proved on the abstract level in an induction-like manner:

• initial element:
PropA(stateA(initA))

• inductive step:

∀a : PropA(stateA(a)) ∧ReqA(stateA(a)) ⇒ PropA(stateA(nextA(a)))

5



Requirement 4. (Proof of PropC)
The proposition PropC can be proved on the concrete level in an induction-like manner:

• initial element:
PropC(stateC(initC))

• induction step:

∀c : PropC(stateC(c)) ∧ReqC(stateC(c)) ⇒ PropC(stateC(nextC(c)))

The next two requirements illustrate how the ReqA and ReqC should be provided. To demonstrate
the mutual dependency between PropA and PropC, we assume that each ReqA and ReqC need some
”input” from the other level of abstraction.

Requirement 5. (PropA provides ReqC)
Let c = stateC(refine(a)). The requirement ReqC holds for state c on the concrete level if the
property PropA holds in that state.

PropA(c) ⇒ ReqC(c)

With regard to this requirement, be aware of the fact that possibly PropC might not be extensible
on the abstract level. For example, clock synchronization does not make much sense in an untimed
synchronous system model.

Requirement 6. (PropC provides ReqA)
Let c = stateC(refine(a)). The requirement ReqA holds for state on the abstract level if both the
property PropA holds in that state and PropC holds in the corresponding concrete state.

PropA(stateA(a)) ∧ PropC(c) ⇒ ReqA(stateA(a))

This is one essential requirement with regard to the adopted integration principle, as it defines how
property PropA can be refined onto the concrete level.

Requirement 7. (Refinement of PropA)
Let c = stateC(refine(a)). The property PropA holds for an abstract state can be refined onto the
concrete level provided PropC holds for the corresponding concrete state.

PropA(stateA(a)) ∧ PropC(c) ⇒ PropA(c)

The last requirement allows to map PropA back to the abstract level.

Requirement 8. (Abstraction of PropA)
Let c = stateC(refine(a)). If property PropA holds in c, then it also holds in the corresponding
abstract state.

PropA(c) ⇒ PropA(stateA(a))

6



Having presented the above requirements, the proof of the Theorem 3.1 can consequently be devel-
oped:

Proof. The proof follows an induction on abstract type a.

Base Case:

- First, we establish PropC(stateC(refine(initA))) using Req. 4 in combination with Req.
2

- To prove PropA(stateC(refine(initA))) we can apply Req. 7. This requires to show also
that PropA(stateA(initA)) holds, which can be accomplished using Req. 3 as well as a
proof of PropC(stateC(refine(initA))), as above.

Induction Step: Let c = stateC(refine(a)). We assume the both PropA and PropC hold for c.

- First, we consider PropC(stateC(refine(nextA(a)))). Using Req. 2 we get
PropC(stateC(nextC(refine(a)))) and apply Req. 4. This requires to show that PropC(c)
holds, which is done using the induction hypothesis, and a proof of ReqC(c). The latter
can be established using Req. 5 where the precondition PropA(c) is given by the induction
hypothesis.

- In order to prove PropA(stateA(nextA(a))) we use the proof principle for A as given by
Req. 3. This requires us to show two things. First we must prove that PropA(stateA(a))
holds, which can be done using the induction hypothesis together with Req. refr8. Second,
we need a proof of Req(stateA(a)). The latter can be accomplished by applying Req. 6.
In order to be able make use of the last mentioned requirement, we must show that
its precondition are satisfied. The first, PropC(c) is given by the induction hypothesis,
whereas the second, PropA(stateA(a)) is proved as above.

4 Proof of Integrated Services

To apply the abstract principle to the concrete case of group membership and clock synchronization
we must assign each entity from abstract the principle an element from our ”real” scenario. This
assignments are illustrated in Table 4. Then, the integration proof for clock synchronization and
group membership can be inherited from the generic proof presented in the previous section, under
the condition that all requirements are met by the synchronization and membership services.
Most of them are rather easy to show, such as the induction principle on natural numbers or the
properties of the refinement function. Requirements 3 and 8 require us to prove the validity of group
membership within the untimed synchronous system model, whereas requirement 4 requires to prove
the validity of clock synchronization within the time-triggered system model. These are beyond the
scope of my topic and their elaborate proofs can be found in Chapter 3, respectively Chapter 4 in
the PhD thesis of H. Pfeifer.
The more interesting proofs with regard to integration aspects are those of Req. 5 and Req. 7. In the
following, I will continue with a sketch the proof of Requirement 5, while Requirement 7 is outlined in
the next section. The fifth requirement corresponds to proving that if the group membership property
holds on the time-triggered level in a given slot, then the requirements for clock synchronization, as
expressed by cs req are fulfilled.
The property cs req refers directly to a predicate correct msg which in the separate proof of clock
synchronization was left uninterpreted and assumed to be valid. However, now, as we speak about the
group membership as well and, additionally, we aim at integrating it with clock synchronization, it is
time that we provide an interpretation for what correct msg means. Recall that processors encode
their membership information in the normal data messages they send. We also assume there exists

7



Integration Principle
Entities

Instantiation for G.M. and C.S.

types A, C and State
State function mapping processors to the union of state elements used for

group membership and clock synchronization
A natural numbers in order to count slots in the untimed synchronous

system model
C the product of types Slot and CTime, where the first element de-

notes the slot number and the second element is the logical clock time.
This choice is due to the fact that in the time-triggered model we refer
to states at certain clock times; more precisely, we want to refer to the
state of a processor at the end of the communication phase.

”initial” elements
initA : A 0 (zero)
initC : C (0, schedule(0) + cmp start(0))

Note: schedule(i) represents the start time of slot i, whereas
cmp start(i) denotes the start of the computation time in slot i, or
equivalently, the end of the communication phase of that particular
slot.

”successor” elements
nextA : A → A sl 7→ sl + 1 (simply by adding 1)
nextA : C → C (sl, T ) 7→ (sl + 1, schedule(sl + 1) + cmp start(sl + 1))

refinement function
refine : A → C a slot number sl from the abstract level is refined on the concrete level

to the expression (sl, schedule(sl) + cmp start(sl)).
state accessor functions

stateA : A → State for the abstract level, stateA is given by the state accessor func-
tion of the untimed synchronous system model, statess, where
stateA(sl)(p) = statess(sl, p), for any processor p

stateC : C → State for the concrete level, the corresponding function statett of the
time-triggered model is used for stateC, where stateC((sl, T ))(p) =
statett(T, p), for any processor p

predicates PropA and PropC
PropA Group Membership
PropC Clock Synchronization

predicates ReqA and ReqC
ReqA T (True): since the group membership property can be proved in the

synchronous system model without referring to clock synchronization
ReqC cs req: the necessary requirements needed by the clock synchroniza-

tion

Table 1: From the Abstract Principle to G.M. and C.S.

8



some form of message decoding (for instance, by performing CRC tests), formally represented by the
decode msg predicate which allows a processor to extract the membership information mem. Then,
we can state the following definition which says that a message is considered correct by a (receiver)
processor if its membership information equals the receiver’s view.

Definition 4.1. (Correct Message)
Let s be the currect state of a processor, and m the message it has received in the current slot.
Message m is said to be correct w.r.t. s, denoted correct msg(s,m) if

mem(s) = decode mem(m)

Moreover, we must assume that a non-faulty broadcaster will correctly encode its membership infor-
mation into its message.

Assumption 1. (Non-faulty Sender Correct Message)
Let p be the current broadcaster in slot t, and s its current state. If p is non-faulty, then it correctly
encodes its membership information in the message m it sends.

sent(t, p) ∧ p ∈ NPt ⇒ mem(s) = decode mem(m)

We are now able to prove Requirement 5 as an outcome of the following 3 statements:

1. the agreement property of group membership provides the fact that all non-faulty processors
have the same membership sets

2. if the current broadcaster is non-faulty, its membership set is correctly encoded in the sent
message (by the above assumption)

3. the receiver is non-faulty

Consequently, all non-faulty receivers consider the message correct. This, of course, under the as-
sumption that during the particular slot we are reasoning about, no major fault was encountered
that prohibited communication at all.

5 Refinement of Untimed Synchronous System View

This section presents a proof of the refinement relationship that allows properties of a distributed
algorithm that are modeled and verified at the synchronous system level to be mapped onto the
time triggered level. Thus, the final requirement, Req. 7, from the abstract principle presented in
the previous section is proved and hence, the proof of integrating clock synchronization with group
membership is completed.
In order to be able to establish a relationship between the two abstraction levels it it necessary to
prove that a specific algorithm has the same behavior both on the time-triggered system level and on
the untimed synchronous system level. This is accomplished through a traditional simulation proof:
we show that the time triggered algorithm simulates - or implements - the untimed synchronous
system. We therefore compare the execution of the algorithm on both levels. More exactly, we
pay attention to the state of the processors that run the algorithm and the messages that are sent
or received by these processors. Whereas in the untimed synchronous system model all processors
take their steps simultaneously and instantaneously, the time triggered model introduces some time
intervals during which these steps occur. Since at this level, we can only determine the state of a

9



processor with respect to its local time, we must require there exists some sort of synchronization in
the time triggered system model - obviously accomplished by clock synchronization algorithm.
The other aspect pertaining to these abstraction levels is with regard to the fault model they employ.
In order to be able to carry over any fault tolerance behavior that is established for the untimed
synchronous system down to the time-triggered system, we must ensure that the two system descrip-
tions use the same fault model. For this reason, the timing faults which are characteristic only to the
time triggered system model must manifest themselves as either send or receive faults in the untimed
synchronous system model.
As mentioned earlier, the ultimate goal concerning the refinement is to prove that at all (real) times,
the state of a processor in the untimed synchronous system is the same as the corresponding state
in the time triggered system. Since there is no perfect synchronization, we need to determine an
instant at which all processors on the time-triggered level are in the same round in order to find
a corresponding system state at the synchronous level. We know a slot on the time triggered level
is divided into a communication phase and a computation phase (exactly in this order). When an
algorithm is executed on the time triggered level, the processors change their internal state some time
during the computation phase while during the communication phase their states remain unchanged.
Consequently, the appropriate instants where we can compare the two system levels - synchronous
and time triggered - are those belonging to the communication phase of the processors. However,
besides imperfect synchronization, we must also take into account that some processors might have
faster clocks than others and thus they begin their computation phase earlier. The interval of interest
is, hence, what could be called the global communication phase of the system, that is the real-time
interval during which all non-faulty processors are in their communication phase. The next definition
expresses this concept in a formal way.

Definition 5.1. (Global Communication Phase)
The global communication phase, denoted CommPhase(sl) of a givel slot sl is defined as the inter-
section of the communication phases of all non-faulty processors:

t ∈ CommPhase(sl) ⇐⇒ ∀p ∈ NPt : in comm phase(sl, p)(t)

Having introduced the above notion, we are able to state the refinement relationship. Keep in mind
the main requirement for the refinement relationship to hold is that processors of the system are
synchronized.

Theorem 5.1. (Refinement Relationship)
Let sl denote some slot, i the synchronization round to which sl belongs. Then for all processors
p that are non-faulty during the ith synchronization round, the state of the processors in the un-
timed synchronous system equals the corresponding state in time-triggered system during the global
communication phase of sl, provided clocks of the processors are synchronized:

cs propi ∧ t ∈ CommPhase(sl) ⇒ statess(sl, p) = statett(T, p)

where T = LCi
p(t) - the logical clock of p in synchronization interval i.

Proof. Because t belongs to the global communication phase of slot sl, the processor p is in the
communication phase at time t and hence T = LCi

p(t) belongs to the communication phase of sl.

schedule(sl) ≤ LCp
i (t) < schedule(sl) + cmp start(sl)

As p is non-faulty, we can derive that p has not changed its state since the beginning of the current
slot, and hence

statett(T, p) = statett(schedule(sl), p)

Consequently, it suffices to prove that the corresponding states for p coincide at the start of each slot.
This is proved in the separate lemma below.

10



The Lemma 5.1 needed in the proof of the main theorem states that for all processors, the state
descriptions at the start of each slot are equivalent. Its proof follows an induction on the slot number
and, additionally, it requires that Lemma 5.2 also holds. The latter lemma states that a message
reaches a receiver in its communication phase. Since the combined proofs of the two lemmas take
approximatively two pages, I restrained myself to only expressing them. For details, please consult
the PhD thesis of H. Pfeifer p.174-176.

Lemma 5.1. Given the preconditions of Theorem 5.1, the corresponding states of the non-faulty
processors in the untimed synchronous system and the time-triggered system at the beginning of
each slot coincide:

cs propi ⇒ statess(sl, p) = statett(schedule(sl), p)

Lemma 5.2. Provided that the clocks are synchronized, a message reaches a non-faulty receiver p
in its communication phase.

cs propi ⇒ in comm phase(sl, p)(arr time(sl, p))

5.1 Constraints on Timing Parameters

The precision δ of the clock synchronization algorithm imposes several constraints for the various
timing-related entities involved, such as the length of the communication phase and computation
phase of the broadcasting slots, respectively.

Constraint 1: The time at which the sender of a slot starts its broadcast must be at least δ time
units into its communication phase in order to allow the processor with the slowest clock to
reach the communication phase.

Constraint 2: The communication phase must be long enough to ensure that even the processor
with the fastest clock has not already started its computation phase when the message of a slow
processor reaches it.

6 Summary and Conclusions

In his work, the author presented a formal proof of the integration of group membership with clock
synchronization. The apparent circular dependencies between the two algorithms have been separated
by expressing the group membership protocol within a model that abstracts from clock synchroniza-
tion, while the formalization of the latter is parameterized with abstract properties regarding group
membership. The sound integration follows an inductive argument on the number of synchronization
intervals. For the inductive step in this proof it is necessary to show that the abstractions can be
resolved. On one hand, this means that the proof of group membership must be transferred from
the synchronous level to the time triggered level. On the other hand, it must be shown that group
membership provides a good interpretation of abstract entities in the synchronization model such
that the presupposed hypotheses for clock synchronization are met. The overall integration proof
was presented in detail, by showing that it can be obtained as an instantiation of a more general
abstract principle.

11



References

[1] H. Pfeifer: Formal Analysis of Fault-Tolerant Algorithms in the Time-Triggered Architecture,
PhD Thesis, Univ. Ulm, 2003

[2] J. Rushby: An Overview of Formal Verification For the Time-Triggered Architecture, September
2002, LNCS Vol. 2469, pp. 833105.

[3] H. Pfeifer: Formal Verification of the TTP Group Membership Algorithm, Proc. of
FORTE/PSTV 2000. Kluwer Academic Publishers, pp. 3-18, October 2000.

12


	Introduction
	Outline of the Approach
	Benefits of the Approach

	Abstract Principle of Integration
	Proof of Integrated Services
	Refinement of Untimed Synchronous System View
	Constraints on Timing Parameters

	Summary and Conclusions

