/* Handle initialization things in C++. Copyright (C) 1987, 89, 92, 93, 94, 1995 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* High-level class interface. */ #include "config.h" #include "tree.h" #include "rtl.h" #include "cp-tree.h" #include "flags.h" #include "output.h" #undef NULL #define NULL 0 /* In C++, structures with well-defined constructors are initialized by those constructors, unasked. CURRENT_BASE_INIT_LIST holds a list of stmts for a BASE_INIT term in the grammar. This list has one element for each base class which must be initialized. The list elements are [basename, init], with type basetype. This allows the possibly anachronistic form (assuming d : a, b, c) "d (int a) : c(a+5), b (a-4), a (a+3)" where each successive term can be handed down the constructor line. Perhaps this was not intended. */ tree current_base_init_list, current_member_init_list; void emit_base_init (); void check_base_init (); static void expand_aggr_vbase_init (); void expand_member_init (); void expand_aggr_init (); static void expand_aggr_init_1 (); static void expand_recursive_init_1 (); static void expand_recursive_init (); static void expand_virtual_init PROTO((tree, tree)); tree expand_vec_init (); static void add_friend (), add_friends (); /* Cache _builtin_new and _builtin_delete exprs. */ static tree BIN, BID, BIVN, BIVD; /* Cache the identifier nodes for the two magic field of a new cookie. */ static tree nc_nelts_field_id; #if 0 static tree nc_ptr_2comp_field_id; #endif static tree minus_one; /* Set up local variable for this file. MUST BE CALLED AFTER INIT_DECL_PROCESSING. */ tree BI_header_type, BI_header_size; void init_init_processing () { tree fields[1]; /* Define implicit `operator new' and `operator delete' functions. */ BIN = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) NEW_EXPR]))); TREE_USED (TREE_OPERAND (BIN, 0)) = 0; BID = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) DELETE_EXPR]))); TREE_USED (TREE_OPERAND (BID, 0)) = 0; BIVN = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) VEC_NEW_EXPR]))); TREE_USED (TREE_OPERAND (BIVN, 0)) = 0; BIVD = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) VEC_DELETE_EXPR]))); TREE_USED (TREE_OPERAND (BIVD, 0)) = 0; minus_one = build_int_2 (-1, -1); /* Define the structure that holds header information for arrays allocated via operator new. */ BI_header_type = make_lang_type (RECORD_TYPE); nc_nelts_field_id = get_identifier ("nelts"); fields[0] = build_lang_field_decl (FIELD_DECL, nc_nelts_field_id, sizetype); finish_builtin_type (BI_header_type, "__new_cookie", fields, 0, double_type_node); BI_header_size = size_in_bytes (BI_header_type); } /* Subroutine of emit_base_init. For BINFO, initialize all the virtual function table pointers, except those that come from virtual base classes. Initialize binfo's vtable pointer, if INIT_SELF is true. CAN_ELIDE is true when we know that all virtual function table pointers in all bases have been initialized already, probably because their constructors have just be run. ADDR is the pointer to the object whos vtables we are going to initialize. REAL_BINFO is usually the same as BINFO, except when addr is not of pointer to the type of the real derived type that we want to initialize for. This is the case when addr is a pointer to a sub object of a complete object, and we only want to do part of the complete object's initialization of vtable pointers. This is done for all virtual table pointers in virtual base classes. REAL_BINFO is used to find the BINFO_VTABLE that we initialize with. BINFO is used for conversions of addr to subobjects. BINFO_TYPE (real_binfo) must be BINFO_TYPE (binfo). Relies upon binfo being inside TYPE_BINFO (TREE_TYPE (TREE_TYPE (addr))). */ void expand_direct_vtbls_init (real_binfo, binfo, init_self, can_elide, addr) tree real_binfo, binfo, addr; int init_self, can_elide; { tree real_binfos = BINFO_BASETYPES (real_binfo); tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = real_binfos ? TREE_VEC_LENGTH (real_binfos) : 0; for (i = 0; i < n_baselinks; i++) { tree real_base_binfo = TREE_VEC_ELT (real_binfos, i); tree base_binfo = TREE_VEC_ELT (binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (real_binfo)); if (! TREE_VIA_VIRTUAL (real_base_binfo)) expand_direct_vtbls_init (real_base_binfo, base_binfo, is_not_base_vtable, can_elide, addr); } #if 0 /* Before turning this on, make sure it is correct. */ if (can_elide && ! BINFO_MODIFIED (binfo)) return; #endif /* Should we use something besides CLASSTYPE_VFIELDS? */ if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (real_binfo))) { tree base_ptr = convert_pointer_to_real (binfo, addr); expand_virtual_init (real_binfo, base_ptr); } } /* 348 - 351 */ /* Subroutine of emit_base_init. */ static void perform_member_init (member, name, init, explicit, protect_list) tree member, name, init, *protect_list; int explicit; { tree decl; tree type = TREE_TYPE (member); if (TYPE_NEEDS_CONSTRUCTING (type) || (init && TYPE_HAS_CONSTRUCTOR (type))) { /* Since `init' is already a TREE_LIST on the current_member_init_list, only build it into one if we aren't already a list. */ if (init != NULL_TREE && TREE_CODE (init) != TREE_LIST) init = build_tree_list (NULL_TREE, init); decl = build_component_ref (C_C_D, name, 0, explicit); if (explicit && TREE_CODE (type) == ARRAY_TYPE && init != NULL_TREE && TREE_CHAIN (init) == NULL_TREE && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE) { /* Initialization of one array from another. */ expand_vec_init (TREE_OPERAND (decl, 1), decl, array_type_nelts (type), TREE_VALUE (init), 1); } else expand_aggr_init (decl, init, 0, 0); } else { if (init == NULL_TREE) { if (explicit) { cp_error ("incomplete initializer for member `%D' of class `%T' which has no constructor", member, current_class_type); init = error_mark_node; } /* member traversal: note it leaves init NULL */ else if (TREE_CODE (TREE_TYPE (member)) == REFERENCE_TYPE) cp_pedwarn ("uninitialized reference member `%D'", member); } else if (TREE_CODE (init) == TREE_LIST) { /* There was an explicit member initialization. Do some work in that case. */ if (TREE_CHAIN (init)) { warning ("initializer list treated as compound expression"); init = build_compound_expr (init); } else init = TREE_VALUE (init); } /* We only build this with a null init if we got it from the current_member_init_list. */ if (init || explicit) { decl = build_component_ref (C_C_D, name, 0, explicit); expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init)); } } expand_cleanups_to (NULL_TREE); if (TYPE_NEEDS_DESTRUCTOR (type)) { tree expr = build_component_ref (C_C_D, name, 0, explicit); expr = build_delete (type, expr, integer_zero_node, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); if (expr != error_mark_node) { start_protect (); *protect_list = tree_cons (NULL_TREE, expr, *protect_list); } } } extern int warn_reorder; /* Subroutine of emit_member_init. */ static tree sort_member_init (t) tree t; { tree x, member, name, field, init; tree init_list = NULL_TREE; tree fields_to_unmark = NULL_TREE; int last_pos = 0; tree last_field; for (member = TYPE_FIELDS (t); member ; member = TREE_CHAIN (member)) { int pos; /* member could be, for example, a CONST_DECL for an enumerated tag; we don't want to try to initialize that, since it already has a value. */ if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member)) continue; for (x = current_member_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos) { /* If we cleared this out, then pay no attention to it. */ if (TREE_PURPOSE (x) == NULL_TREE) continue; name = TREE_PURPOSE (x); #if 0 field = (TREE_CODE (name) == COMPONENT_REF ? TREE_OPERAND (name, 1) : IDENTIFIER_CLASS_VALUE (name)); #else /* Let's find out when this happens. */ my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 348); field = IDENTIFIER_CLASS_VALUE (name); #endif /* If one member shadows another, get the outermost one. */ if (TREE_CODE (field) == TREE_LIST) field = TREE_VALUE (field); if (field == member) { if (warn_reorder) { if (pos < last_pos) { cp_warning_at ("member initializers for `%#D'", last_field); cp_warning_at (" and `%#D'", field); warning (" will be re-ordered to match declaration order"); } last_pos = pos; last_field = field; } /* Make sure we won't try to work on this init again. */ TREE_PURPOSE (x) = NULL_TREE; x = build_tree_list (name, TREE_VALUE (x)); goto got_it; } } /* If we didn't find MEMBER in the list, create a dummy entry so the two lists (INIT_LIST and the list of members) will be symmetrical. */ x = build_tree_list (NULL_TREE, NULL_TREE); got_it: init_list = chainon (init_list, x); } /* Initializers for base members go at the end. */ for (x = current_member_init_list ; x ; x = TREE_CHAIN (x)) { name = TREE_PURPOSE (x); if (name) { if (purpose_member (name, init_list)) { cp_error ("multiple initializations given for member `%D'", IDENTIFIER_CLASS_VALUE (name)); continue; } init_list = chainon (init_list, build_tree_list (name, TREE_VALUE (x))); TREE_PURPOSE (x) = NULL_TREE; } } return init_list; } static void sort_base_init (t, rbase_ptr, vbase_ptr) tree t, *rbase_ptr, *vbase_ptr; { tree binfos = BINFO_BASETYPES (TYPE_BINFO (t)); int n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; int i; tree x; tree last; /* For warn_reorder. */ int last_pos = 0; tree last_base = NULL_TREE; tree rbases = NULL_TREE; tree vbases = NULL_TREE; /* First walk through and splice out vbase and invalid initializers. Also replace names with binfos. */ last = tree_cons (NULL_TREE, NULL_TREE, current_base_init_list); for (x = TREE_CHAIN (last); x; x = TREE_CHAIN (x)) { tree basename = TREE_PURPOSE (x); tree binfo; if (basename == NULL_TREE) { /* Initializer for single base class. Must not use multiple inheritance or this is ambiguous. */ switch (n_baseclasses) { case 0: cp_error ("`%T' does not have a base class to initialize", current_class_type); return; case 1: break; default: cp_error ("unnamed initializer ambiguous for `%T' which uses multiple inheritance", current_class_type); return; } binfo = TREE_VEC_ELT (binfos, 0); } else if (is_aggr_typedef (basename, 1)) { binfo = binfo_or_else (IDENTIFIER_TYPE_VALUE (basename), t); if (binfo == NULL_TREE) continue; /* Virtual base classes are special cases. Their initializers are recorded with this constructor, and they are used when this constructor is the top-level constructor called. */ if (TREE_VIA_VIRTUAL (binfo)) { tree v = CLASSTYPE_VBASECLASSES (t); while (BINFO_TYPE (v) != BINFO_TYPE (binfo)) v = TREE_CHAIN (v); vbases = tree_cons (v, TREE_VALUE (x), vbases); continue; } else { /* Otherwise, if it is not an immediate base class, complain. */ for (i = n_baseclasses-1; i >= 0; i--) if (BINFO_TYPE (binfo) == BINFO_TYPE (TREE_VEC_ELT (binfos, i))) break; if (i < 0) { cp_error ("`%T' is not an immediate base class of `%T'", IDENTIFIER_TYPE_VALUE (basename), current_class_type); continue; } } } else my_friendly_abort (365); TREE_PURPOSE (x) = binfo; TREE_CHAIN (last) = x; last = x; } TREE_CHAIN (last) = NULL_TREE; /* Now walk through our regular bases and make sure they're initialized. */ for (i = 0; i < n_baseclasses; ++i) { tree base_binfo = TREE_VEC_ELT (binfos, i); int pos; if (TREE_VIA_VIRTUAL (base_binfo)) continue; for (x = current_base_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos) { tree binfo = TREE_PURPOSE (x); if (binfo == NULL_TREE) continue; if (binfo == base_binfo) { if (warn_reorder) { if (pos < last_pos) { cp_warning_at ("base initializers for `%#T'", last_base); cp_warning_at (" and `%#T'", BINFO_TYPE (binfo)); warning (" will be re-ordered to match inheritance order"); } last_pos = pos; last_base = BINFO_TYPE (binfo); } /* Make sure we won't try to work on this init again. */ TREE_PURPOSE (x) = NULL_TREE; x = build_tree_list (binfo, TREE_VALUE (x)); goto got_it; } } /* If we didn't find BASE_BINFO in the list, create a dummy entry so the two lists (RBASES and the list of bases) will be symmetrical. */ x = build_tree_list (NULL_TREE, NULL_TREE); got_it: rbases = chainon (rbases, x); } *rbase_ptr = rbases; *vbase_ptr = vbases; } /* Perform partial cleanups for a base for exception handling. */ static tree build_partial_cleanup_for (binfo) tree binfo; { tree expr = convert_pointer_to_real (binfo, build_unary_op (ADDR_EXPR, C_C_D, 0)); return build_delete (TREE_TYPE (expr), expr, integer_zero_node, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); } /* Perform whatever initializations have yet to be done on the base class of the class variable. These actions are in the global variable CURRENT_BASE_INIT_LIST. Such an action could be NULL_TREE, meaning that the user has explicitly called the base class constructor with no arguments. If there is a need for a call to a constructor, we must surround that call with a pushlevel/poplevel pair, since we are technically at the PARM level of scope. Argument IMMEDIATELY, if zero, forces a new sequence to be generated to contain these new insns, so it can be emitted later. This sequence is saved in the global variable BASE_INIT_EXPR. Otherwise, the insns are emitted into the current sequence. Note that emit_base_init does *not* initialize virtual base classes. That is done specially, elsewhere. */ extern tree base_init_expr, rtl_expr_chain; void emit_base_init (t, immediately) tree t; int immediately; { extern tree in_charge_identifier; tree member, x; tree mem_init_list; tree rbase_init_list, vbase_init_list; tree t_binfo = TYPE_BINFO (t); tree binfos = BINFO_BASETYPES (t_binfo); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; tree expr = NULL_TREE; my_friendly_assert (protect_list == NULL_TREE, 999); if (! immediately) { int momentary; do_pending_stack_adjust (); /* Make the RTL_EXPR node temporary, not momentary, so that rtl_expr_chain doesn't become garbage. */ momentary = suspend_momentary (); expr = make_node (RTL_EXPR); resume_momentary (momentary); start_sequence_for_rtl_expr (expr); } if (write_symbols == NO_DEBUG) /* As a matter of principle, `start_sequence' should do this. */ emit_note (0, -1); else /* Always emit a line number note so we can step into constructors. */ emit_line_note_force (DECL_SOURCE_FILE (current_function_decl), DECL_SOURCE_LINE (current_function_decl)); mem_init_list = sort_member_init (t); current_member_init_list = NULL_TREE; sort_base_init (t, &rbase_init_list, &vbase_init_list); current_base_init_list = NULL_TREE; if (TYPE_USES_VIRTUAL_BASECLASSES (t)) { tree first_arg = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl)); expand_start_cond (first_arg, 0); expand_aggr_vbase_init (t_binfo, C_C_D, current_class_decl, vbase_init_list); expand_end_cond (); } /* Now, perform initialization of non-virtual base classes. */ for (i = 0; i < n_baseclasses; i++) { tree base = current_class_decl; tree base_binfo = TREE_VEC_ELT (binfos, i); tree init = void_list_node; if (TREE_VIA_VIRTUAL (base_binfo)) continue; #if 0 /* Once unsharing happens soon enough. */ my_friendly_assert (BINFO_INHERITANCE_CHAIN (base_binfo) == t_binfo); #else BINFO_INHERITANCE_CHAIN (base_binfo) = t_binfo; #endif if (TREE_PURPOSE (rbase_init_list)) init = TREE_VALUE (rbase_init_list); else if (TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (base_binfo))) init = NULL_TREE; if (init != void_list_node) { member = convert_pointer_to_real (base_binfo, current_class_decl); expand_aggr_init_1 (base_binfo, 0, build_indirect_ref (member, NULL_PTR), init, BINFO_OFFSET_ZEROP (base_binfo), LOOKUP_NORMAL); expand_cleanups_to (NULL_TREE); } if (TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo))) { start_protect (); protect_list = tree_cons (NULL_TREE, build_partial_cleanup_for (base_binfo), protect_list); } rbase_init_list = TREE_CHAIN (rbase_init_list); } /* Initialize all the virtual function table fields that do come from virtual base classes. */ if (TYPE_USES_VIRTUAL_BASECLASSES (t)) expand_indirect_vtbls_init (t_binfo, C_C_D, current_class_decl, 0); /* Initialize all the virtual function table fields that do not come from virtual base classes. */ expand_direct_vtbls_init (t_binfo, t_binfo, 1, 1, current_class_decl); for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member)) { tree init, name; int from_init_list; /* member could be, for example, a CONST_DECL for an enumerated tag; we don't want to try to initialize that, since it already has a value. */ if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member)) continue; /* See if we had a user-specified member initialization. */ if (TREE_PURPOSE (mem_init_list)) { name = TREE_PURPOSE (mem_init_list); init = TREE_VALUE (mem_init_list); from_init_list = 1; /* Also see if it's ever a COMPONENT_REF here. If it is, we need to do `expand_assignment (name, init, 0, 0);' and a continue. */ my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 349); } else { name = DECL_NAME (member); init = DECL_INITIAL (member); from_init_list = 0; } perform_member_init (member, name, init, from_init_list, &protect_list); mem_init_list = TREE_CHAIN (mem_init_list); } /* Now initialize any members from our bases. */ while (mem_init_list) { tree name, init, field; if (TREE_PURPOSE (mem_init_list)) { name = TREE_PURPOSE (mem_init_list); init = TREE_VALUE (mem_init_list); /* XXX: this may need the COMPONENT_REF operand 0 check if it turns out we actually get them. */ field = IDENTIFIER_CLASS_VALUE (name); /* If one member shadows another, get the outermost one. */ if (TREE_CODE (field) == TREE_LIST) { field = TREE_VALUE (field); if (decl_type_context (field) != current_class_type) cp_error ("field `%D' not in immediate context", field); } #if 0 /* It turns out if you have an anonymous union in the class, a member from it can end up not being on the list of fields (rather, the type is), and therefore won't be seen by the for loop above. */ /* The code in this for loop is derived from a general loop which had this check in it. Theoretically, we've hit every initialization for the list of members in T, so we shouldn't have anything but these left in this list. */ my_friendly_assert (DECL_FIELD_CONTEXT (field) != t, 351); #endif perform_member_init (field, name, init, 1, &protect_list); } mem_init_list = TREE_CHAIN (mem_init_list); } if (! immediately) { do_pending_stack_adjust (); my_friendly_assert (base_init_expr == 0, 207); base_init_expr = expr; TREE_TYPE (expr) = void_type_node; RTL_EXPR_RTL (expr) = const0_rtx; RTL_EXPR_SEQUENCE (expr) = get_insns (); rtl_expr_chain = tree_cons (NULL_TREE, expr, rtl_expr_chain); end_sequence (); TREE_SIDE_EFFECTS (expr) = 1; } /* All the implicit try blocks we built up will be zapped when we come to a real binding contour boundary. */ } /* Check that all fields are properly initialized after an assignment to `this'. */ void check_base_init (t) tree t; { tree member; for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member)) if (DECL_NAME (member) && TREE_USED (member)) cp_error ("field `%D' used before initialized (after assignment to `this')", member); } /* This code sets up the virtual function tables appropriate for the pointer DECL. It is a one-ply initialization. BINFO is the exact type that DECL is supposed to be. In multiple inheritance, this might mean "C's A" if C : A, B. */ static void expand_virtual_init (binfo, decl) tree binfo, decl; { tree type = BINFO_TYPE (binfo); tree vtbl, vtbl_ptr; tree vtype, vtype_binfo; /* This code is crusty. Should be simple, like: vtbl = BINFO_VTABLE (binfo); */ vtype = DECL_CONTEXT (CLASSTYPE_VFIELD (type)); vtype_binfo = get_binfo (vtype, TREE_TYPE (TREE_TYPE (decl)), 0); vtbl = BINFO_VTABLE (binfo_value (DECL_FIELD_CONTEXT (CLASSTYPE_VFIELD (type)), binfo)); assemble_external (vtbl); TREE_USED (vtbl) = 1; vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl); decl = convert_pointer_to_real (vtype_binfo, decl); vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL_PTR), vtype); if (vtbl_ptr == error_mark_node) return; /* Have to convert VTBL since array sizes may be different. */ vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0); expand_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl)); } /* Subroutine of `expand_aggr_vbase_init'. BINFO is the binfo of the type that is being initialized. INIT_LIST is the list of initializers for the virtual baseclass. */ static void expand_aggr_vbase_init_1 (binfo, exp, addr, init_list) tree binfo, exp, addr, init_list; { tree init = purpose_member (binfo, init_list); tree ref = build_indirect_ref (addr, NULL_PTR); if (init) init = TREE_VALUE (init); /* Call constructors, but don't set up vtables. */ expand_aggr_init_1 (binfo, exp, ref, init, 0, LOOKUP_COMPLAIN); expand_cleanups_to (NULL_TREE); } /* Initialize this object's virtual base class pointers. This must be done only at the top-level of the object being constructed. INIT_LIST is list of initialization for constructor to perform. */ static void expand_aggr_vbase_init (binfo, exp, addr, init_list) tree binfo; tree exp; tree addr; tree init_list; { tree type = BINFO_TYPE (binfo); if (TYPE_USES_VIRTUAL_BASECLASSES (type)) { tree result = init_vbase_pointers (type, addr); tree vbases; if (result) expand_expr_stmt (build_compound_expr (result)); for (vbases = CLASSTYPE_VBASECLASSES (type); vbases; vbases = TREE_CHAIN (vbases)) { tree tmp = purpose_member (vbases, result); expand_aggr_vbase_init_1 (vbases, exp, TREE_OPERAND (TREE_VALUE (tmp), 0), init_list); } } } /* Subroutine to perform parser actions for member initialization. S_ID is the scoped identifier. NAME is the name of the member. INIT is the initializer, or `void_type_node' if none. */ void do_member_init (s_id, name, init) tree s_id, name, init; { tree binfo, base; if (current_class_type == NULL_TREE || ! is_aggr_typedef (s_id, 1)) return; binfo = get_binfo (IDENTIFIER_TYPE_VALUE (s_id), current_class_type, 1); if (binfo == error_mark_node) return; if (binfo == 0) { error_not_base_type (IDENTIFIER_TYPE_VALUE (s_id), current_class_type); return; } base = convert_pointer_to (binfo, current_class_decl); expand_member_init (build_indirect_ref (base, NULL_PTR), name, init); } /* Function to give error message if member initialization specification is erroneous. FIELD is the member we decided to initialize. TYPE is the type for which the initialization is being performed. FIELD must be a member of TYPE, or the base type from which FIELD comes must not need a constructor. MEMBER_NAME is the name of the member. */ static int member_init_ok_or_else (field, type, member_name) tree field; tree type; char *member_name; { if (field == error_mark_node) return 0; if (field == NULL_TREE) { cp_error ("class `%T' does not have any field named `%s'", type, member_name); return 0; } if (DECL_CONTEXT (field) != type && TYPE_NEEDS_CONSTRUCTING (DECL_CONTEXT (field))) { if (current_function_decl && DECL_CONSTRUCTOR_P (current_function_decl)) cp_error ("initialization of `%D' inside constructor for `%T'", field, type); else cp_error ("member `%D' comes from base class needing constructor", field); return 0; } if (TREE_STATIC (field)) { cp_error ("field `%#D' is static; only point of initialization is its declaration", field); return 0; } return 1; } /* If NAME is a viable field name for the aggregate DECL, and PARMS is a viable parameter list, then expand an _EXPR which describes this initialization. Note that we do not need to chase through the class's base classes to look for NAME, because if it's in that list, it will be handled by the constructor for that base class. We do not yet have a fixed-point finder to instantiate types being fed to overloaded constructors. If there is a unique constructor, then argument types can be got from that one. If INIT is non-NULL, then it the initialization should be placed in `current_base_init_list', where it will be processed by `emit_base_init'. */ void expand_member_init (exp, name, init) tree exp, name, init; { extern tree ptr_type_node; /* should be in tree.h */ tree basetype = NULL_TREE, field; tree parm; tree rval, type; tree actual_name; if (exp == NULL_TREE) return; /* complain about this later */ type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); if (name == NULL_TREE && IS_AGGR_TYPE (type)) switch (CLASSTYPE_N_BASECLASSES (type)) { case 0: error ("base class initializer specified, but no base class to initialize"); return; case 1: basetype = TYPE_BINFO_BASETYPE (type, 0); break; default: error ("initializer for unnamed base class ambiguous"); cp_error ("(type `%T' uses multiple inheritance)", type); return; } if (init) { /* The grammar should not allow fields which have names that are TYPENAMEs. Therefore, if the field has a non-NULL TREE_TYPE, we may assume that this is an attempt to initialize a base class member of the current type. Otherwise, it is an attempt to initialize a member field. */ if (init == void_type_node) init = NULL_TREE; if (name == NULL_TREE || IDENTIFIER_HAS_TYPE_VALUE (name)) { tree base_init; if (name == NULL_TREE) { /* if (basetype) name = TYPE_IDENTIFIER (basetype); else { error ("no base class to initialize"); return; } */ } else { basetype = IDENTIFIER_TYPE_VALUE (name); if (basetype != type && ! binfo_member (basetype, TYPE_BINFO (type)) && ! binfo_member (basetype, CLASSTYPE_VBASECLASSES (type))) { if (IDENTIFIER_CLASS_VALUE (name)) goto try_member; if (TYPE_USES_VIRTUAL_BASECLASSES (type)) error ("type `%s' is not an immediate or virtual basetype for `%s'", IDENTIFIER_POINTER (name), TYPE_NAME_STRING (type)); else error ("type `%s' is not an immediate basetype for `%s'", IDENTIFIER_POINTER (name), TYPE_NAME_STRING (type)); return; } } if (purpose_member (name, current_base_init_list)) { error ("base class `%s' already initialized", IDENTIFIER_POINTER (name)); return; } base_init = build_tree_list (name, init); TREE_TYPE (base_init) = basetype; current_base_init_list = chainon (current_base_init_list, base_init); } else { tree member_init; try_member: field = lookup_field (type, name, 1, 0); if (! member_init_ok_or_else (field, type, IDENTIFIER_POINTER (name))) return; if (purpose_member (name, current_member_init_list)) { error ("field `%s' already initialized", IDENTIFIER_POINTER (name)); return; } member_init = build_tree_list (name, init); TREE_TYPE (member_init) = TREE_TYPE (field); current_member_init_list = chainon (current_member_init_list, member_init); } return; } else if (name == NULL_TREE) { compiler_error ("expand_member_init: name == NULL_TREE"); return; } basetype = type; field = lookup_field (basetype, name, 0, 0); if (! member_init_ok_or_else (field, basetype, IDENTIFIER_POINTER (name))) return; /* now see if there is a constructor for this type which will take these args. */ if (TYPE_HAS_CONSTRUCTOR (TREE_TYPE (field))) { tree parmtypes, fndecl; if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) { /* just know that we've seen something for this node */ DECL_INITIAL (exp) = error_mark_node; TREE_USED (exp) = 1; } type = TYPE_MAIN_VARIANT (TREE_TYPE (field)); actual_name = TYPE_IDENTIFIER (type); parm = build_component_ref (exp, name, 0, 0); /* Now get to the constructor. */ fndecl = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0); /* Get past destructor, if any. */ if (TYPE_HAS_DESTRUCTOR (type)) fndecl = DECL_CHAIN (fndecl); if (fndecl) my_friendly_assert (TREE_CODE (fndecl) == FUNCTION_DECL, 209); /* If the field is unique, we can use the parameter types to guide possible type instantiation. */ if (DECL_CHAIN (fndecl) == NULL_TREE) { /* There was a confusion here between FIELD and FNDECL. The following code should be correct, but abort is here to make sure. */ my_friendly_abort (48); parmtypes = FUNCTION_ARG_CHAIN (fndecl); } else { parmtypes = NULL_TREE; fndecl = NULL_TREE; } init = convert_arguments (parm, parmtypes, NULL_TREE, fndecl, LOOKUP_NORMAL); if (init == NULL_TREE || TREE_TYPE (init) != error_mark_node) rval = build_method_call (NULL_TREE, actual_name, init, NULL_TREE, LOOKUP_NORMAL); else return; if (rval != error_mark_node) { /* Now, fill in the first parm with our guy */ TREE_VALUE (TREE_OPERAND (rval, 1)) = build_unary_op (ADDR_EXPR, parm, 0); TREE_TYPE (rval) = ptr_type_node; TREE_SIDE_EFFECTS (rval) = 1; } } else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (field))) { parm = build_component_ref (exp, name, 0, 0); expand_aggr_init (parm, NULL_TREE, 0, 0); rval = error_mark_node; } /* Now initialize the member. It does not have to be of aggregate type to receive initialization. */ if (rval != error_mark_node) expand_expr_stmt (rval); } /* This is like `expand_member_init', only it stores one aggregate value into another. INIT comes in two flavors: it is either a value which is to be stored in EXP, or it is a parameter list to go to a constructor, which will operate on EXP. If INIT is not a parameter list for a constructor, then set LOOKUP_ONLYCONVERTING. If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of the initializer, if FLAGS is 0, then it is the (init) form. If `init' is a CONSTRUCTOR, then we emit a warning message, explaining that such initializations are invalid. ALIAS_THIS is nonzero iff we are initializing something which is essentially an alias for C_C_D. In this case, the base constructor may move it on us, and we must keep track of such deviations. If INIT resolves to a CALL_EXPR which happens to return something of the type we are looking for, then we know that we can safely use that call to perform the initialization. The virtual function table pointer cannot be set up here, because we do not really know its type. Virtual baseclass pointers are also set up here. This never calls operator=(). When initializing, nothing is CONST. A default copy constructor may have to be used to perform the initialization. A constructor or a conversion operator may have to be used to perform the initialization, but not both, as it would be ambiguous. */ void expand_aggr_init (exp, init, alias_this, flags) tree exp, init; int alias_this; int flags; { tree type = TREE_TYPE (exp); int was_const = TREE_READONLY (exp); int was_volatile = TREE_THIS_VOLATILE (exp); if (init == error_mark_node) return; TREE_READONLY (exp) = 0; TREE_THIS_VOLATILE (exp) = 0; if (init && TREE_CODE (init) != TREE_LIST) flags |= LOOKUP_ONLYCONVERTING; if (TREE_CODE (type) == ARRAY_TYPE) { /* Must arrange to initialize each element of EXP from elements of INIT. */ tree itype = init ? TREE_TYPE (init) : NULL_TREE; if (TYPE_READONLY (TREE_TYPE (type)) || TYPE_VOLATILE (TREE_TYPE (type))) { TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type); if (init) TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype); } if (init && TREE_TYPE (init) == NULL_TREE) { /* Handle bad initializers like: class COMPLEX { public: double re, im; COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;}; ~COMPLEX() {}; }; int main(int argc, char **argv) { COMPLEX zees(1.0, 0.0)[10]; } */ error ("bad array initializer"); return; } expand_vec_init (exp, exp, array_type_nelts (type), init, init && comptypes (TREE_TYPE (init), TREE_TYPE (exp), 1)); TREE_READONLY (exp) = was_const; TREE_THIS_VOLATILE (exp) = was_volatile; TREE_TYPE (exp) = type; if (init) TREE_TYPE (init) = itype; return; } if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) /* just know that we've seen something for this node */ TREE_USED (exp) = 1; #if 0 /* If initializing from a GNU C CONSTRUCTOR, consider the elts in the constructor as parameters to an implicit GNU C++ constructor. */ if (init && TREE_CODE (init) == CONSTRUCTOR && TYPE_HAS_CONSTRUCTOR (type) && TREE_TYPE (init) == type) init = CONSTRUCTOR_ELTS (init); #endif TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type); expand_aggr_init_1 (TYPE_BINFO (type), exp, exp, init, alias_this, LOOKUP_NORMAL|flags); TREE_TYPE (exp) = type; TREE_READONLY (exp) = was_const; TREE_THIS_VOLATILE (exp) = was_volatile; } static void expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags) tree binfo; tree true_exp, exp; tree type; tree init; int alias_this; int flags; { /* It fails because there may not be a constructor which takes its own type as the first (or only parameter), but which does take other types via a conversion. So, if the thing initializing the expression is a unit element of type X, first try X(X&), followed by initialization by X. If neither of these work out, then look hard. */ tree rval; tree parms; if (init == NULL_TREE || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init))) { parms = init; if (parms) init = TREE_VALUE (parms); } else if (TREE_CODE (init) == INDIRECT_REF && TREE_HAS_CONSTRUCTOR (init) && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (init))) { rval = convert_for_initialization (exp, type, init, 0, 0, 0, 0); TREE_USED (rval) = 1; expand_expr_stmt (rval); return; } else parms = build_tree_list (NULL_TREE, init); if (TYPE_USES_VIRTUAL_BASECLASSES (type)) { if (true_exp == exp) parms = tree_cons (NULL_TREE, integer_one_node, parms); else parms = tree_cons (NULL_TREE, integer_zero_node, parms); flags |= LOOKUP_HAS_IN_CHARGE; } if (init && TREE_CHAIN (parms) == NULL_TREE && TYPE_HAS_TRIVIAL_INIT_REF (type) && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (init))) { rval = build (INIT_EXPR, type, exp, init); TREE_SIDE_EFFECTS (rval) = 1; expand_expr_stmt (rval); } else { if (flags & LOOKUP_ONLYCONVERTING) flags |= LOOKUP_NO_CONVERSION; rval = build_method_call (exp, constructor_name_full (type), parms, binfo, flags); /* Private, protected, or otherwise unavailable. */ if (rval == error_mark_node) { if (flags & LOOKUP_COMPLAIN) cp_error ("in base initialization for %sclass `%T'", TREE_VIA_VIRTUAL (binfo) ? "virtual base " : "", binfo); } else if (rval == NULL_TREE) my_friendly_abort (361); else { /* p. 222: if the base class assigns to `this', then that value is used in the derived class. */ if ((flag_this_is_variable & 1) && alias_this) { TREE_TYPE (rval) = TREE_TYPE (current_class_decl); expand_assignment (current_class_decl, rval, 0, 0); } else expand_expr_stmt (rval); } } } /* This function is responsible for initializing EXP with INIT (if any). BINFO is the binfo of the type for who we are performing the initialization. For example, if W is a virtual base class of A and B, and C : A, B. If we are initializing B, then W must contain B's W vtable, whereas were we initializing C, W must contain C's W vtable. TRUE_EXP is nonzero if it is the true expression being initialized. In this case, it may be EXP, or may just contain EXP. The reason we need this is because if EXP is a base element of TRUE_EXP, we don't necessarily know by looking at EXP where its virtual baseclass fields should really be pointing. But we do know from TRUE_EXP. In constructors, we don't know anything about the value being initialized. ALIAS_THIS serves the same purpose it serves for expand_aggr_init. FLAGS is just passes to `build_method_call'. See that function for its description. */ static void expand_aggr_init_1 (binfo, true_exp, exp, init, alias_this, flags) tree binfo; tree true_exp, exp; tree init; int alias_this; int flags; { tree type = TREE_TYPE (exp); tree init_type = NULL_TREE; my_friendly_assert (init != error_mark_node && type != error_mark_node, 211); /* Use a function returning the desired type to initialize EXP for us. If the function is a constructor, and its first argument is NULL_TREE, know that it was meant for us--just slide exp on in and expand the constructor. Constructors now come as TARGET_EXPRs. */ if (init) { tree init_list = NULL_TREE; if (TREE_CODE (init) == TREE_LIST) { init_list = init; if (TREE_CHAIN (init) == NULL_TREE) init = TREE_VALUE (init); } init_type = TREE_TYPE (init); if (TREE_CODE (init) != TREE_LIST) { if (TREE_CODE (init_type) == ERROR_MARK) return; #if 0 /* These lines are found troublesome 5/11/89. */ if (TREE_CODE (init_type) == REFERENCE_TYPE) init_type = TREE_TYPE (init_type); #endif /* This happens when we use C++'s functional cast notation. If the types match, then just use the TARGET_EXPR directly. Otherwise, we need to create the initializer separately from the object being initialized. */ if (TREE_CODE (init) == TARGET_EXPR) { if (TYPE_MAIN_VARIANT (init_type) == TYPE_MAIN_VARIANT (type)) { if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == RESULT_DECL) /* Unify the initialization targets. */ DECL_RTL (TREE_OPERAND (init, 0)) = DECL_RTL (exp); else DECL_RTL (TREE_OPERAND (init, 0)) = expand_expr (exp, NULL_RTX, 0, 0); expand_expr_stmt (init); return; } else { init = TREE_OPERAND (init, 1); init = build (CALL_EXPR, init_type, TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); TREE_SIDE_EFFECTS (init) = 1; if (init_list) TREE_VALUE (init_list) = init; } } if (init_type == type && TREE_CODE (init) == CALL_EXPR #if 0 /* It is valid to directly initialize from a CALL_EXPR without going through X(X&), apparently. */ && ! TYPE_GETS_INIT_REF (type) #endif ) { /* A CALL_EXPR is a legitimate form of initialization, so we should not print this warning message. */ #if 0 /* Should have gone away due to 5/11/89 change. */ if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE) init = convert_from_reference (init); #endif expand_assignment (exp, init, 0, 0); if (exp == DECL_RESULT (current_function_decl)) { /* Failing this assertion means that the return value from receives multiple initializations. */ my_friendly_assert (DECL_INITIAL (exp) == NULL_TREE || DECL_INITIAL (exp) == error_mark_node, 212); DECL_INITIAL (exp) = init; } return; } else if (init_type == type && TREE_CODE (init) == COND_EXPR) { /* Push value to be initialized into the cond, where possible. Avoid spurious warning messages when initializing the result of this function. */ TREE_OPERAND (init, 1) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 1)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = NULL_TREE; TREE_OPERAND (init, 2) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 2)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = init; TREE_SIDE_EFFECTS (init) = 1; expand_expr (init, const0_rtx, VOIDmode, 0); free_temp_slots (); return; } } /* We did not know what we were initializing before. Now we do. */ if (TREE_CODE (init) == TARGET_EXPR) { tree tmp = TREE_OPERAND (TREE_OPERAND (init, 1), 1); if (TREE_CODE (TREE_VALUE (tmp)) == NOP_EXPR && TREE_OPERAND (TREE_VALUE (tmp), 0) == integer_zero_node) { /* In order for this to work for RESULT_DECLs, if their type has a constructor, then they must be BLKmode so that they will be meaningfully addressable. */ tree arg = build_unary_op (ADDR_EXPR, exp, 0); init = TREE_OPERAND (init, 1); init = build (CALL_EXPR, build_pointer_type (TREE_TYPE (init)), TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); TREE_SIDE_EFFECTS (init) = 1; TREE_VALUE (TREE_OPERAND (init, 1)) = convert_pointer_to (TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))), arg); if (alias_this) { expand_assignment (current_function_decl, init, 0, 0); return; } if (exp == DECL_RESULT (current_function_decl)) { if (DECL_INITIAL (DECL_RESULT (current_function_decl))) fatal ("return value from function receives multiple initializations"); DECL_INITIAL (exp) = init; } expand_expr_stmt (init); return; } } if (TREE_CODE (exp) == VAR_DECL && TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init)) { tree t = store_init_value (exp, init); if (!t) { expand_decl_init (exp); return; } t = build (INIT_EXPR, type, exp, init); TREE_SIDE_EFFECTS (t) = 1; expand_expr_stmt (t); return; } /* Handle this case: when calling a constructor: xyzzy foo(bar); which really means: xyzzy foo = bar; Ugh! More useful for this case: xyzzy *foo = new xyzzy (bar); */ if (! TYPE_NEEDS_CONSTRUCTING (type) && ! IS_AGGR_TYPE (type)) { if (init_list && TREE_CHAIN (init_list)) { warning ("initializer list being treated as compound expression"); init = convert (type, build_compound_expr (init_list)); if (init == error_mark_node) return; } expand_assignment (exp, init, 0, 0); return; } /* See whether we can go through a type conversion operator. This wins over going through a non-existent constructor. If there is a constructor, it is ambiguous. */ if (TREE_CODE (init) != TREE_LIST) { tree ttype = TREE_CODE (init_type) == REFERENCE_TYPE ? TREE_TYPE (init_type) : init_type; if (ttype != type && IS_AGGR_TYPE (ttype)) { tree rval = build_type_conversion (CONVERT_EXPR, type, init, 0); if (rval) { /* See if there is a constructor for``type'' that takes a ``ttype''-typed object. */ tree parms = build_tree_list (NULL_TREE, init); tree as_cons = NULL_TREE; if (TYPE_HAS_CONSTRUCTOR (type)) as_cons = build_method_call (exp, constructor_name_full (type), parms, binfo, LOOKUP_SPECULATIVELY|LOOKUP_NO_CONVERSION); if (as_cons != NULL_TREE && as_cons != error_mark_node) /* ANSI C++ June 5 1992 WP 12.3.2.6.1 */ cp_error ("ambiguity between conversion to `%T' and constructor", type); else expand_assignment (exp, rval, 0, 0); return; } } } } /* Handle default copy constructors here, does not matter if there is a constructor or not. */ if (type == init_type && IS_AGGR_TYPE (type) && init && TREE_CODE (init) != TREE_LIST) expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags); /* Not sure why this is here... */ else if (TYPE_HAS_CONSTRUCTOR (type)) expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags); else if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (type))) expand_vec_init (exp, exp, array_type_nelts (type), init, 0); else if (TYPE_VIRTUAL_P (TREE_TYPE (type))) sorry ("arrays of objects with virtual functions but no constructors"); } else expand_recursive_init (binfo, true_exp, exp, init, CLASSTYPE_BASE_INIT_LIST (type), alias_this); } /* A pointer which holds the initializer. First call to expand_aggr_init gets this value pointed to, and sets it to init_null. */ static tree *init_ptr, init_null; /* Subroutine of expand_recursive_init: ADDR is the address of the expression being initialized. INIT_LIST is the cons-list of initializations to be performed. ALIAS_THIS is its same, lovable self. */ static void expand_recursive_init_1 (binfo, true_exp, addr, init_list, alias_this) tree binfo, true_exp, addr; tree init_list; int alias_this; { while (init_list) { if (TREE_PURPOSE (init_list)) { if (TREE_CODE (TREE_PURPOSE (init_list)) == FIELD_DECL) { tree member = TREE_PURPOSE (init_list); tree subexp = build_indirect_ref (convert_pointer_to (TREE_VALUE (init_list), addr), NULL_PTR); tree member_base = build (COMPONENT_REF, TREE_TYPE (member), subexp, member); if (IS_AGGR_TYPE (TREE_TYPE (member))) expand_aggr_init (member_base, DECL_INITIAL (member), 0, 0); else if (TREE_CODE (TREE_TYPE (member)) == ARRAY_TYPE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (member))) { member_base = save_expr (default_conversion (member_base)); expand_vec_init (member, member_base, array_type_nelts (TREE_TYPE (member)), DECL_INITIAL (member), 0); } else expand_expr_stmt (build_modify_expr (member_base, INIT_EXPR, DECL_INITIAL (member))); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == TREE_LIST) { expand_recursive_init_1 (binfo, true_exp, addr, TREE_PURPOSE (init_list), alias_this); expand_recursive_init_1 (binfo, true_exp, addr, TREE_VALUE (init_list), alias_this); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == ERROR_MARK) { /* Only initialize the virtual function tables if we are initializing the ultimate users of those vtables. */ if (TREE_VALUE (init_list)) { /* We have to ensure that the first argment to expand_virtual_init is in binfo's hierarchy. */ /* Is it the case that this is exactly the right binfo? */ /* If it is ok, then fixup expand_virtual_init, to make it much simpler. */ expand_virtual_init (get_binfo (TREE_VALUE (init_list), binfo, 0), addr); if (TREE_VALUE (init_list) == binfo && TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo))) expand_indirect_vtbls_init (binfo, true_exp, addr, 1); } } else my_friendly_abort (49); } else if (TREE_VALUE (init_list) && TREE_CODE (TREE_VALUE (init_list)) == TREE_VEC) { tree subexp = build_indirect_ref (convert_pointer_to (TREE_VALUE (init_list), addr), NULL_PTR); expand_aggr_init_1 (binfo, true_exp, subexp, *init_ptr, alias_this && BINFO_OFFSET_ZEROP (TREE_VALUE (init_list)), LOOKUP_COMPLAIN); /* INIT_PTR is used up. */ init_ptr = &init_null; } else my_friendly_abort (50); init_list = TREE_CHAIN (init_list); } } /* Initialize EXP with INIT. Type EXP does not have a constructor, but it has a baseclass with a constructor or a virtual function table which needs initializing. INIT_LIST is a cons-list describing what parts of EXP actually need to be initialized. INIT is given to the *unique*, first constructor within INIT_LIST. If there are multiple first constructors, such as with multiple inheritance, INIT must be zero or an ambiguity error is reported. ALIAS_THIS is passed from `expand_aggr_init'. See comments there. */ static void expand_recursive_init (binfo, true_exp, exp, init, init_list, alias_this) tree binfo, true_exp, exp, init; tree init_list; int alias_this; { tree *old_init_ptr = init_ptr; tree addr = build_unary_op (ADDR_EXPR, exp, 0); init_ptr = &init; if (true_exp == exp && TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo))) { expand_aggr_vbase_init (binfo, exp, addr, init_list); expand_indirect_vtbls_init (binfo, true_exp, addr, 1); } expand_recursive_init_1 (binfo, true_exp, addr, init_list, alias_this); if (*init_ptr) { tree type = TREE_TYPE (exp); if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); if (IS_AGGR_TYPE (type)) cp_error ("unexpected argument to constructor `%T'", type); else error ("unexpected argument to constructor"); } init_ptr = old_init_ptr; } /* Report an error if NAME is not the name of a user-defined, aggregate type. If OR_ELSE is nonzero, give an error message. */ int is_aggr_typedef (name, or_else) tree name; int or_else; { tree type; if (name == error_mark_node) return 0; if (IDENTIFIER_HAS_TYPE_VALUE (name)) type = IDENTIFIER_TYPE_VALUE (name); else { if (or_else) cp_error ("`%T' is not an aggregate typedef", name); return 0; } if (! IS_AGGR_TYPE (type) && TREE_CODE (type) != TEMPLATE_TYPE_PARM) { if (or_else) cp_error ("`%T' is not an aggregate type", type); return 0; } return 1; } /* Like is_aggr_typedef, but returns typedef if successful. */ tree get_aggr_from_typedef (name, or_else) tree name; int or_else; { tree type; if (name == error_mark_node) return NULL_TREE; if (IDENTIFIER_HAS_TYPE_VALUE (name)) type = IDENTIFIER_TYPE_VALUE (name); else { if (or_else) cp_error ("`%T' fails to be an aggregate typedef", name); return NULL_TREE; } if (! IS_AGGR_TYPE (type) && TREE_CODE (type) != TEMPLATE_TYPE_PARM) { if (or_else) cp_error ("type `%T' is of non-aggregate type", type); return NULL_TREE; } return type; } tree get_type_value (name) tree name; { if (name == error_mark_node) return NULL_TREE; if (IDENTIFIER_HAS_TYPE_VALUE (name)) return IDENTIFIER_TYPE_VALUE (name); else return NULL_TREE; } /* This code could just as well go in `class.c', but is placed here for modularity. */ /* For an expression of the form CNAME :: NAME (PARMLIST), build the appropriate function call. */ tree build_member_call (cname, name, parmlist) tree cname, name, parmlist; { tree type, t; tree method_name = name; int dtor = 0; int dont_use_this = 0; tree basetype_path, decl; if (TREE_CODE (method_name) == BIT_NOT_EXPR) { method_name = TREE_OPERAND (method_name, 0); dtor = 1; } if (TREE_CODE (cname) == SCOPE_REF) cname = resolve_scope_to_name (NULL_TREE, cname); /* This shouldn't be here, and build_member_call shouldn't appear in parse.y! (mrs) */ if (cname && get_aggr_from_typedef (cname, 0) == 0 && TREE_CODE (cname) == IDENTIFIER_NODE) { tree ns = lookup_name (cname, 0); if (ns && TREE_CODE (ns) == NAMESPACE_DECL) { return build_x_function_call (build_offset_ref (cname, name), parmlist, current_class_decl); } } if (cname == NULL_TREE || ! (type = get_aggr_from_typedef (cname, 1))) return error_mark_node; /* An operator we did not like. */ if (name == NULL_TREE) return error_mark_node; if (dtor) { #if 0 /* Everything can explicitly call a destructor; see 12.4 */ if (! TYPE_HAS_DESTRUCTOR (type)) cp_error ("type `%#T' does not have a destructor", type); else #endif cp_error ("cannot call destructor `%T::~%T' without object", type, method_name); return error_mark_node; } /* No object? Then just fake one up, and let build_method_call figure out what to do. */ if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetype_path) == -1) dont_use_this = 1; if (dont_use_this) { basetype_path = TYPE_BINFO (type); decl = build1 (NOP_EXPR, build_pointer_type (type), error_mark_node); } else if (current_class_decl == 0) { dont_use_this = 1; decl = build1 (NOP_EXPR, build_pointer_type (type), error_mark_node); } else { tree olddecl = current_class_decl; tree oldtype = TREE_TYPE (TREE_TYPE (olddecl)); if (oldtype != type) { tree newtype = build_type_variant (type, TYPE_READONLY (oldtype), TYPE_VOLATILE (oldtype)); decl = convert_force (build_pointer_type (newtype), olddecl, 0); } else decl = olddecl; } decl = build_indirect_ref (decl, NULL_PTR); if (method_name == constructor_name (type) || method_name == constructor_name_full (type)) return build_functional_cast (type, parmlist); if (t = lookup_fnfields (basetype_path, method_name, 0)) return build_method_call (decl, method_name, parmlist, basetype_path, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL); if (TREE_CODE (name) == IDENTIFIER_NODE && ((t = lookup_field (TYPE_BINFO (type), name, 1, 0)))) { if (t == error_mark_node) return error_mark_node; if (TREE_CODE (t) == FIELD_DECL) { if (dont_use_this) { cp_error ("invalid use of non-static field `%D'", t); return error_mark_node; } decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t); } else if (TREE_CODE (t) == VAR_DECL) decl = t; else { cp_error ("invalid use of member `%D'", t); return error_mark_node; } if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)) && TYPE_OVERLOADS_CALL_EXPR (TREE_TYPE (decl))) return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, decl, parmlist, NULL_TREE); return build_function_call (decl, parmlist); } else { cp_error ("no method `%T::%D'", type, name); return error_mark_node; } } /* Build a reference to a member of an aggregate. This is not a C++ `&', but really something which can have its address taken, and then act as a pointer to member, for example CNAME :: FIELD can have its address taken by saying & CNAME :: FIELD. @@ Prints out lousy diagnostics for operator @@ fields. @@ This function should be rewritten and placed in search.c. */ tree build_offset_ref (cname, name) tree cname, name; { tree decl, type, fnfields, fields, t = error_mark_node; tree basetypes = NULL_TREE; int dtor = 0; if (TREE_CODE (cname) == SCOPE_REF) cname = resolve_scope_to_name (NULL_TREE, cname); /* Handle namespace names fully here. */ if (TREE_CODE (cname) == IDENTIFIER_NODE && get_aggr_from_typedef (cname, 0) == 0) { tree ns = lookup_name (cname, 0); tree val; if (ns && TREE_CODE (ns) == NAMESPACE_DECL) { val = lookup_namespace_name (ns, name); if (val) return val; cp_error ("namespace `%D' has no member named `%D'", ns, name); return error_mark_node; } } if (cname == NULL_TREE || ! is_aggr_typedef (cname, 1)) return error_mark_node; type = IDENTIFIER_TYPE_VALUE (cname); if (TREE_CODE (name) == BIT_NOT_EXPR) { dtor = 1; name = TREE_OPERAND (name, 0); } if (TYPE_SIZE (type) == 0) { t = IDENTIFIER_CLASS_VALUE (name); if (t == 0) { cp_error ("incomplete type `%T' does not have member `%D'", type, name); return error_mark_node; } if (TREE_CODE (t) == TYPE_DECL || TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL) { TREE_USED (t) = 1; return t; } if (TREE_CODE (t) == FIELD_DECL) sorry ("use of member in incomplete aggregate type"); else if (TREE_CODE (t) == FUNCTION_DECL) sorry ("use of member function in incomplete aggregate type"); else my_friendly_abort (52); return error_mark_node; } #if 0 if (TREE_CODE (name) == TYPE_EXPR) /* Pass a TYPE_DECL to build_component_type_expr. */ return build_component_type_expr (TYPE_NAME (TREE_TYPE (cname)), name, NULL_TREE, 1); #endif if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetypes) == -1) { basetypes = TYPE_BINFO (type); decl = build1 (NOP_EXPR, IDENTIFIER_TYPE_VALUE (cname), error_mark_node); } else if (current_class_decl == 0) decl = build1 (NOP_EXPR, IDENTIFIER_TYPE_VALUE (cname), error_mark_node); else decl = C_C_D; fnfields = lookup_fnfields (basetypes, name, 1); fields = lookup_field (basetypes, name, 0, 0); if (fields == error_mark_node || fnfields == error_mark_node) return error_mark_node; /* A lot of this logic is now handled in lookup_field and lookup_fnfield. */ if (fnfields) { basetypes = TREE_PURPOSE (fnfields); /* Go from the TREE_BASELINK to the member function info. */ t = TREE_VALUE (fnfields); if (fields) { if (DECL_FIELD_CONTEXT (fields) == DECL_FIELD_CONTEXT (t)) { error ("ambiguous member reference: member `%s' defined as both field and function", IDENTIFIER_POINTER (name)); return error_mark_node; } if (UNIQUELY_DERIVED_FROM_P (DECL_FIELD_CONTEXT (fields), DECL_FIELD_CONTEXT (t))) ; else if (UNIQUELY_DERIVED_FROM_P (DECL_FIELD_CONTEXT (t), DECL_FIELD_CONTEXT (fields))) t = fields; else { error ("ambiguous member reference: member `%s' derives from distinct classes in multiple inheritance lattice"); return error_mark_node; } } if (t == TREE_VALUE (fnfields)) { extern int flag_save_memoized_contexts; if (DECL_CHAIN (t) == NULL_TREE || dtor) { enum access_type access; /* unique functions are handled easily. */ unique: access = compute_access (basetypes, t); if (access == access_protected) { cp_error_at ("member function `%#D' is protected", t); error ("in this context"); return error_mark_node; } if (access == access_private) { cp_error_at ("member function `%#D' is private", t); error ("in this context"); return error_mark_node; } assemble_external (t); return build (OFFSET_REF, TREE_TYPE (t), decl, t); } /* overloaded functions may need more work. */ if (cname == name) { if (TYPE_HAS_DESTRUCTOR (type) && DECL_CHAIN (DECL_CHAIN (t)) == NULL_TREE) { t = DECL_CHAIN (t); goto unique; } } /* FNFIELDS is most likely allocated on the search_obstack, which will go away after this class scope. If we need to save this value for later (either for memoization or for use as an initializer for a static variable), then do so here. ??? The smart thing to do for the case of saving initializers is to resolve them before we're done with this scope. */ if (!TREE_PERMANENT (fnfields) && ((flag_save_memoized_contexts && global_bindings_p ()) || ! allocation_temporary_p ())) fnfields = copy_list (fnfields); for (t = TREE_VALUE (fnfields); t; t = DECL_CHAIN (t)) assemble_external (t); t = build_tree_list (error_mark_node, fnfields); TREE_TYPE (t) = build_offset_type (type, unknown_type_node); return t; } } /* Now that we know we are looking for a field, see if we have access to that field. Lookup_field will give us the error message. */ t = lookup_field (basetypes, name, 1, 0); if (t == error_mark_node) return error_mark_node; if (t == NULL_TREE) { cp_error ("`%D' is not a member of type `%T'", name, type); return error_mark_node; } if (TREE_CODE (t) == TYPE_DECL) { TREE_USED (t) = 1; return t; } /* static class members and class-specific enum values can be returned without further ado. */ if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL) { assemble_external (t); TREE_USED (t) = 1; return t; } if (TREE_CODE (t) == FIELD_DECL && DECL_BIT_FIELD (t)) { cp_error ("illegal pointer to bit field `%D'", t); return error_mark_node; } /* static class functions too. */ if (TREE_CODE (t) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE) my_friendly_abort (53); /* In member functions, the form `cname::name' is no longer equivalent to `this->cname::name'. */ return build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t); } /* Given an object EXP and a member function reference MEMBER, return the address of the actual member function. */ tree get_member_function (exp_addr_ptr, exp, member) tree *exp_addr_ptr; tree exp, member; { tree ctype = TREE_TYPE (exp); tree function = save_expr (build_unary_op (ADDR_EXPR, member, 0)); if (TYPE_VIRTUAL_P (ctype) || (flag_all_virtual == 1 && TYPE_OVERLOADS_METHOD_CALL_EXPR (ctype))) { tree e0, e1, e3; tree exp_addr; /* Save away the unadulterated `this' pointer. */ exp_addr = save_expr (*exp_addr_ptr); /* Cast function to signed integer. */ e0 = build1 (NOP_EXPR, integer_type_node, function); /* There is a hack here that takes advantage of twos complement arithmetic, and the fact that there are more than one UNITS to the WORD. If the high bit is set for the `function', then we pretend it is a virtual function, and the array indexing will knock this bit out the top, leaving a valid index. */ if (UNITS_PER_WORD <= 1) my_friendly_abort (54); e1 = build (GT_EXPR, boolean_type_node, e0, integer_zero_node); e1 = build_compound_expr (tree_cons (NULL_TREE, exp_addr, build_tree_list (NULL_TREE, e1))); e1 = save_expr (e1); if (TREE_SIDE_EFFECTS (*exp_addr_ptr)) { exp = build_indirect_ref (exp_addr, NULL_PTR); *exp_addr_ptr = exp_addr; } /* This is really hairy: if the function pointer is a pointer to a non-virtual member function, then we can't go mucking with the `this' pointer (any more than we already have to this point). If it is a pointer to a virtual member function, then we have to adjust the `this' pointer according to what the virtual function table tells us. */ e3 = build_vfn_ref (exp_addr_ptr, exp, e0); my_friendly_assert (e3 != error_mark_node, 213); /* Change this pointer type from `void *' to the type it is really supposed to be. */ TREE_TYPE (e3) = TREE_TYPE (function); /* If non-virtual, use what we had originally. Otherwise, use the value we get from the virtual function table. */ *exp_addr_ptr = build_conditional_expr (e1, exp_addr, *exp_addr_ptr); function = build_conditional_expr (e1, function, e3); } return build_indirect_ref (function, NULL_PTR); } /* If a OFFSET_REF made it through to here, then it did not have its address taken. */ tree resolve_offset_ref (exp) tree exp; { tree type = TREE_TYPE (exp); tree base = NULL_TREE; tree member; tree basetype, addr; if (TREE_CODE (exp) == TREE_LIST) return build_unary_op (ADDR_EXPR, exp, 0); if (TREE_CODE (exp) != OFFSET_REF) { my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214); if (TYPE_OFFSET_BASETYPE (type) != current_class_type) { error ("object missing in use of pointer-to-member construct"); return error_mark_node; } member = exp; type = TREE_TYPE (type); base = C_C_D; } else { member = TREE_OPERAND (exp, 1); base = TREE_OPERAND (exp, 0); } if ((TREE_CODE (member) == VAR_DECL && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))) || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE) { /* These were static members. */ if (mark_addressable (member) == 0) return error_mark_node; return member; } /* Syntax error can cause a member which should have been seen as static to be grok'd as non-static. */ if (TREE_CODE (member) == FIELD_DECL && C_C_D == NULL_TREE) { if (TREE_ADDRESSABLE (member) == 0) { cp_error_at ("member `%D' is non-static but referenced as a static member", member); error ("at this point in file"); TREE_ADDRESSABLE (member) = 1; } return error_mark_node; } /* The first case is really just a reference to a member of `this'. */ if (TREE_CODE (member) == FIELD_DECL && (base == C_C_D || (TREE_CODE (base) == NOP_EXPR && TREE_OPERAND (base, 0) == error_mark_node))) { tree basetype_path; enum access_type access; if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE) basetype = TYPE_OFFSET_BASETYPE (type); else basetype = DECL_CONTEXT (member); base = current_class_decl; if (get_base_distance (basetype, TREE_TYPE (TREE_TYPE (base)), 0, &basetype_path) < 0) { error_not_base_type (basetype, TREE_TYPE (TREE_TYPE (base))); return error_mark_node; } addr = convert_pointer_to (basetype, base); access = compute_access (basetype_path, member); if (access == access_public) return build (COMPONENT_REF, TREE_TYPE (member), build_indirect_ref (addr, NULL_PTR), member); if (access == access_protected) { cp_error_at ("member `%D' is protected", member); error ("in this context"); return error_mark_node; } if (access == access_private) { cp_error_at ("member `%D' is private", member); error ("in this context"); return error_mark_node; } my_friendly_abort (55); } /* If this is a reference to a member function, then return the address of the member function (which may involve going through the object's vtable), otherwise, return an expression for the dereferenced pointer-to-member construct. */ addr = build_unary_op (ADDR_EXPR, base, 0); if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE) { basetype = DECL_CLASS_CONTEXT (member); addr = convert_pointer_to (basetype, addr); return build_unary_op (ADDR_EXPR, get_member_function (&addr, build_indirect_ref (addr, NULL_PTR), member), 0); } else if (TREE_CODE (TREE_TYPE (member)) == OFFSET_TYPE) { basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (member)); addr = convert_pointer_to (basetype, addr); member = convert (ptrdiff_type_node, build_unary_op (ADDR_EXPR, member, 0)); return build1 (INDIRECT_REF, type, build (PLUS_EXPR, build_pointer_type (type), addr, member)); } else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member))) { return get_member_function_from_ptrfunc (&addr, member); } my_friendly_abort (56); /* NOTREACHED */ return NULL_TREE; } /* Return either DECL or its known constant value (if it has one). */ tree decl_constant_value (decl) tree decl; { if (! TREE_THIS_VOLATILE (decl) #if 0 /* These may be necessary for C, but they break C++. */ ! TREE_PUBLIC (decl) /* Don't change a variable array bound or initial value to a constant in a place where a variable is invalid. */ && ! pedantic #endif /* 0 */ && DECL_INITIAL (decl) != 0 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK /* This is invalid if initial value is not constant. If it has either a function call, a memory reference, or a variable, then re-evaluating it could give different results. */ && TREE_CONSTANT (DECL_INITIAL (decl)) /* Check for cases where this is sub-optimal, even though valid. */ && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR #if 0 /* We must allow this to work outside of functions so that static constants can be used for array sizes. */ && current_function_decl != 0 && DECL_MODE (decl) != BLKmode #endif ) return DECL_INITIAL (decl); return decl; } /* Friend handling routines. */ /* Friend data structures: Lists of friend functions come from TYPE_DECL nodes. Since all aggregate types are automatically typedef'd, these nodes are guaranteed to exist. The TREE_PURPOSE of a friend list is the name of the friend, and its TREE_VALUE is another list. For each element of that list, either the TREE_VALUE or the TREE_PURPOSE will be filled in, but not both. The TREE_VALUE of that list is an individual function which is a friend. The TREE_PURPOSE of that list indicates a type in which all functions by that name are friends. Lists of friend classes come from _TYPE nodes. Love that consistency thang. */ int is_friend_type (type1, type2) tree type1, type2; { return is_friend (type1, type2); } int is_friend (type, supplicant) tree type, supplicant; { int declp; register tree list; if (supplicant == NULL_TREE || type == NULL_TREE) return 0; declp = (TREE_CODE_CLASS (TREE_CODE (supplicant)) == 'd'); if (declp) /* It's a function decl. */ { tree list = DECL_FRIENDLIST (TYPE_NAME (type)); tree name = DECL_NAME (supplicant); tree ctype; if (DECL_FUNCTION_MEMBER_P (supplicant)) ctype = DECL_CLASS_CONTEXT (supplicant); else ctype = NULL_TREE; for (; list ; list = TREE_CHAIN (list)) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); name = DECL_ASSEMBLER_NAME (supplicant); for (; friends ; friends = TREE_CHAIN (friends)) { if (ctype == TREE_PURPOSE (friends)) return 1; if (name == DECL_ASSEMBLER_NAME (TREE_VALUE (friends))) return 1; } break; } } } else /* It's a type. */ { if (type == supplicant) return 1; list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_NAME (type))); for (; list ; list = TREE_CHAIN (list)) if (supplicant == TREE_VALUE (list)) return 1; } { tree context; if (! declp) context = DECL_CONTEXT (TYPE_NAME (supplicant)); else if (DECL_FUNCTION_MEMBER_P (supplicant)) context = DECL_CLASS_CONTEXT (supplicant); else context = NULL_TREE; if (context) return is_friend (type, context); } return 0; } /* Add a new friend to the friends of the aggregate type TYPE. DECL is the FUNCTION_DECL of the friend being added. */ static void add_friend (type, decl) tree type, decl; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); tree name = DECL_NAME (decl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); for (; friends ; friends = TREE_CHAIN (friends)) { if (decl == TREE_VALUE (friends)) { cp_warning ("`%D' is already a friend of class `%T'", decl, type); cp_warning_at ("previous friend declaration of `%D'", TREE_VALUE (friends)); return; } } TREE_VALUE (list) = tree_cons (error_mark_node, decl, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (DECL_NAME (decl), build_tree_list (error_mark_node, decl), DECL_FRIENDLIST (typedecl)); if (DECL_NAME (decl) == ansi_opname[(int) MODIFY_EXPR]) { tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); TYPE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; if (parmtypes && TREE_CHAIN (parmtypes)) { tree parmtype = TREE_VALUE (TREE_CHAIN (parmtypes)); if (TREE_CODE (parmtype) == REFERENCE_TYPE && TREE_TYPE (parmtypes) == TREE_TYPE (typedecl)) TYPE_HAS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1; } } } /* Declare that every member function NAME in FRIEND_TYPE (which may be NULL_TREE) is a friend of type TYPE. */ static void add_friends (type, name, friend_type) tree type, name, friend_type; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); while (friends && TREE_PURPOSE (friends) != friend_type) friends = TREE_CHAIN (friends); if (friends) if (friend_type) warning ("method `%s::%s' is already a friend of class", TYPE_NAME_STRING (friend_type), IDENTIFIER_POINTER (name)); else warning ("function `%s' is already a friend of class `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (DECL_NAME (typedecl))); else TREE_VALUE (list) = tree_cons (friend_type, NULL_TREE, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (name, build_tree_list (friend_type, NULL_TREE), DECL_FRIENDLIST (typedecl)); if (! strncmp (IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (ansi_opname[(int) MODIFY_EXPR]), strlen (IDENTIFIER_POINTER (ansi_opname[(int) MODIFY_EXPR])))) { TYPE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; sorry ("declaring \"friend operator =\" will not find \"operator = (X&)\" if it exists"); } } /* Set up a cross reference so that type TYPE will make member function CTYPE::DECL a friend when CTYPE is finally defined. For more than one, set up a cross reference so that functions with the name DECL and type CTYPE know that they are friends of TYPE. */ static void xref_friend (type, decl, ctype) tree type, decl, ctype; { tree friend_decl = TYPE_NAME (ctype); #if 0 tree typedecl = TYPE_NAME (type); tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl)); DECL_UNDEFINED_FRIENDS (typedecl) = t; #else tree t = 0; #endif SET_DECL_WAITING_FRIENDS (friend_decl, tree_cons (type, t, DECL_WAITING_FRIENDS (friend_decl))); TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = decl; } /* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already been defined, we make all of its member functions friends of TYPE. If not, we make it a pending friend, which can later be added when its definition is seen. If a type is defined, then its TYPE_DECL's DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend classes that are not defined. If a type has not yet been defined, then the DECL_WAITING_FRIENDS contains a list of types waiting to make it their friend. Note that these two can both be in use at the same time! */ void make_friend_class (type, friend_type) tree type, friend_type; { tree classes; if (IS_SIGNATURE (type)) { error ("`friend' declaration in signature definition"); return; } if (IS_SIGNATURE (friend_type)) { error ("signature type `%s' declared `friend'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (friend_type)))); return; } if (type == friend_type) { pedwarn ("class `%s' is implicitly friends with itself", TYPE_NAME_STRING (type)); return; } GNU_xref_hier (TYPE_NAME_STRING (type), TYPE_NAME_STRING (friend_type), 0, 0, 1); classes = CLASSTYPE_FRIEND_CLASSES (type); while (classes && TREE_VALUE (classes) != friend_type) classes = TREE_CHAIN (classes); if (classes) warning ("class `%s' is already friends with class `%s'", TYPE_NAME_STRING (TREE_VALUE (classes)), TYPE_NAME_STRING (type)); else { CLASSTYPE_FRIEND_CLASSES (type) = tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type)); } } /* Main friend processor. This is large, and for modularity purposes, has been removed from grokdeclarator. It returns `void_type_node' to indicate that something happened, though a FIELD_DECL is not returned. CTYPE is the class this friend belongs to. DECLARATOR is the name of the friend. DECL is the FUNCTION_DECL that the friend is. In case we are parsing a friend which is part of an inline definition, we will need to store PARM_DECL chain that comes with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL. FLAGS is just used for `grokclassfn'. QUALS say what special qualifies should apply to the object pointed to by `this'. */ tree do_friend (ctype, declarator, decl, parmdecls, flags, quals) tree ctype, declarator, decl, parmdecls; enum overload_flags flags; tree quals; { /* Every decl that gets here is a friend of something. */ DECL_FRIEND_P (decl) = 1; if (ctype) { tree cname = TYPE_NAME (ctype); if (TREE_CODE (cname) == TYPE_DECL) cname = DECL_NAME (cname); /* A method friend. */ if (TREE_CODE (decl) == FUNCTION_DECL) { if (flags == NO_SPECIAL && ctype && declarator == cname) DECL_CONSTRUCTOR_P (decl) = 1; /* This will set up DECL_ARGUMENTS for us. */ grokclassfn (ctype, cname, decl, flags, quals); if (TYPE_SIZE (ctype) != 0) check_classfn (ctype, cname, decl); if (TREE_TYPE (decl) != error_mark_node) { if (TYPE_SIZE (ctype)) { /* We don't call pushdecl here yet, or ever on this actual FUNCTION_DECL. We must preserve its TREE_CHAIN until the end. */ make_decl_rtl (decl, NULL_PTR, 1); add_friend (current_class_type, decl); } else { register char *classname = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (ctype))); error ("member declared as friend before type `%s' defined", classname); } } } else { /* Possibly a bunch of method friends. */ /* Get the class they belong to. */ tree ctype = IDENTIFIER_TYPE_VALUE (cname); /* This class is defined, use its methods now. */ if (TYPE_SIZE (ctype)) { tree fields = lookup_fnfields (TYPE_BINFO (ctype), declarator, 0); if (fields) add_friends (current_class_type, declarator, ctype); else error ("method `%s' is not a member of class `%s'", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (cname)); } else /* Note: DECLARATOR actually has more than one; in this case, we're making sure that fns with the name DECLARATOR and type CTYPE know they are friends of the current class type. */ xref_friend (current_class_type, declarator, ctype); decl = void_type_node; } } else if (TREE_CODE (decl) == FUNCTION_DECL && ((IDENTIFIER_LENGTH (declarator) == 4 && IDENTIFIER_POINTER (declarator)[0] == 'm' && ! strcmp (IDENTIFIER_POINTER (declarator), "main")) || (IDENTIFIER_LENGTH (declarator) > 10 && IDENTIFIER_POINTER (declarator)[0] == '_' && IDENTIFIER_POINTER (declarator)[1] == '_' && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))) { /* raw "main", and builtin functions never gets overloaded, but they can become friends. */ add_friend (current_class_type, decl); DECL_FRIEND_P (decl) = 1; decl = void_type_node; } /* A global friend. @@ or possibly a friend from a base class ?!? */ else if (TREE_CODE (decl) == FUNCTION_DECL) { /* Friends must all go through the overload machinery, even though they may not technically be overloaded. Note that because classes all wind up being top-level in their scope, their friend wind up in top-level scope as well. */ DECL_ASSEMBLER_NAME (decl) = build_decl_overload (declarator, TYPE_ARG_TYPES (TREE_TYPE (decl)), TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE); DECL_ARGUMENTS (decl) = parmdecls; DECL_CLASS_CONTEXT (decl) = current_class_type; /* We can call pushdecl here, because the TREE_CHAIN of this FUNCTION_DECL is not needed for other purposes. */ decl = pushdecl (decl); make_decl_rtl (decl, NULL_PTR, 1); add_friend (current_class_type, decl); DECL_FRIEND_P (decl) = 1; #if 0 TREE_OVERLOADED (declarator) = 1; #endif } else { /* @@ Should be able to ingest later definitions of this function before use. */ tree decl = lookup_name_nonclass (declarator); if (decl == NULL_TREE) { warning ("implicitly declaring `%s' as struct", IDENTIFIER_POINTER (declarator)); decl = xref_tag (record_type_node, declarator, NULL_TREE, 1); decl = TYPE_NAME (decl); } /* Allow abbreviated declarations of overloaded functions, but not if those functions are really class names. */ if (TREE_CODE (decl) == TREE_LIST && TREE_TYPE (TREE_PURPOSE (decl))) { warning ("`friend %s' archaic, use `friend class %s' instead", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (declarator)); decl = TREE_TYPE (TREE_PURPOSE (decl)); } if (TREE_CODE (decl) == TREE_LIST) add_friends (current_class_type, TREE_PURPOSE (decl), NULL_TREE); else make_friend_class (current_class_type, TREE_TYPE (decl)); decl = void_type_node; } return decl; } /* TYPE has now been defined. It may, however, have a number of things waiting make make it their friend. We resolve these references here. */ void embrace_waiting_friends (type) tree type; { tree decl = TYPE_NAME (type); tree waiters; if (TREE_CODE (decl) != TYPE_DECL) return; for (waiters = DECL_WAITING_FRIENDS (decl); waiters; waiters = TREE_CHAIN (waiters)) { tree waiter = TREE_PURPOSE (waiters); #if 0 tree waiter_prev = TREE_VALUE (waiters); #endif tree decl = TREE_TYPE (waiters); tree name = decl ? (TREE_CODE (decl) == IDENTIFIER_NODE ? decl : DECL_NAME (decl)) : NULL_TREE; if (name) { /* @@ There may be work to be done since we have not verified @@ consistency between original and friend declarations @@ of the functions waiting to become friends. */ tree field = lookup_fnfields (TYPE_BINFO (type), name, 0); if (field) if (decl == name) add_friends (waiter, name, type); else add_friend (waiter, decl); else error_with_file_and_line (DECL_SOURCE_FILE (TYPE_NAME (waiter)), DECL_SOURCE_LINE (TYPE_NAME (waiter)), "no method `%s' defined in class `%s' to be friend", IDENTIFIER_POINTER (DECL_NAME (TREE_TYPE (waiters))), TYPE_NAME_STRING (type)); } else make_friend_class (type, waiter); #if 0 if (TREE_CHAIN (waiter_prev)) TREE_CHAIN (waiter_prev) = TREE_CHAIN (TREE_CHAIN (waiter_prev)); else DECL_UNDEFINED_FRIENDS (TYPE_NAME (waiter)) = NULL_TREE; #endif } } /* Common subroutines of build_new and build_vec_delete. */ /* Common interface for calling "builtin" functions that are not really builtin. */ tree build_builtin_call (type, node, arglist) tree type; tree node; tree arglist; { tree rval = build (CALL_EXPR, type, node, arglist, 0); TREE_SIDE_EFFECTS (rval) = 1; assemble_external (TREE_OPERAND (node, 0)); TREE_USED (TREE_OPERAND (node, 0)) = 1; return rval; } /* Generate a C++ "new" expression. DECL is either a TREE_LIST (which needs to go through some sort of groktypename) or it is the name of the class we are newing. INIT is an initialization value. It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces. If INIT is void_type_node, it means do *not* call a constructor for this instance. For types with constructors, the data returned is initialized by the appropriate constructor. Whether the type has a constructor or not, if it has a pointer to a virtual function table, then that pointer is set up here. Unless I am mistaken, a call to new () will return initialized data regardless of whether the constructor itself is private or not. NOPE; new fails if the constructor is private (jcm). Note that build_new does nothing to assure that any special alignment requirements of the type are met. Rather, it leaves it up to malloc to do the right thing. Otherwise, folding to the right alignment cal cause problems if the user tries to later free the memory returned by `new'. PLACEMENT is the `placement' list for user-defined operator new (). */ extern int flag_check_new; tree build_new (placement, decl, init, use_global_new) tree placement; tree decl, init; int use_global_new; { tree type, true_type, size, rval; tree nelts; tree alloc_expr, alloc_temp; int has_array = 0; enum tree_code code = NEW_EXPR; tree pending_sizes = NULL_TREE; if (decl == error_mark_node) return error_mark_node; if (TREE_CODE (decl) == TREE_LIST) { tree absdcl = TREE_VALUE (decl); tree last_absdcl = NULL_TREE; int old_immediate_size_expand; if (current_function_decl && DECL_CONSTRUCTOR_P (current_function_decl)) { old_immediate_size_expand = immediate_size_expand; immediate_size_expand = 0; } nelts = integer_one_node; if (absdcl && TREE_CODE (absdcl) == CALL_EXPR) my_friendly_abort (215); while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF) { last_absdcl = absdcl; absdcl = TREE_OPERAND (absdcl, 0); } if (absdcl && TREE_CODE (absdcl) == ARRAY_REF) { /* probably meant to be a vec new */ tree this_nelts; while (TREE_OPERAND (absdcl, 0) && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF) { last_absdcl = absdcl; absdcl = TREE_OPERAND (absdcl, 0); } has_array = 1; this_nelts = TREE_OPERAND (absdcl, 1); if (this_nelts != error_mark_node) { if (this_nelts == NULL_TREE) error ("new of array type fails to specify size"); else { this_nelts = save_expr (convert (sizetype, this_nelts)); absdcl = TREE_OPERAND (absdcl, 0); if (this_nelts == integer_zero_node) { warning ("zero size array reserves no space"); nelts = integer_zero_node; } else nelts = build_binary_op (MULT_EXPR, nelts, this_nelts, 1); } } else nelts = integer_zero_node; } if (last_absdcl) TREE_OPERAND (last_absdcl, 0) = absdcl; else TREE_VALUE (decl) = absdcl; type = true_type = groktypename (decl); if (! type || type == error_mark_node) { immediate_size_expand = old_immediate_size_expand; return error_mark_node; } if (current_function_decl && DECL_CONSTRUCTOR_P (current_function_decl)) { pending_sizes = get_pending_sizes (); immediate_size_expand = old_immediate_size_expand; } } else if (TREE_CODE (decl) == IDENTIFIER_NODE) { if (IDENTIFIER_HAS_TYPE_VALUE (decl)) { /* An aggregate type. */ type = IDENTIFIER_TYPE_VALUE (decl); decl = TYPE_NAME (type); } else { /* A builtin type. */ decl = lookup_name (decl, 1); my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215); type = TREE_TYPE (decl); } true_type = type; } else if (TREE_CODE (decl) == TYPE_DECL) { type = TREE_TYPE (decl); true_type = type; } else { type = decl; true_type = type; decl = TYPE_NAME (type); } /* ``A reference cannot be created by the new operator. A reference is not an object (8.2.2, 8.4.3), so a pointer to it could not be returned by new.'' ARM 5.3.3 */ if (TREE_CODE (type) == REFERENCE_TYPE) { error ("new cannot be applied to a reference type"); type = true_type = TREE_TYPE (type); } if (TREE_CODE (type) == FUNCTION_TYPE) { error ("new cannot be applied to a function type"); return error_mark_node; } /* When the object being created is an array, the new-expression yields a pointer to the initial element (if any) of the array. For example, both new int and new int[10] return an int*. 5.3.4. */ if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0) { nelts = array_type_nelts_top (type); has_array = 1; type = true_type = TREE_TYPE (type); } if (TYPE_READONLY (type) || TYPE_VOLATILE (type)) type = TYPE_MAIN_VARIANT (type); /* If our base type is an array, then make sure we know how many elements it has. */ while (TREE_CODE (true_type) == ARRAY_TYPE) { tree this_nelts = array_type_nelts_top (true_type); nelts = build_binary_op (MULT_EXPR, nelts, this_nelts, 1); true_type = TREE_TYPE (true_type); } if (has_array) size = fold (build_binary_op (MULT_EXPR, size_in_bytes (true_type), nelts, 1)); else size = size_in_bytes (type); if (true_type == void_type_node) { error ("invalid type `void' for new"); return error_mark_node; } if (TYPE_SIZE (true_type) == 0) { incomplete_type_error (0, true_type); return error_mark_node; } if (TYPE_LANG_SPECIFIC (true_type) && CLASSTYPE_ABSTRACT_VIRTUALS (true_type)) { abstract_virtuals_error (NULL_TREE, true_type); return error_mark_node; } if (TYPE_LANG_SPECIFIC (true_type) && IS_SIGNATURE (true_type)) { signature_error (NULL_TREE, true_type); return error_mark_node; } /* Get a little extra space to store a couple of things before the new'ed array. */ if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type)) { tree extra = BI_header_size; size = size_binop (PLUS_EXPR, size, extra); } if (has_array) code = VEC_NEW_EXPR; /* Allocate the object. */ if (! use_global_new && TYPE_LANG_SPECIFIC (true_type) && (TYPE_GETS_NEW (true_type) & (1 << has_array))) rval = build_opfncall (code, LOOKUP_NORMAL, build_pointer_type (true_type), size, placement); else if (placement) { rval = build_opfncall (code, LOOKUP_GLOBAL|LOOKUP_COMPLAIN, ptr_type_node, size, placement); rval = convert (build_pointer_type (true_type), rval); } else if (! has_array && flag_this_is_variable > 0 && TYPE_NEEDS_CONSTRUCTING (true_type) && init != void_type_node) { if (init == NULL_TREE || TREE_CODE (init) == TREE_LIST) rval = NULL_TREE; else { error ("constructors take parameter lists"); return error_mark_node; } } else { rval = build_builtin_call (build_pointer_type (true_type), has_array ? BIVN : BIN, build_tree_list (NULL_TREE, size)); #if 0 /* See comment above as to why this is disabled. */ if (alignment) { rval = build (PLUS_EXPR, build_pointer_type (true_type), rval, alignment); rval = build (BIT_AND_EXPR, build_pointer_type (true_type), rval, build1 (BIT_NOT_EXPR, integer_type_node, alignment)); } #endif TREE_CALLS_NEW (rval) = 1; } if (flag_check_new && rval) { /* For array new, we need to make sure that the call to new is not expanded as part of the RTL_EXPR for the initialization, so we can't just use save_expr here. */ alloc_temp = get_temp_name (TREE_TYPE (rval), 0); alloc_expr = build (MODIFY_EXPR, TREE_TYPE (rval), alloc_temp, rval); TREE_SIDE_EFFECTS (alloc_expr) = 1; rval = alloc_temp; } else alloc_expr = NULL_TREE; /* if rval is NULL_TREE I don't have to allocate it, but are we totally sure we have some extra bytes in that case for the BI_header_size cookies? And how does that interact with the code below? (mrs) */ /* Finish up some magic for new'ed arrays */ if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type) && rval != NULL_TREE) { tree extra = BI_header_size; tree cookie, exp1; rval = convert (ptr_type_node, rval); /* convert to void * first */ rval = convert (string_type_node, rval); /* lets not add void* and ints */ rval = save_expr (build_binary_op (PLUS_EXPR, rval, extra, 1)); /* Store header info. */ cookie = build_indirect_ref (build (MINUS_EXPR, build_pointer_type (BI_header_type), rval, extra), NULL_PTR); exp1 = build (MODIFY_EXPR, void_type_node, build_component_ref (cookie, nc_nelts_field_id, 0, 0), nelts); TREE_SIDE_EFFECTS (exp1) = 1; rval = convert (build_pointer_type (true_type), rval); TREE_CALLS_NEW (rval) = 1; TREE_SIDE_EFFECTS (rval) = 1; rval = build_compound_expr (tree_cons (NULL_TREE, exp1, build_tree_list (NULL_TREE, rval))); } if (rval == error_mark_node) return error_mark_node; /* Don't call any constructors or do any initialization. */ if (init == void_type_node) goto done; if (TYPE_NEEDS_CONSTRUCTING (type) || init) { if (! TYPE_NEEDS_CONSTRUCTING (type) && ! IS_AGGR_TYPE (type) && ! has_array) { /* New 2.0 interpretation: `new int (10)' means allocate an int, and initialize it with 10. */ tree deref; rval = save_expr (rval); deref = build_indirect_ref (rval, NULL_PTR); TREE_READONLY (deref) = 0; if (TREE_CHAIN (init) != NULL_TREE) pedwarn ("initializer list being treated as compound expression"); else if (TREE_CODE (init) == CONSTRUCTOR) { pedwarn ("initializer list appears where operand should be used"); init = TREE_OPERAND (init, 1); } init = build_compound_expr (init); init = convert_for_initialization (deref, type, init, LOOKUP_NORMAL, "new", NULL_TREE, 0); rval = build (COMPOUND_EXPR, TREE_TYPE (rval), build_modify_expr (deref, NOP_EXPR, init), rval); TREE_NO_UNUSED_WARNING (rval) = 1; TREE_SIDE_EFFECTS (rval) = 1; TREE_CALLS_NEW (rval) = 1; } else if (! has_array) { tree newrval; /* Constructors are never virtual. If it has an initialization, we need to complain if we aren't allowed to use the ctor that took that argument. */ int flags = LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_COMPLAIN; if (rval && TYPE_USES_VIRTUAL_BASECLASSES (true_type)) { init = tree_cons (NULL_TREE, integer_one_node, init); flags |= LOOKUP_HAS_IN_CHARGE; } newrval = rval; if (newrval && TREE_CODE (TREE_TYPE (newrval)) == POINTER_TYPE) newrval = build_indirect_ref (newrval, NULL_PTR); newrval = build_method_call (newrval, constructor_name_full (true_type), init, NULL_TREE, flags); if (newrval) { rval = newrval; TREE_HAS_CONSTRUCTOR (rval) = 1; } else rval = error_mark_node; } else if (current_function_decl == NULL_TREE) { extern tree static_aggregates; /* In case of static initialization, SAVE_EXPR is good enough. */ rval = save_expr (rval); rval = copy_to_permanent (rval); init = copy_to_permanent (init); init = expand_vec_init (decl, rval, build_binary_op (MINUS_EXPR, nelts, integer_one_node, 1), init, 0); init = copy_to_permanent (init); static_aggregates = perm_tree_cons (init, rval, static_aggregates); } else { /* Have to wrap this in RTL_EXPR for two cases: in base or member initialization and if we are a branch of a ?: operator. Since we can't easily know the latter, just do it always. */ tree xval = make_node (RTL_EXPR); /* If we want to check the value of the allocation expression, and the number of elements in the array is not a constant, we *must* expand the SAVE_EXPR for nelts in alloc_expr before we expand it in the actual initialization. So we need to build up an RTL_EXPR for alloc_expr. Sigh. */ if (alloc_expr && ! TREE_CONSTANT (nelts)) { tree xval = make_node (RTL_EXPR); rtx rtxval; TREE_TYPE (xval) = TREE_TYPE (alloc_expr); do_pending_stack_adjust (); start_sequence_for_rtl_expr (xval); emit_note (0, -1); rtxval = expand_expr (alloc_expr, NULL, VOIDmode, 0); do_pending_stack_adjust (); TREE_SIDE_EFFECTS (xval) = 1; RTL_EXPR_SEQUENCE (xval) = get_insns (); end_sequence (); RTL_EXPR_RTL (xval) = rtxval; TREE_TYPE (xval) = TREE_TYPE (alloc_expr); alloc_expr = xval; } TREE_TYPE (xval) = TREE_TYPE (rval); do_pending_stack_adjust (); start_sequence_for_rtl_expr (xval); /* As a matter of principle, `start_sequence' should do this. */ emit_note (0, -1); rval = save_expr (rval); rval = expand_vec_init (decl, rval, build_binary_op (MINUS_EXPR, nelts, integer_one_node, 1), init, 0); do_pending_stack_adjust (); TREE_SIDE_EFFECTS (xval) = 1; TREE_CALLS_NEW (xval) = 1; RTL_EXPR_SEQUENCE (xval) = get_insns (); end_sequence (); if (TREE_CODE (rval) == SAVE_EXPR) { /* Errors may cause this to not get evaluated. */ if (SAVE_EXPR_RTL (rval) == 0) SAVE_EXPR_RTL (rval) = const0_rtx; RTL_EXPR_RTL (xval) = SAVE_EXPR_RTL (rval); } else { my_friendly_assert (TREE_CODE (rval) == VAR_DECL, 217); RTL_EXPR_RTL (xval) = DECL_RTL (rval); } rval = xval; } } else if (TYPE_READONLY (true_type)) cp_error ("uninitialized const in `new' of `%#T'", true_type); done: if (alloc_expr) { /* Did we modify the storage? */ if (rval != alloc_temp) { tree ifexp = build_binary_op (NE_EXPR, alloc_expr, integer_zero_node, 1); rval = build_conditional_expr (ifexp, rval, alloc_temp); } else rval = alloc_expr; } if (rval && TREE_TYPE (rval) != build_pointer_type (type)) { /* The type of new int [3][3] is not int *, but int [3] * */ rval = build_c_cast (build_pointer_type (type), rval, 0); } if (pending_sizes) rval = build_compound_expr (chainon (pending_sizes, build_tree_list (NULL_TREE, rval))); if (flag_gc) { extern tree gc_visible; tree objbits; tree update_expr; rval = save_expr (rval); /* We don't need a `headof' operation to do this because we know where the object starts. */ objbits = build1 (INDIRECT_REF, unsigned_type_node, build (MINUS_EXPR, ptr_type_node, rval, c_sizeof_nowarn (unsigned_type_node))); update_expr = build_modify_expr (objbits, BIT_IOR_EXPR, gc_visible); rval = build_compound_expr (tree_cons (NULL_TREE, rval, tree_cons (NULL_TREE, update_expr, build_tree_list (NULL_TREE, rval)))); } return rval; } static tree build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete, use_global_delete) tree base, maxindex, type; tree auto_delete_vec, auto_delete; int use_global_delete; { tree virtual_size; tree ptype = build_pointer_type (type); tree size_exp = size_in_bytes (type); /* Temporary variables used by the loop. */ tree tbase, tbase_init; /* This is the body of the loop that implements the deletion of a single element, and moves temp variables to next elements. */ tree body; /* This is the LOOP_EXPR that governs the deletion of the elements. */ tree loop; /* This is the thing that governs what to do after the loop has run. */ tree deallocate_expr = 0; /* This is the BIND_EXPR which holds the outermost iterator of the loop. It is convenient to set this variable up and test it before executing any other code in the loop. This is also the containing expression returned by this function. */ tree controller = NULL_TREE; /* This is the BLOCK to record the symbol binding for debugging. */ tree block; if (! IS_AGGR_TYPE (type) || ! TYPE_NEEDS_DESTRUCTOR (type)) { loop = integer_zero_node; goto no_destructor; } /* The below is short by BI_header_size */ virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex)); tbase = build_decl (VAR_DECL, NULL_TREE, ptype); tbase_init = build_modify_expr (tbase, NOP_EXPR, fold (build (PLUS_EXPR, ptype, base, virtual_size))); DECL_REGISTER (tbase) = 1; controller = build (BIND_EXPR, void_type_node, tbase, 0, 0); TREE_SIDE_EFFECTS (controller) = 1; block = build_block (tbase, 0, 0, 0, 0); add_block_current_level (block); if (auto_delete != integer_zero_node && auto_delete != integer_two_node) { tree base_tbd = convert (ptype, build_binary_op (MINUS_EXPR, convert (ptr_type_node, base), BI_header_size, 1)); /* This is the real size */ virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size); body = build_tree_list (NULL_TREE, build_x_delete (ptype, base_tbd, 2 | use_global_delete, virtual_size)); body = build (COND_EXPR, void_type_node, build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node), body, integer_zero_node); } else body = NULL_TREE; body = tree_cons (NULL_TREE, build_delete (ptype, tbase, auto_delete, LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1), body); body = tree_cons (NULL_TREE, build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)), body); body = tree_cons (NULL_TREE, build (EXIT_EXPR, void_type_node, build (EQ_EXPR, boolean_type_node, base, tbase)), body); loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body)); loop = tree_cons (NULL_TREE, tbase_init, tree_cons (NULL_TREE, loop, NULL_TREE)); loop = build_compound_expr (loop); no_destructor: /* If the delete flag is one, or anything else with the low bit set, delete the storage. */ if (auto_delete_vec == integer_zero_node || auto_delete_vec == integer_two_node) deallocate_expr = integer_zero_node; else { tree base_tbd; /* The below is short by BI_header_size */ virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex)); if (! TYPE_VEC_NEW_USES_COOKIE (type)) /* no header */ base_tbd = base; else { base_tbd = convert (ptype, build_binary_op (MINUS_EXPR, convert (string_type_node, base), BI_header_size, 1)); /* True size with header. */ virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size); } deallocate_expr = build_x_delete (ptype, base_tbd, 2 | use_global_delete, virtual_size); if (auto_delete_vec != integer_one_node) deallocate_expr = build (COND_EXPR, void_type_node, build (BIT_AND_EXPR, integer_type_node, auto_delete_vec, integer_one_node), deallocate_expr, integer_zero_node); } if (loop && deallocate_expr != integer_zero_node) { body = tree_cons (NULL_TREE, loop, tree_cons (NULL_TREE, deallocate_expr, NULL_TREE)); body = build_compound_expr (body); } else body = loop; /* Outermost wrapper: If pointer is null, punt. */ body = build (COND_EXPR, void_type_node, build (NE_EXPR, boolean_type_node, base, integer_zero_node), body, integer_zero_node); body = build1 (NOP_EXPR, void_type_node, body); if (controller) { TREE_OPERAND (controller, 1) = body; return controller; } else return convert (void_type_node, body); } /* Build a tree to cleanup partially built arrays. BASE is that starting address of the array. COUNT is the count of objects that have been built, that need destroying. TYPE is the type of elements in the array. */ static tree build_array_eh_cleanup (base, count, type) tree base, count, type; { tree expr = build_vec_delete_1 (base, count, type, integer_two_node, integer_zero_node, 0); return expr; } /* `expand_vec_init' performs initialization of a vector of aggregate types. DECL is passed only for error reporting, and provides line number and source file name information. BASE is the space where the vector will be. MAXINDEX is the maximum index of the array (one less than the number of elements). INIT is the (possibly NULL) initializer. FROM_ARRAY is 0 if we should init everything with INIT (i.e., every element initialized from INIT). FROM_ARRAY is 1 if we should index into INIT in parallel with initialization of DECL. FROM_ARRAY is 2 if we should index into INIT in parallel, but use assignment instead of initialization. */ tree expand_vec_init (decl, base, maxindex, init, from_array) tree decl, base, maxindex, init; int from_array; { tree rval; tree iterator, base2 = NULL_TREE; tree type = TREE_TYPE (TREE_TYPE (base)); tree size; maxindex = convert (integer_type_node, maxindex); if (maxindex == error_mark_node) return error_mark_node; if (current_function_decl == NULL_TREE) { rval = make_tree_vec (3); TREE_VEC_ELT (rval, 0) = base; TREE_VEC_ELT (rval, 1) = maxindex; TREE_VEC_ELT (rval, 2) = init; return rval; } size = size_in_bytes (type); /* Set to zero in case size is <= 0. Optimizer will delete this if it is not needed. */ rval = get_temp_regvar (build_pointer_type (type), convert (build_pointer_type (type), null_pointer_node)); base = default_conversion (base); base = convert (build_pointer_type (type), base); expand_assignment (rval, base, 0, 0); base = get_temp_regvar (build_pointer_type (type), base); if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR && TREE_TYPE (init) == TREE_TYPE (decl)) { /* Initialization of array from {...}. */ tree elts = CONSTRUCTOR_ELTS (init); tree baseref = build1 (INDIRECT_REF, type, base); tree baseinc = build (PLUS_EXPR, build_pointer_type (type), base, size); int host_i = TREE_INT_CST_LOW (maxindex); if (IS_AGGR_TYPE (type)) { while (elts) { host_i -= 1; expand_aggr_init (baseref, TREE_VALUE (elts), 0, 0); expand_assignment (base, baseinc, 0, 0); elts = TREE_CHAIN (elts); } /* Initialize any elements by default if possible. */ if (host_i >= 0) { if (TYPE_NEEDS_CONSTRUCTING (type) == 0) { if (obey_regdecls) use_variable (DECL_RTL (base)); goto done_init; } iterator = get_temp_regvar (integer_type_node, build_int_2 (host_i, 0)); init = NULL_TREE; goto init_by_default; } } else while (elts) { expand_assignment (baseref, TREE_VALUE (elts), 0, 0); expand_assignment (base, baseinc, 0, 0); elts = TREE_CHAIN (elts); } if (obey_regdecls) use_variable (DECL_RTL (base)); } else { tree itype; iterator = get_temp_regvar (integer_type_node, maxindex); init_by_default: /* If initializing one array from another, initialize element by element. */ if (from_array) { /* We rely upon the below calls the do argument checking */ if (decl == NULL_TREE) { sorry ("initialization of array from dissimilar array type"); return error_mark_node; } if (init) { base2 = default_conversion (init); itype = TREE_TYPE (base2); base2 = get_temp_regvar (itype, base2); itype = TREE_TYPE (itype); } else if (TYPE_LANG_SPECIFIC (type) && TYPE_NEEDS_CONSTRUCTING (type) && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) { error ("initializer ends prematurely"); return error_mark_node; } } expand_start_cond (build (GE_EXPR, boolean_type_node, iterator, integer_zero_node), 0); if (TYPE_NEEDS_DESTRUCTOR (type)) start_protect (); expand_start_loop_continue_elsewhere (1); if (from_array) { tree to = build1 (INDIRECT_REF, type, base); tree from; if (base2) from = build1 (INDIRECT_REF, itype, base2); else from = NULL_TREE; if (from_array == 2) expand_expr_stmt (build_modify_expr (to, NOP_EXPR, from)); else if (TYPE_NEEDS_CONSTRUCTING (type)) expand_aggr_init (to, from, 0, 0); else if (from) expand_assignment (to, from, 0, 0); else my_friendly_abort (57); } else if (TREE_CODE (type) == ARRAY_TYPE) { if (init != 0) sorry ("cannot initialize multi-dimensional array with initializer"); expand_vec_init (decl, build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), base), array_type_nelts (type), 0, 0); } else expand_aggr_init (build1 (INDIRECT_REF, type, base), init, 0, 0); expand_assignment (base, build (PLUS_EXPR, build_pointer_type (type), base, size), 0, 0); if (base2) expand_assignment (base2, build (PLUS_EXPR, build_pointer_type (type), base2, size), 0, 0); expand_loop_continue_here (); expand_exit_loop_if_false (0, build (NE_EXPR, boolean_type_node, build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one)); if (obey_regdecls) { use_variable (DECL_RTL (base)); if (base2) use_variable (DECL_RTL (base2)); } expand_end_loop (); if (TYPE_NEEDS_DESTRUCTOR (type)) end_protect (build_array_eh_cleanup (rval, build_binary_op (MINUS_EXPR, maxindex, iterator, 1), type)); expand_end_cond (); if (obey_regdecls) use_variable (DECL_RTL (iterator)); } done_init: if (obey_regdecls) use_variable (DECL_RTL (rval)); return rval; } /* Free up storage of type TYPE, at address ADDR. TYPE is a POINTER_TYPE and can be ptr_type_node for no special type of pointer. VIRTUAL_SIZE is the amount of storage that was allocated, and is used as the second argument to operator delete. It can include things like padding and magic size cookies. It has virtual in it, because if you have a base pointer and you delete through a virtual destructor, it should be the size of the dynamic object, not the static object, see Free Store 12.5 ANSI C++ WP. This does not call any destructors. */ tree build_x_delete (type, addr, which_delete, virtual_size) tree type, addr; int which_delete; tree virtual_size; { int use_global_delete = which_delete & 1; int use_vec_delete = !!(which_delete & 2); tree rval; enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR; if (! use_global_delete && TYPE_LANG_SPECIFIC (TREE_TYPE (type)) && (TYPE_GETS_DELETE (TREE_TYPE (type)) & (1 << use_vec_delete))) rval = build_opfncall (code, LOOKUP_NORMAL, addr, virtual_size, NULL_TREE); else rval = build_builtin_call (void_type_node, use_vec_delete ? BIVD : BID, build_tree_list (NULL_TREE, addr)); return rval; } /* Generate a call to a destructor. TYPE is the type to cast ADDR to. ADDR is an expression which yields the store to be destroyed. AUTO_DELETE is nonzero if a call to DELETE should be made or not. If in the program, (AUTO_DELETE & 2) is non-zero, we tear down the virtual baseclasses. If in the program, (AUTO_DELETE & 1) is non-zero, then we deallocate. FLAGS is the logical disjunction of zero or more LOOKUP_ flags. See cp-tree.h for more info. This function does not delete an object's virtual base classes. */ tree build_delete (type, addr, auto_delete, flags, use_global_delete) tree type, addr; tree auto_delete; int flags; int use_global_delete; { tree function, parms; tree member; tree expr; tree ref; int ptr; if (addr == error_mark_node) return error_mark_node; /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type set to `error_mark_node' before it gets properly cleaned up. */ if (type == error_mark_node) return error_mark_node; type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) == POINTER_TYPE) { type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); if (TYPE_SIZE (type) == 0) { incomplete_type_error (0, type); return error_mark_node; } if (TREE_CODE (type) == ARRAY_TYPE) goto handle_array; if (! IS_AGGR_TYPE (type)) { /* Call the builtin operator delete. */ return build_builtin_call (void_type_node, BID, build_tree_list (NULL_TREE, addr)); } if (TREE_SIDE_EFFECTS (addr)) addr = save_expr (addr); /* throw away const and volatile on target type of addr */ addr = convert_force (build_pointer_type (type), addr, 0); ref = build_indirect_ref (addr, NULL_PTR); ptr = 1; } else if (TREE_CODE (type) == ARRAY_TYPE) { handle_array: if (TREE_SIDE_EFFECTS (addr)) addr = save_expr (addr); if (TYPE_DOMAIN (type) == NULL_TREE) { error ("unknown array size in delete"); return error_mark_node; } return build_vec_delete (addr, array_type_nelts (type), c_sizeof_nowarn (TREE_TYPE (type)), auto_delete, integer_two_node, use_global_delete); } else { /* Don't check PROTECT here; leave that decision to the destructor. If the destructor is accessible, call it, else report error. */ addr = build_unary_op (ADDR_EXPR, addr, 0); if (TREE_SIDE_EFFECTS (addr)) addr = save_expr (addr); if (TREE_CONSTANT (addr)) addr = convert_pointer_to (type, addr); else addr = convert_force (build_pointer_type (type), addr, 0); if (TREE_CODE (addr) == NOP_EXPR && TREE_OPERAND (addr, 0) == current_class_decl) ref = C_C_D; else ref = build_indirect_ref (addr, NULL_PTR); ptr = 0; } my_friendly_assert (IS_AGGR_TYPE (type), 220); if (! TYPE_NEEDS_DESTRUCTOR (type)) { if (auto_delete == integer_zero_node) return void_zero_node; /* Pass the size of the object down to the operator delete() in addition to the ADDR. */ if (TYPE_GETS_REG_DELETE (type) && !use_global_delete) { tree virtual_size = c_sizeof_nowarn (type); return build_opfncall (DELETE_EXPR, LOOKUP_NORMAL, addr, virtual_size, NULL_TREE); } /* Call the builtin operator delete. */ return build_builtin_call (void_type_node, BID, build_tree_list (NULL_TREE, addr)); } parms = build_tree_list (NULL_TREE, addr); /* Below, we will reverse the order in which these calls are made. If we have a destructor, then that destructor will take care of the base classes; otherwise, we must do that here. */ if (TYPE_HAS_DESTRUCTOR (type)) { tree dtor = DECL_MAIN_VARIANT (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0)); tree basetypes = TYPE_BINFO (type); tree passed_auto_delete; tree do_delete = NULL_TREE; if (use_global_delete) { tree cond = fold (build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node)); tree call = build_builtin_call (void_type_node, BID, build_tree_list (NULL_TREE, addr)); cond = fold (build (COND_EXPR, void_type_node, cond, call, void_zero_node)); if (cond != void_zero_node) do_delete = cond; passed_auto_delete = fold (build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_two_node)); } else passed_auto_delete = auto_delete; if (flags & LOOKUP_PROTECT) { enum access_type access = compute_access (basetypes, dtor); if (access == access_private) { if (flags & LOOKUP_COMPLAIN) cp_error ("destructor for type `%T' is private in this scope", type); return error_mark_node; } else if (access == access_protected) { if (flags & LOOKUP_COMPLAIN) cp_error ("destructor for type `%T' is protected in this scope", type); return error_mark_node; } } /* Once we are in a destructor, try not going through the virtual function table to find the next destructor. */ if (DECL_VINDEX (dtor) && ! (flags & LOOKUP_NONVIRTUAL) && TREE_CODE (auto_delete) != PARM_DECL && (ptr == 1 || ! resolves_to_fixed_type_p (ref, 0))) { tree binfo, basetype; /* The code below is probably all broken. See call.c for the complete right way to do this. this offsets may not be right in the below. (mrs) */ /* This destructor must be called via virtual function table. */ dtor = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (DECL_CONTEXT (dtor)), 0); basetype = DECL_CLASS_CONTEXT (dtor); binfo = get_binfo (basetype, TREE_TYPE (TREE_TYPE (TREE_VALUE (parms))), 0); expr = convert_pointer_to_real (binfo, TREE_VALUE (parms)); if (expr != TREE_VALUE (parms)) { expr = fold (expr); ref = build_indirect_ref (expr, NULL_PTR); TREE_VALUE (parms) = expr; } function = build_vfn_ref (&TREE_VALUE (parms), ref, DECL_VINDEX (dtor)); if (function == error_mark_node) return error_mark_node; TREE_TYPE (function) = build_pointer_type (TREE_TYPE (dtor)); TREE_CHAIN (parms) = build_tree_list (NULL_TREE, passed_auto_delete); expr = build_function_call (function, parms); if (do_delete) expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete); if (ptr && (flags & LOOKUP_DESTRUCTOR) == 0) { /* Handle the case where a virtual destructor is being called on an item that is 0. @@ Does this really need to be done? */ tree ifexp = build_binary_op(NE_EXPR, addr, integer_zero_node,1); #if 0 if (TREE_CODE (ref) == VAR_DECL || TREE_CODE (ref) == COMPONENT_REF) warning ("losing in build_delete"); #endif expr = build (COND_EXPR, void_type_node, ifexp, expr, void_zero_node); } } else { tree ifexp; if ((flags & LOOKUP_DESTRUCTOR) || TREE_CODE (ref) == VAR_DECL || TREE_CODE (ref) == PARM_DECL || TREE_CODE (ref) == COMPONENT_REF || TREE_CODE (ref) == ARRAY_REF) /* These can't be 0. */ ifexp = integer_one_node; else /* Handle the case where a non-virtual destructor is being called on an item that is 0. */ ifexp = build_binary_op (NE_EXPR, addr, integer_zero_node, 1); /* Used to mean that this destructor was known to be empty, but that's now obsolete. */ my_friendly_assert (DECL_INITIAL (dtor) != void_type_node, 221); TREE_CHAIN (parms) = build_tree_list (NULL_TREE, passed_auto_delete); expr = build_function_call (dtor, parms); if (do_delete) expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete); if (ifexp != integer_one_node) expr = build (COND_EXPR, void_type_node, ifexp, expr, void_zero_node); } return expr; } else { /* This can get visibilities wrong. */ tree binfos = BINFO_BASETYPES (TYPE_BINFO (type)); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; tree base_binfo = n_baseclasses > 0 ? TREE_VEC_ELT (binfos, 0) : NULL_TREE; tree exprstmt = NULL_TREE; tree parent_auto_delete = auto_delete; tree cond; /* If this type does not have a destructor, but does have operator delete, call the parent parent destructor (if any), but let this node do the deleting. Otherwise, it is ok to let the parent destructor do the deleting. */ if (TYPE_GETS_REG_DELETE (type) && !use_global_delete) { parent_auto_delete = integer_zero_node; if (auto_delete == integer_zero_node) cond = NULL_TREE; else { tree virtual_size; /* This is probably wrong. It should be the size of the virtual object being deleted. */ virtual_size = c_sizeof_nowarn (type); expr = build_opfncall (DELETE_EXPR, LOOKUP_NORMAL, addr, virtual_size, NULL_TREE); if (expr == error_mark_node) return error_mark_node; if (auto_delete != integer_one_node) cond = build (COND_EXPR, void_type_node, build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node), expr, void_zero_node); else cond = expr; } } else if (base_binfo == NULL_TREE || (TREE_VIA_VIRTUAL (base_binfo) == 0 && ! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)))) { tree virtual_size; /* This is probably wrong. It should be the size of the virtual object being deleted. */ virtual_size = c_sizeof_nowarn (type); cond = build (COND_EXPR, void_type_node, build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node), build_builtin_call (void_type_node, BID, build_tree_list (NULL_TREE, addr)), void_zero_node); } else cond = NULL_TREE; if (cond) exprstmt = build_tree_list (NULL_TREE, cond); if (base_binfo && ! TREE_VIA_VIRTUAL (base_binfo) && TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo))) { tree this_auto_delete; if (BINFO_OFFSET_ZEROP (base_binfo)) this_auto_delete = parent_auto_delete; else this_auto_delete = integer_zero_node; expr = build_delete (build_pointer_type (BINFO_TYPE (base_binfo)), addr, this_auto_delete, flags, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } /* Take care of the remaining baseclasses. */ for (i = 1; i < n_baseclasses; i++) { base_binfo = TREE_VEC_ELT (binfos, i); if (! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)) || TREE_VIA_VIRTUAL (base_binfo)) continue; /* May be zero offset if other baseclasses are virtual. */ expr = fold (build (PLUS_EXPR, build_pointer_type (BINFO_TYPE (base_binfo)), addr, BINFO_OFFSET (base_binfo))); expr = build_delete (build_pointer_type (BINFO_TYPE (base_binfo)), expr, integer_zero_node, flags, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member)) { if (TREE_CODE (member) != FIELD_DECL) continue; if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (member))) { tree this_member = build_component_ref (ref, DECL_NAME (member), 0, 0); tree this_type = TREE_TYPE (member); expr = build_delete (this_type, this_member, integer_two_node, flags, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } } if (exprstmt) return build_compound_expr (exprstmt); /* Virtual base classes make this function do nothing. */ return void_zero_node; } } /* For type TYPE, delete the virtual baseclass objects of DECL. */ tree build_vbase_delete (type, decl) tree type, decl; { tree vbases = CLASSTYPE_VBASECLASSES (type); tree result = NULL_TREE; tree addr = build_unary_op (ADDR_EXPR, decl, 0); my_friendly_assert (addr != error_mark_node, 222); while (vbases) { tree this_addr = convert_force (build_pointer_type (BINFO_TYPE (vbases)), addr, 0); result = tree_cons (NULL_TREE, build_delete (TREE_TYPE (this_addr), this_addr, integer_zero_node, LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0), result); vbases = TREE_CHAIN (vbases); } return build_compound_expr (nreverse (result)); } /* Build a C++ vector delete expression. MAXINDEX is the number of elements to be deleted. ELT_SIZE is the nominal size of each element in the vector. BASE is the expression that should yield the store to be deleted. This function expands (or synthesizes) these calls itself. AUTO_DELETE_VEC says whether the container (vector) should be deallocated. AUTO_DELETE say whether each item in the container should be deallocated. This also calls delete for virtual baseclasses of elements of the vector. Update: MAXINDEX is no longer needed. The size can be extracted from the start of the vector for pointers, and from the type for arrays. We still use MAXINDEX for arrays because it happens to already have one of the values we'd have to extract. (We could use MAXINDEX with pointers to confirm the size, and trap if the numbers differ; not clear that it'd be worth bothering.) */ tree build_vec_delete (base, maxindex, elt_size, auto_delete_vec, auto_delete, use_global_delete) tree base, maxindex, elt_size; tree auto_delete_vec, auto_delete; int use_global_delete; { tree type; if (TREE_CODE (base) == OFFSET_REF) base = resolve_offset_ref (base); type = TREE_TYPE (base); base = stabilize_reference (base); /* Since we can use base many times, save_expr it. */ if (TREE_SIDE_EFFECTS (base)) base = save_expr (base); if (TREE_CODE (type) == POINTER_TYPE) { /* Step back one from start of vector, and read dimension. */ tree cookie_addr = build (MINUS_EXPR, build_pointer_type (BI_header_type), base, BI_header_size); tree cookie = build_indirect_ref (cookie_addr, NULL_PTR); maxindex = build_component_ref (cookie, nc_nelts_field_id, 0, 0); do type = TREE_TYPE (type); while (TREE_CODE (type) == ARRAY_TYPE); } else if (TREE_CODE (type) == ARRAY_TYPE) { /* get the total number of things in the array, maxindex is a bad name */ maxindex = array_type_nelts_total (type); while (TREE_CODE (type) == ARRAY_TYPE) type = TREE_TYPE (type); base = build_unary_op (ADDR_EXPR, base, 1); } else { error ("type to vector delete is neither pointer or array type"); return error_mark_node; } return build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete, use_global_delete); }