/* Process declarations and variables for C compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Process declarations and symbol lookup for C front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include #include "config.h" #include "tree.h" #include "rtl.h" #include "flags.h" #include "cp-tree.h" #include "decl.h" #include "lex.h" #include #include #include "obstack.h" #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free extern tree builtin_return_address_fndecl; extern struct obstack permanent_obstack; extern int current_class_depth; extern tree cleanups_this_call; extern tree static_ctors, static_dtors; /* Stack of places to restore the search obstack back to. */ /* Obstack used for remembering local class declarations (like enums and static (const) members. */ #include "stack.h" static struct obstack decl_obstack; static struct stack_level *decl_stack; #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef SHORT_TYPE_SIZE #define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2)) #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_TYPE_SIZE #define LONG_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_LONG_TYPE_SIZE #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef WCHAR_UNSIGNED #define WCHAR_UNSIGNED 0 #endif #ifndef FLOAT_TYPE_SIZE #define FLOAT_TYPE_SIZE BITS_PER_WORD #endif #ifndef DOUBLE_TYPE_SIZE #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef LONG_DOUBLE_TYPE_SIZE #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef BOOL_TYPE_SIZE #ifdef SLOW_BYTE_ACCESS #define BOOL_TYPE_SIZE ((SLOW_BYTE_ACCESS) ? (BITS_PER_WORD) : (BITS_PER_UNIT)) #else #define BOOL_TYPE_SIZE BITS_PER_UNIT #endif #endif /* We let tm.h override the types used here, to handle trivial differences such as the choice of unsigned int or long unsigned int for size_t. When machines start needing nontrivial differences in the size type, it would be best to do something here to figure out automatically from other information what type to use. */ #ifndef SIZE_TYPE #define SIZE_TYPE "long unsigned int" #endif #ifndef PTRDIFF_TYPE #define PTRDIFF_TYPE "long int" #endif #ifndef WCHAR_TYPE #define WCHAR_TYPE "int" #endif static tree grokparms PROTO((tree, int)); static tree lookup_nested_type PROTO((tree, tree)); static char *redeclaration_error_message PROTO((tree, tree)); static void grok_op_properties PROTO((tree, int, int)); tree define_function PROTO((char *, tree, enum built_in_function, void (*)(), char *)); /* a node which has tree code ERROR_MARK, and whose type is itself. All erroneous expressions are replaced with this node. All functions that accept nodes as arguments should avoid generating error messages if this node is one of the arguments, since it is undesirable to get multiple error messages from one error in the input. */ tree error_mark_node; /* Erroneous argument lists can use this *IFF* they do not modify it. */ tree error_mark_list; /* INTEGER_TYPE and REAL_TYPE nodes for the standard data types */ tree short_integer_type_node; tree integer_type_node; tree long_integer_type_node; tree long_long_integer_type_node; tree short_unsigned_type_node; tree unsigned_type_node; tree long_unsigned_type_node; tree long_long_unsigned_type_node; tree ptrdiff_type_node; tree unsigned_char_type_node; tree signed_char_type_node; tree char_type_node; tree wchar_type_node; tree signed_wchar_type_node; tree unsigned_wchar_type_node; tree wchar_decl_node; tree float_type_node; tree double_type_node; tree long_double_type_node; tree intQI_type_node; tree intHI_type_node; tree intSI_type_node; tree intDI_type_node; tree unsigned_intQI_type_node; tree unsigned_intHI_type_node; tree unsigned_intSI_type_node; tree unsigned_intDI_type_node; /* a VOID_TYPE node, and the same, packaged in a TREE_LIST. */ tree void_type_node, void_list_node; tree void_zero_node; /* Nodes for types `void *' and `const void *'. */ tree ptr_type_node, const_ptr_type_node; /* Nodes for types `char *' and `const char *'. */ tree string_type_node, const_string_type_node; /* Type `char[256]' or something like it. Used when an array of char is needed and the size is irrelevant. */ tree char_array_type_node; /* Type `int[256]' or something like it. Used when an array of int needed and the size is irrelevant. */ tree int_array_type_node; /* Type `wchar_t[256]' or something like it. Used when a wide string literal is created. */ tree wchar_array_type_node; /* The bool data type, and constants */ tree boolean_type_node, boolean_true_node, boolean_false_node; /* type `int ()' -- used for implicit declaration of functions. */ tree default_function_type; /* function types `double (double)' and `double (double, double)', etc. */ tree double_ftype_double, double_ftype_double_double; tree int_ftype_int, long_ftype_long; /* Function type `void (void *, void *, int)' and similar ones. */ tree void_ftype_ptr_ptr_int, int_ftype_ptr_ptr_int, void_ftype_ptr_int_int; /* Function type `char *(char *, char *)' and similar ones */ tree string_ftype_ptr_ptr, int_ftype_string_string; /* Function type `size_t (const char *)' */ tree sizet_ftype_string; /* Function type `int (const void *, const void *, size_t)' */ tree int_ftype_cptr_cptr_sizet; /* C++ extensions */ tree vtable_entry_type; tree delta_type_node; #if 0 /* Old rtti stuff. */ tree __baselist_desc_type_node; tree __i_desc_type_node, __m_desc_type_node; tree __t_desc_array_type, __i_desc_array_type, __m_desc_array_type; #endif tree __t_desc_type_node, __tp_desc_type_node; tree __access_mode_type_node; tree __bltn_desc_type_node, __user_desc_type_node, __class_desc_type_node; tree __ptr_desc_type_node, __attr_desc_type_node, __func_desc_type_node; tree __ptmf_desc_type_node, __ptmd_desc_type_node; #if 0 /* Not needed yet? May be needed one day? */ tree __bltn_desc_array_type, __user_desc_array_type, __class_desc_array_type; tree __ptr_desc_array_type, __attr_dec_array_type, __func_desc_array_type; tree __ptmf_desc_array_type, __ptmd_desc_array_type; #endif tree class_star_type_node; tree class_type_node, record_type_node, union_type_node, enum_type_node; tree unknown_type_node; tree opaque_type_node, signature_type_node; tree sigtable_entry_type; tree maybe_gc_cleanup; /* Array type `vtable_entry_type[]' */ tree vtbl_type_node; /* In a destructor, the point at which all derived class destroying has been done, just before any base class destroying will be done. */ tree dtor_label; /* In a constructor, the point at which we are ready to return the pointer to the initialized object. */ tree ctor_label; /* A FUNCTION_DECL which can call `abort'. Not necessarily the one that the user will declare, but sufficient to be called by routines that want to abort the program. */ tree abort_fndecl; extern rtx cleanup_label, return_label; /* If original DECL_RESULT of current function was a register, but due to being an addressable named return value, would up on the stack, this variable holds the named return value's original location. */ rtx original_result_rtx; /* Sequence of insns which represents base initialization. */ tree base_init_expr; /* C++: Keep these around to reduce calls to `get_identifier'. Identifiers for `this' in member functions and the auto-delete parameter for destructors. */ tree this_identifier, in_charge_identifier; /* Used in pointer to member functions, in vtables, and in sigtables. */ tree pfn_identifier, index_identifier, delta_identifier, delta2_identifier; tree pfn_or_delta2_identifier, tag_identifier; tree vb_off_identifier, vt_off_identifier; /* A list (chain of TREE_LIST nodes) of named label uses. The TREE_PURPOSE field is the list of variables defined the the label's scope defined at the point of use. The TREE_VALUE field is the LABEL_DECL used. The TREE_TYPE field holds `current_binding_level' at the point of the label's use. Used only for jumps to as-yet undefined labels, since jumps to defined labels can have their validity checked by stmt.c. */ static tree named_label_uses; /* A list of objects which have constructors or destructors which reside in the global scope. The decl is stored in the TREE_VALUE slot and the initializer is stored in the TREE_PURPOSE slot. */ tree static_aggregates; /* -- end of C++ */ /* Two expressions that are constants with value zero. The first is of type `int', the second of type `void *'. */ tree integer_zero_node; tree null_pointer_node; /* A node for the integer constants 1, 2, and 3. */ tree integer_one_node, integer_two_node, integer_three_node; /* Nonzero if we have seen an invalid cross reference to a struct, union, or enum, but not yet printed the message. */ tree pending_invalid_xref; /* File and line to appear in the eventual error message. */ char *pending_invalid_xref_file; int pending_invalid_xref_line; /* While defining an enum type, this is 1 plus the last enumerator constant value. */ static tree enum_next_value; /* Nonzero means that there was overflow computing enum_next_value. */ static int enum_overflow; /* Parsing a function declarator leaves a list of parameter names or a chain or parameter decls here. */ tree last_function_parms; /* Parsing a function declarator leaves here a chain of structure and enum types declared in the parmlist. */ static tree last_function_parm_tags; /* After parsing the declarator that starts a function definition, `start_function' puts here the list of parameter names or chain of decls. `store_parm_decls' finds it here. */ static tree current_function_parms; /* Similar, for last_function_parm_tags. */ static tree current_function_parm_tags; /* A list (chain of TREE_LIST nodes) of all LABEL_DECLs in the function that have names. Here so we can clear out their names' definitions at the end of the function. */ static tree named_labels; /* A list of LABEL_DECLs from outer contexts that are currently shadowed. */ static tree shadowed_labels; #if 0 /* Not needed by C++ */ /* Nonzero when store_parm_decls is called indicates a varargs function. Value not meaningful after store_parm_decls. */ static int c_function_varargs; #endif /* The FUNCTION_DECL for the function currently being compiled, or 0 if between functions. */ tree current_function_decl; /* Set to 0 at beginning of a function definition, set to 1 if a return statement that specifies a return value is seen. */ int current_function_returns_value; /* Set to 0 at beginning of a function definition, set to 1 if a return statement with no argument is seen. */ int current_function_returns_null; /* Set to 0 at beginning of a function definition, and whenever a label (case or named) is defined. Set to value of expression returned from function when that value can be transformed into a named return value. */ tree current_function_return_value; /* Set to nonzero by `grokdeclarator' for a function whose return type is defaulted, if warnings for this are desired. */ static int warn_about_return_type; /* Nonzero means give `double' the same size as `float'. */ extern int flag_short_double; /* Nonzero means don't recognize any builtin functions. */ extern int flag_no_builtin; /* Nonzero means don't recognize the non-ANSI builtin functions. -ansi sets this. */ extern int flag_no_nonansi_builtin; /* Nonzero means enable obscure ANSI features and disable GNU extensions that might cause ANSI-compliant code to be miscompiled. */ extern int flag_ansi; /* Nonzero if we want to support huge (> 2^(sizeof(short)*8-1) bytes) objects. */ extern int flag_huge_objects; /* Nonzero if we want to conserve space in the .o files. We do this by putting uninitialized data and runtime initialized data into .common instead of .data at the expense of not flagging multiple definitions. */ extern int flag_conserve_space; /* Pointers to the base and current top of the language name stack. */ extern tree *current_lang_base, *current_lang_stack; /* C and C++ flags are in decl2.c. */ /* Set to 0 at beginning of a constructor, set to 1 if that function does an allocation before referencing its instance variable. */ int current_function_assigns_this; int current_function_just_assigned_this; /* Set to 0 at beginning of a function. Set non-zero when store_parm_decls is called. Don't call store_parm_decls if this flag is non-zero! */ int current_function_parms_stored; /* Current end of entries in the gc obstack for stack pointer variables. */ int current_function_obstack_index; /* Flag saying whether we have used the obstack in this function or not. */ int current_function_obstack_usage; /* Flag used when debugging spew.c */ extern int spew_debug; /* This is a copy of the class_shadowed list of the previous class binding contour when at global scope. It's used to reset IDENTIFIER_CLASS_VALUEs when entering another class scope (i.e. a cache miss). */ extern tree previous_class_values; /* Allocate a level of searching. */ struct stack_level * push_decl_level (stack, obstack) struct stack_level *stack; struct obstack *obstack; { struct stack_level tem; tem.prev = stack; return push_stack_level (obstack, (char *)&tem, sizeof (tem)); } /* For each binding contour we allocate a binding_level structure * which records the names defined in that contour. * Contours include: * 0) the global one * 1) one for each function definition, * where internal declarations of the parameters appear. * 2) one for each compound statement, * to record its declarations. * * The current meaning of a name can be found by searching the levels from * the current one out to the global one. * * Off to the side, may be the class_binding_level. This exists * only to catch class-local declarations. It is otherwise * nonexistent. * * Also there may be binding levels that catch cleanups that * must be run when exceptions occur. */ /* Note that the information in the `names' component of the global contour is duplicated in the IDENTIFIER_GLOBAL_VALUEs of all identifiers. */ struct binding_level { /* A chain of _DECL nodes for all variables, constants, functions, * and typedef types. These are in the reverse of the order supplied. */ tree names; /* A list of structure, union and enum definitions, * for looking up tag names. * It is a chain of TREE_LIST nodes, each of whose TREE_PURPOSE is a name, * or NULL_TREE; and whose TREE_VALUE is a RECORD_TYPE, UNION_TYPE, * or ENUMERAL_TYPE node. * * C++: the TREE_VALUE nodes can be simple types for component_bindings. * */ tree tags; /* For each level, a list of shadowed outer-level local definitions to be restored when this level is popped. Each link is a TREE_LIST whose TREE_PURPOSE is an identifier and whose TREE_VALUE is its old definition (a kind of ..._DECL node). */ tree shadowed; /* Same, for IDENTIFIER_CLASS_VALUE. */ tree class_shadowed; /* Same, for IDENTIFIER_TYPE_VALUE. */ tree type_shadowed; /* For each level (except not the global one), a chain of BLOCK nodes for all the levels that were entered and exited one level down. */ tree blocks; /* The BLOCK node for this level, if one has been preallocated. If 0, the BLOCK is allocated (if needed) when the level is popped. */ tree this_block; /* The binding level which this one is contained in (inherits from). */ struct binding_level *level_chain; /* List of decls in `names' that have incomplete structure or union types. */ tree incomplete; /* List of VAR_DECLS saved from a previous for statement. These would be dead in ANSI-conforming code, but might be referenced in traditional code. */ tree dead_vars_from_for; /* 1 for the level that holds the parameters of a function. 2 for the level that holds a class declaration. 3 for levels that hold parameter declarations. */ unsigned parm_flag : 4; /* 1 means make a BLOCK for this level regardless of all else. 2 for temporary binding contours created by the compiler. */ unsigned keep : 3; /* Nonzero if this level "doesn't exist" for tags. */ unsigned tag_transparent : 1; /* Nonzero if this level can safely have additional cleanup-needing variables added to it. */ unsigned more_cleanups_ok : 1; unsigned have_cleanups : 1; /* Nonzero if we should accept any name as an identifier in this scope. This happens in some template definitions. */ unsigned accept_any : 1; /* Nonzero if this level is for completing a template class definition inside a binding level that temporarily binds the parameters. This means that definitions here should not be popped off when unwinding this binding level. (Not actually implemented this way, unfortunately.) */ unsigned pseudo_global : 1; /* This is set for a namespace binding level. */ unsigned namespace_p : 1; /* True if this level is that of a for-statement. */ unsigned is_for_scope : 1; /* One bit left for this word. */ #if defined(DEBUG_CP_BINDING_LEVELS) /* Binding depth at which this level began. */ unsigned binding_depth; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ }; #define NULL_BINDING_LEVEL ((struct binding_level *) NULL) /* The (non-class) binding level currently in effect. */ static struct binding_level *current_binding_level; /* The binding level of the current class, if any. */ static struct binding_level *class_binding_level; /* The current (class or non-class) binding level currently in effect. */ #define inner_binding_level \ (class_binding_level ? class_binding_level : current_binding_level) /* A chain of binding_level structures awaiting reuse. */ static struct binding_level *free_binding_level; /* The outermost binding level, for names of file scope. This is created when the compiler is started and exists through the entire run. */ static struct binding_level *global_binding_level; /* Binding level structures are initialized by copying this one. */ static struct binding_level clear_binding_level; /* Nonzero means unconditionally make a BLOCK for the next level pushed. */ static int keep_next_level_flag; #if defined(DEBUG_CP_BINDING_LEVELS) static int binding_depth = 0; static int is_class_level = 0; static void indent () { register unsigned i; for (i = 0; i < binding_depth*2; i++) putc (' ', stderr); } #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ static tree pushdecl_with_scope PROTO((tree, struct binding_level *)); static void push_binding_level (newlevel, tag_transparent, keep) struct binding_level *newlevel; int tag_transparent, keep; { /* Add this level to the front of the chain (stack) of levels that are active. */ *newlevel = clear_binding_level; if (class_binding_level) { newlevel->level_chain = class_binding_level; class_binding_level = (struct binding_level *)0; } else { newlevel->level_chain = current_binding_level; } current_binding_level = newlevel; newlevel->tag_transparent = tag_transparent; newlevel->more_cleanups_ok = 1; newlevel->keep = keep; #if defined(DEBUG_CP_BINDING_LEVELS) newlevel->binding_depth = binding_depth; indent (); fprintf (stderr, "push %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", newlevel, lineno); is_class_level = 0; binding_depth++; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ } static void pop_binding_level () { if (class_binding_level) current_binding_level = class_binding_level; if (global_binding_level) { /* cannot pop a level, if there are none left to pop. */ if (current_binding_level == global_binding_level) my_friendly_abort (123); } /* Pop the current level, and free the structure for reuse. */ #if defined(DEBUG_CP_BINDING_LEVELS) binding_depth--; indent (); fprintf (stderr, "pop %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", current_binding_level, lineno); if (is_class_level != (current_binding_level == class_binding_level)) #if 0 /* XXX Don't abort when we're watching how things are being managed. */ abort (); #else { indent (); fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n"); } #endif is_class_level = 0; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ { register struct binding_level *level = current_binding_level; current_binding_level = current_binding_level->level_chain; level->level_chain = free_binding_level; #if 0 /* defined(DEBUG_CP_BINDING_LEVELS) */ if (level->binding_depth != binding_depth) abort (); #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ free_binding_level = level; class_binding_level = current_binding_level; if (class_binding_level->parm_flag != 2) class_binding_level = 0; while (current_binding_level->parm_flag == 2) current_binding_level = current_binding_level->level_chain; } } static void suspend_binding_level () { if (class_binding_level) current_binding_level = class_binding_level; if (global_binding_level) { /* cannot suspend a level, if there are none left to suspend. */ if (current_binding_level == global_binding_level) my_friendly_abort (123); } /* Suspend the current level. */ #if defined(DEBUG_CP_BINDING_LEVELS) binding_depth--; indent (); fprintf (stderr, "suspend %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", current_binding_level, lineno); if (is_class_level != (current_binding_level == class_binding_level)) #if 0 /* XXX Don't abort when we're watching how things are being managed. */ abort (); #else { indent (); fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n"); } #endif is_class_level = 0; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ { register struct binding_level *level = current_binding_level; current_binding_level = current_binding_level->level_chain; #if 0 /* defined(DEBUG_CP_BINDING_LEVELS) */ if (level->binding_depth != binding_depth) abort (); #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ class_binding_level = current_binding_level; if (class_binding_level->parm_flag != 2) class_binding_level = 0; while (current_binding_level->parm_flag == 2) current_binding_level = current_binding_level->level_chain; } } void resume_binding_level (b) struct binding_level *b; { if (class_binding_level) { #if 1 /* These are here because we cannot deal with shadows yet. */ sorry ("cannot resume a namespace inside class"); return; #else b->level_chain = class_binding_level; class_binding_level = (struct binding_level *)0; #endif } else { #if 1 /* These are here because we cannot deal with shadows yet. */ if (b->level_chain != current_binding_level) { sorry ("cannot resume a namespace inside a different namespace"); return; } #endif b->level_chain = current_binding_level; } current_binding_level = b; #if defined(DEBUG_CP_BINDING_LEVELS) b->binding_depth = binding_depth; indent (); fprintf (stderr, "resume %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", b, lineno); is_class_level = 0; binding_depth++; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ } /* Nonzero if we are currently in the global binding level. */ int global_bindings_p () { return current_binding_level == global_binding_level; } /* Nonzero if we are currently in a toplevel binding level. This means either the global binding level or a namespace in a toplevel binding level. */ int toplevel_bindings_p () { struct binding_level *b = current_binding_level; while (1) { if (b == global_binding_level) return 1; if (! b->namespace_p) return 0; b=b->level_chain; } } /* Nonzero if this is a namespace scope. */ int namespace_bindings_p () { return current_binding_level->namespace_p; } void keep_next_level () { keep_next_level_flag = 1; } /* Nonzero if the current level needs to have a BLOCK made. */ int kept_level_p () { return (current_binding_level->blocks != NULL_TREE || current_binding_level->keep || current_binding_level->names != NULL_TREE || (current_binding_level->tags != NULL_TREE && !current_binding_level->tag_transparent)); } /* Identify this binding level as a level of parameters. */ void declare_parm_level () { current_binding_level->parm_flag = 1; } void declare_uninstantiated_type_level () { current_binding_level->accept_any = 1; } int uninstantiated_type_level_p () { return current_binding_level->accept_any; } void declare_pseudo_global_level () { current_binding_level->pseudo_global = 1; } void declare_namespace_level () { current_binding_level->namespace_p = 1; } int pseudo_global_level_p () { return current_binding_level->pseudo_global; } void set_class_shadows (shadows) tree shadows; { class_binding_level->class_shadowed = shadows; } /* Enter a new binding level. If TAG_TRANSPARENT is nonzero, do so only for the name space of variables, not for that of tags. */ void pushlevel (tag_transparent) int tag_transparent; { register struct binding_level *newlevel = NULL_BINDING_LEVEL; /* If this is the top level of a function, just make sure that NAMED_LABELS is 0. They should have been set to 0 at the end of the previous function. */ if (current_binding_level == global_binding_level) my_friendly_assert (named_labels == NULL_TREE, 134); /* Reuse or create a struct for this binding level. */ #if defined(DEBUG_CP_BINDING_LEVELS) if (0) #else /* !defined(DEBUG_CP_BINDING_LEVELS) */ if (free_binding_level) #endif /* !defined(DEBUG_CP_BINDING_LEVELS) */ { newlevel = free_binding_level; free_binding_level = free_binding_level->level_chain; } else { /* Create a new `struct binding_level'. */ newlevel = (struct binding_level *) xmalloc (sizeof (struct binding_level)); } push_binding_level (newlevel, tag_transparent, keep_next_level_flag); GNU_xref_start_scope ((HOST_WIDE_INT) newlevel); keep_next_level_flag = 0; } int note_level_for_for () { current_binding_level->is_for_scope = 1; } void pushlevel_temporary (tag_transparent) int tag_transparent; { pushlevel (tag_transparent); current_binding_level->keep = 2; clear_last_expr (); /* Note we don't call push_momentary() here. Otherwise, it would cause cleanups to be allocated on the momentary obstack, and they will be overwritten by the next statement. */ expand_start_bindings (0); } /* Exit a binding level. Pop the level off, and restore the state of the identifier-decl mappings that were in effect when this level was entered. If KEEP == 1, this level had explicit declarations, so and create a "block" (a BLOCK node) for the level to record its declarations and subblocks for symbol table output. If KEEP == 2, this level's subblocks go to the front, not the back of the current binding level. This happens, for instance, when code for constructors and destructors need to generate code at the end of a function which must be moved up to the front of the function. If FUNCTIONBODY is nonzero, this level is the body of a function, so create a block as if KEEP were set and also clear out all label names. If REVERSE is nonzero, reverse the order of decls before putting them into the BLOCK. */ tree poplevel (keep, reverse, functionbody) int keep; int reverse; int functionbody; { register tree link; /* The chain of decls was accumulated in reverse order. Put it into forward order, just for cleanliness. */ tree decls; int tmp = functionbody; int implicit_try_block = current_binding_level->parm_flag == 3; int real_functionbody = current_binding_level->keep == 2 ? ((functionbody = 0), tmp) : functionbody; tree tags = functionbody >= 0 ? current_binding_level->tags : 0; tree subblocks = functionbody >= 0 ? current_binding_level->blocks : 0; tree block = NULL_TREE; tree decl; int block_previously_created; GNU_xref_end_scope ((HOST_WIDE_INT) current_binding_level, (HOST_WIDE_INT) current_binding_level->level_chain, current_binding_level->parm_flag, current_binding_level->keep, current_binding_level->tag_transparent); if (current_binding_level->keep == 1) keep = 1; /* This warning is turned off because it causes warnings for declarations like `extern struct foo *x'. */ #if 0 /* Warn about incomplete structure types in this level. */ for (link = tags; link; link = TREE_CHAIN (link)) if (TYPE_SIZE (TREE_VALUE (link)) == NULL_TREE) { tree type = TREE_VALUE (link); char *errmsg; switch (TREE_CODE (type)) { case RECORD_TYPE: errmsg = "`struct %s' incomplete in scope ending here"; break; case UNION_TYPE: errmsg = "`union %s' incomplete in scope ending here"; break; case ENUMERAL_TYPE: errmsg = "`enum %s' incomplete in scope ending here"; break; } if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE) error (errmsg, IDENTIFIER_POINTER (TYPE_NAME (type))); else /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */ error (errmsg, TYPE_NAME_STRING (type)); } #endif /* 0 */ /* Get the decls in the order they were written. Usually current_binding_level->names is in reverse order. But parameter decls were previously put in forward order. */ if (reverse) current_binding_level->names = decls = nreverse (current_binding_level->names); else decls = current_binding_level->names; /* Output any nested inline functions within this block if they weren't already output. */ for (decl = decls; decl; decl = TREE_CHAIN (decl)) if (TREE_CODE (decl) == FUNCTION_DECL && ! TREE_ASM_WRITTEN (decl) && DECL_INITIAL (decl) != NULL_TREE && TREE_ADDRESSABLE (decl) && decl_function_context (decl) == current_function_decl) { /* If this decl was copied from a file-scope decl on account of a block-scope extern decl, propagate TREE_ADDRESSABLE to the file-scope decl. */ if (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE) TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (decl)) = 1; else { push_function_context (); output_inline_function (decl); pop_function_context (); } } /* If there were any declarations or structure tags in that level, or if this level is a function body, create a BLOCK to record them for the life of this function. */ block = NULL_TREE; block_previously_created = (current_binding_level->this_block != NULL_TREE); if (block_previously_created) block = current_binding_level->this_block; else if (keep == 1 || functionbody) block = make_node (BLOCK); if (block != NULL_TREE) { BLOCK_VARS (block) = decls; BLOCK_TYPE_TAGS (block) = tags; BLOCK_SUBBLOCKS (block) = subblocks; /* If we created the block earlier on, and we are just diddling it now, then it already should have a proper BLOCK_END_NOTE value associated with it, so avoid trashing that. Otherwise, for a new block, install a new BLOCK_END_NOTE value. */ if (! block_previously_created) remember_end_note (block); } /* In each subblock, record that this is its superior. */ if (keep >= 0) for (link = subblocks; link; link = TREE_CHAIN (link)) BLOCK_SUPERCONTEXT (link) = block; /* Clear out the meanings of the local variables of this level. */ for (link = current_binding_level->dead_vars_from_for; link != NULL_TREE; link = TREE_CHAIN (link)) { if (DECL_DEAD_FOR_LOCAL (link)) { tree id = DECL_NAME (link); if (IDENTIFIER_LOCAL_VALUE (id) == link) IDENTIFIER_LOCAL_VALUE (id) = DECL_SHADOWED_FOR_VAR (link); } } if (current_binding_level->is_for_scope && flag_new_for_scope == 1) { for (link = decls; link; link = TREE_CHAIN (link)) { if (TREE_CODE (link) == VAR_DECL) DECL_DEAD_FOR_LOCAL (link) = 1; } } else { for (link = decls; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) { /* If the ident. was used or addressed via a local extern decl, don't forget that fact. */ if (DECL_EXTERNAL (link)) { if (TREE_USED (link)) TREE_USED (DECL_ASSEMBLER_NAME (link)) = 1; if (TREE_ADDRESSABLE (link)) TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (link)) = 1; } IDENTIFIER_LOCAL_VALUE (DECL_NAME (link)) = NULL_TREE; } } } /* Restore all name-meanings of the outer levels that were shadowed by this level. */ if (current_binding_level->is_for_scope && flag_new_for_scope == 1) { struct binding_level *outer = current_binding_level->level_chain; for (link = current_binding_level->shadowed; link; link = TREE_CHAIN (link)) { tree id = TREE_PURPOSE (link); tree decl = IDENTIFIER_LOCAL_VALUE (id); if (DECL_DEAD_FOR_LOCAL (decl)) DECL_SHADOWED_FOR_VAR (decl) = TREE_VALUE (link); else IDENTIFIER_LOCAL_VALUE (id) = TREE_VALUE (link); } /* Save declarations made in a 'for' statement so we can support pre-ANSI 'for' scoping semantics. */ /* We append the current names of for-variables to those from previous declarations, so that when we get around to do an poplevel on the OUTER level, we restore the any shadowed readl bindings. Note that the new names are put first on the combined list, so they get to be restored first. This is important if there are two for-loops using the same for-variable in the same block. The binding we really want restored is whatever binding was shadowed by the *first* for-variable, not the binding shadowed by the second for-variable (which would be the first for-variable). */ outer->dead_vars_from_for = chainon (current_binding_level->names, outer->dead_vars_from_for); } else { for (link = current_binding_level->shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_LOCAL_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); } for (link = current_binding_level->class_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); for (link = current_binding_level->type_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); /* If the level being exited is the top level of a function, check over all the labels. */ if (functionbody) { /* If this is the top level block of a function, the vars are the function's parameters. Don't leave them in the BLOCK because they are found in the FUNCTION_DECL instead. */ BLOCK_VARS (block) = 0; /* Clear out the definitions of all label names, since their scopes end here. */ for (link = named_labels; link; link = TREE_CHAIN (link)) { register tree label = TREE_VALUE (link); if (DECL_INITIAL (label) == NULL_TREE) { cp_error_at ("label `%D' used but not defined", label); /* Avoid crashing later. */ define_label (input_filename, 1, DECL_NAME (label)); } else if (warn_unused && !TREE_USED (label)) cp_warning_at ("label `%D' defined but not used", label); SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), NULL_TREE); /* Put the labels into the "variables" of the top-level block, so debugger can see them. */ TREE_CHAIN (label) = BLOCK_VARS (block); BLOCK_VARS (block) = label; } named_labels = NULL_TREE; } /* Any uses of undefined labels now operate under constraints of next binding contour. */ { struct binding_level *level_chain; level_chain = current_binding_level->level_chain; if (level_chain) { tree labels; for (labels = named_label_uses; labels; labels = TREE_CHAIN (labels)) if (TREE_TYPE (labels) == (tree)current_binding_level) { TREE_TYPE (labels) = (tree)level_chain; TREE_PURPOSE (labels) = level_chain->names; } } } tmp = current_binding_level->keep; pop_binding_level (); if (functionbody) DECL_INITIAL (current_function_decl) = block; else if (block) { if (!block_previously_created) current_binding_level->blocks = chainon (current_binding_level->blocks, block); } /* If we did not make a block for the level just exited, any blocks made for inner levels (since they cannot be recorded as subblocks in that level) must be carried forward so they will later become subblocks of something else. */ else if (subblocks) { if (keep == 2) current_binding_level->blocks = chainon (subblocks, current_binding_level->blocks); else current_binding_level->blocks = chainon (current_binding_level->blocks, subblocks); } /* Take care of compiler's internal binding structures. */ if (tmp == 2) { #if 0 /* We did not call push_momentary for this binding contour, so there is nothing to pop. */ pop_momentary (); #endif expand_end_bindings (getdecls (), keep, 1); /* Each and every BLOCK node created here in `poplevel' is important (e.g. for proper debugging information) so if we created one earlier, mark it as "used". */ if (block) TREE_USED (block) = 1; block = poplevel (keep, reverse, real_functionbody); } /* Each and every BLOCK node created here in `poplevel' is important (e.g. for proper debugging information) so if we created one earlier, mark it as "used". */ if (block) TREE_USED (block) = 1; return block; } /* Resume a binding level for a namespace. */ void resume_level (b) struct binding_level *b; { tree decls, link; resume_binding_level (b); /* Resume the variable caches. */ decls = current_binding_level->names; /* Restore the meanings of the local variables of this level. */ for (link = decls; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) IDENTIFIER_LOCAL_VALUE (DECL_NAME (link)) = link; /* If this is a TYPE_DECL, push it into the type value slot. */ if (TREE_CODE (link) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (link), TREE_TYPE (link)); } } /* Delete the node BLOCK from the current binding level. This is used for the block inside a stmt expr ({...}) so that the block can be reinserted where appropriate. */ void delete_block (block) tree block; { tree t; if (current_binding_level->blocks == block) current_binding_level->blocks = TREE_CHAIN (block); for (t = current_binding_level->blocks; t;) { if (TREE_CHAIN (t) == block) TREE_CHAIN (t) = TREE_CHAIN (block); else t = TREE_CHAIN (t); } TREE_CHAIN (block) = NULL_TREE; /* Clear TREE_USED which is always set by poplevel. The flag is set again if insert_block is called. */ TREE_USED (block) = 0; } /* Insert BLOCK at the end of the list of subblocks of the current binding level. This is used when a BIND_EXPR is expanded, to handle the BLOCK node inside the BIND_EXPR. */ void insert_block (block) tree block; { TREE_USED (block) = 1; current_binding_level->blocks = chainon (current_binding_level->blocks, block); } /* Add BLOCK to the current list of blocks for this binding contour. */ void add_block_current_level (block) tree block; { current_binding_level->blocks = chainon (current_binding_level->blocks, block); } /* Set the BLOCK node for the innermost scope (the one we are currently in). */ void set_block (block) register tree block; { current_binding_level->this_block = block; } /* Do a pushlevel for class declarations. */ void pushlevel_class () { register struct binding_level *newlevel; /* Reuse or create a struct for this binding level. */ #if defined(DEBUG_CP_BINDING_LEVELS) if (0) #else /* !defined(DEBUG_CP_BINDING_LEVELS) */ if (free_binding_level) #endif /* !defined(DEBUG_CP_BINDING_LEVELS) */ { newlevel = free_binding_level; free_binding_level = free_binding_level->level_chain; } else { /* Create a new `struct binding_level'. */ newlevel = (struct binding_level *) xmalloc (sizeof (struct binding_level)); } #if defined(DEBUG_CP_BINDING_LEVELS) is_class_level = 1; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ push_binding_level (newlevel, 0, 0); decl_stack = push_decl_level (decl_stack, &decl_obstack); class_binding_level = current_binding_level; class_binding_level->parm_flag = 2; /* We have just pushed into a new binding level. Now, fake out the rest of the compiler. Set the `current_binding_level' back to point to the most closely containing non-class binding level. */ do { current_binding_level = current_binding_level->level_chain; } while (current_binding_level->parm_flag == 2); } /* ...and a poplevel for class declarations. FORCE is used to force clearing out of CLASS_VALUEs after a class definition. */ tree poplevel_class (force) int force; { register struct binding_level *level = class_binding_level; tree block = NULL_TREE; tree shadowed; my_friendly_assert (level != 0, 354); decl_stack = pop_stack_level (decl_stack); for (shadowed = level->shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) IDENTIFIER_LOCAL_VALUE (TREE_PURPOSE (shadowed)) = TREE_VALUE (shadowed); /* If we're leaving a toplevel class, don't bother to do the setting of IDENTIFIER_CLASS_VALUE to NULL_TREE, since first of all this slot shouldn't even be used when current_class_type isn't set, and second, if we don't touch it here, we're able to use the cache effect if the next time we're entering a class scope, it is the same class. */ if (current_class_depth != 1 || force) for (shadowed = level->class_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (shadowed)) = TREE_VALUE (shadowed); else /* Remember to save what IDENTIFIER's were bound in this scope so we can recover from cache misses. */ previous_class_values = class_binding_level->class_shadowed; for (shadowed = level->type_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (shadowed)) = TREE_VALUE (shadowed); GNU_xref_end_scope ((HOST_WIDE_INT) class_binding_level, (HOST_WIDE_INT) class_binding_level->level_chain, class_binding_level->parm_flag, class_binding_level->keep, class_binding_level->tag_transparent); if (class_binding_level->parm_flag != 2) class_binding_level = (struct binding_level *)0; /* Now, pop out of the the binding level which we created up in the `pushlevel_class' routine. */ #if defined(DEBUG_CP_BINDING_LEVELS) is_class_level = 1; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ pop_binding_level (); return block; } /* For debugging. */ int no_print_functions = 0; int no_print_builtins = 0; void print_binding_level (lvl) struct binding_level *lvl; { tree t; int i = 0, len; fprintf (stderr, " blocks="); fprintf (stderr, HOST_PTR_PRINTF, lvl->blocks); fprintf (stderr, " n_incomplete=%d parm_flag=%d keep=%d", list_length (lvl->incomplete), lvl->parm_flag, lvl->keep); if (lvl->tag_transparent) fprintf (stderr, " tag-transparent"); if (lvl->more_cleanups_ok) fprintf (stderr, " more-cleanups-ok"); if (lvl->have_cleanups) fprintf (stderr, " have-cleanups"); fprintf (stderr, "\n"); if (lvl->names) { fprintf (stderr, " names:\t"); /* We can probably fit 3 names to a line? */ for (t = lvl->names; t; t = TREE_CHAIN (t)) { if (no_print_functions && (TREE_CODE(t) == FUNCTION_DECL)) continue; if (no_print_builtins && (TREE_CODE(t) == TYPE_DECL) && (!strcmp(DECL_SOURCE_FILE(t),""))) continue; /* Function decls tend to have longer names. */ if (TREE_CODE (t) == FUNCTION_DECL) len = 3; else len = 2; i += len; if (i > 6) { fprintf (stderr, "\n\t"); i = len; } print_node_brief (stderr, "", t, 0); if (TREE_CODE (t) == ERROR_MARK) break; } if (i) fprintf (stderr, "\n"); } if (lvl->tags) { fprintf (stderr, " tags:\t"); i = 0; for (t = lvl->tags; t; t = TREE_CHAIN (t)) { if (TREE_PURPOSE (t) == NULL_TREE) len = 3; else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t))) len = 2; else len = 4; i += len; if (i > 5) { fprintf (stderr, "\n\t"); i = len; } if (TREE_PURPOSE (t) == NULL_TREE) { print_node_brief (stderr, ""); } else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t))) print_node_brief (stderr, "", TREE_VALUE (t), 0); else { print_node_brief (stderr, ""); } } if (i) fprintf (stderr, "\n"); } if (lvl->shadowed) { fprintf (stderr, " shadowed:"); for (t = lvl->shadowed; t; t = TREE_CHAIN (t)) { fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); } fprintf (stderr, "\n"); } if (lvl->class_shadowed) { fprintf (stderr, " class-shadowed:"); for (t = lvl->class_shadowed; t; t = TREE_CHAIN (t)) { fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); } fprintf (stderr, "\n"); } if (lvl->type_shadowed) { fprintf (stderr, " type-shadowed:"); for (t = lvl->type_shadowed; t; t = TREE_CHAIN (t)) { #if 0 fprintf (stderr, "\n\t"); print_node_brief (stderr, "<", TREE_PURPOSE (t), 0); if (TREE_VALUE (t)) print_node_brief (stderr, " ", TREE_VALUE (t), 0); else fprintf (stderr, " (none)"); fprintf (stderr, ">"); #else fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); #endif } fprintf (stderr, "\n"); } } void print_other_binding_stack (stack) struct binding_level *stack; { struct binding_level *level; for (level = stack; level != global_binding_level; level = level->level_chain) { fprintf (stderr, "binding level "); fprintf (stderr, HOST_PTR_PRINTF, level); fprintf (stderr, "\n"); print_binding_level (level); } } void print_binding_stack () { struct binding_level *b; fprintf (stderr, "current_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, current_binding_level); fprintf (stderr, "\nclass_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, class_binding_level); fprintf (stderr, "\nglobal_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, global_binding_level); fprintf (stderr, "\n"); if (class_binding_level) { for (b = class_binding_level; b; b = b->level_chain) if (b == current_binding_level) break; if (b) b = class_binding_level; else b = current_binding_level; } else b = current_binding_level; print_other_binding_stack (b); fprintf (stderr, "global:\n"); print_binding_level (global_binding_level); } extern char * first_global_object_name; /* Get a unique name for each call to this routine for unnamed namespaces. Mostly copied from get_file_function_name. */ static tree get_unique_name () { static int temp_name_counter = 0; char *buf; register char *p; if (first_global_object_name) p = first_global_object_name; else if (main_input_filename) p = main_input_filename; else p = input_filename; #define UNNAMED_NAMESPACE_FORMAT "__%s_%d" buf = (char *) alloca (sizeof (UNNAMED_NAMESPACE_FORMAT) + strlen (p)); sprintf (buf, UNNAMED_NAMESPACE_FORMAT, p, temp_name_counter++); /* Don't need to pull weird characters out of global names. */ if (p != first_global_object_name) { for (p = buf+11; *p; p++) if (! ((*p >= '0' && *p <= '9') #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */ #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */ || *p == '.' #endif #endif #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */ || *p == '$' #endif #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */ || *p == '.' #endif || (*p >= 'A' && *p <= 'Z') || (*p >= 'a' && *p <= 'z'))) *p = '_'; } return get_identifier (buf); } /* Push into the scope of the NAME namespace. If NAME is NULL_TREE, then we select a name that is unique to this compilation unit. */ void push_namespace (name) tree name; { extern tree current_namespace; tree old_id = get_namespace_id (); char *buf; tree d = make_node (NAMESPACE_DECL); if (! name) { /* Create a truly ugly name! */ name = get_unique_name (); } DECL_NAME (d) = name; DECL_ASSEMBLER_NAME (d) = name; /* pushdecl wants to check the size of it to see if it is incomplete... */ TREE_TYPE (d) = void_type_node; /* Mark them as external, so redeclaration_error_message doesn't think they are duplicates. */ DECL_EXTERNAL (d) = 1; d = pushdecl (d); if (NAMESPACE_LEVEL (d) == 0) { /* This is new for this compilation unit. */ pushlevel (0); declare_namespace_level (); NAMESPACE_LEVEL (d) = (tree)current_binding_level; } else { resume_level ((struct binding_level*)NAMESPACE_LEVEL (d)); } /* This code is just is bit old now... */ current_namespace = tree_cons (NULL_TREE, name, current_namespace); buf = (char *) alloca (4 + (old_id ? IDENTIFIER_LENGTH (old_id) : 0) + IDENTIFIER_LENGTH (name)); sprintf (buf, "%s%s", old_id ? IDENTIFIER_POINTER (old_id) : "", IDENTIFIER_POINTER (name)); TREE_PURPOSE (current_namespace) = get_identifier (buf); } /* Pop from the scope of the current namespace. */ void pop_namespace () { extern tree current_namespace; tree decls, link; current_namespace = TREE_CHAIN (current_namespace); /* Just in case we get out of sync. */ if (! namespace_bindings_p ()) poplevel (0, 0, 0); decls = current_binding_level->names; /* Clear out the meanings of the local variables of this level. */ for (link = decls; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) { /* If the ident. was used or addressed via a local extern decl, don't forget that fact. */ if (DECL_EXTERNAL (link)) { if (TREE_USED (link)) TREE_USED (DECL_ASSEMBLER_NAME (link)) = 1; if (TREE_ADDRESSABLE (link)) TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (link)) = 1; } IDENTIFIER_LOCAL_VALUE (DECL_NAME (link)) = NULL_TREE; } } /* Restore all name-meanings of the outer levels that were shadowed by this level. */ for (link = current_binding_level->shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_LOCAL_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); for (link = current_binding_level->class_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); for (link = current_binding_level->type_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); /* suspend a level. */ suspend_binding_level (); } /* Subroutines for reverting temporarily to top-level for instantiation of templates and such. We actually need to clear out the class- and local-value slots of all identifiers, so that only the global values are at all visible. Simply setting current_binding_level to the global scope isn't enough, because more binding levels may be pushed. */ struct saved_scope { struct binding_level *old_binding_level; tree old_bindings; struct saved_scope *prev; tree class_name, class_type, function_decl; tree base_init_list, member_init_list; struct binding_level *class_bindings; tree previous_class_type; tree *lang_base, *lang_stack, lang_name; int lang_stacksize; tree named_labels; }; static struct saved_scope *current_saved_scope; extern tree prev_class_type; void push_to_top_level () { extern int current_lang_stacksize; struct saved_scope *s = (struct saved_scope *) xmalloc (sizeof (struct saved_scope)); struct binding_level *b = current_binding_level; tree old_bindings = NULL_TREE; /* Have to include global_binding_level, because class-level decls aren't listed anywhere useful. */ for (; b; b = b->level_chain) { tree t; if (b == global_binding_level) continue; for (t = b->names; t; t = TREE_CHAIN (t)) { tree binding, t1, t2 = t; tree id = DECL_ASSEMBLER_NAME (t2); if (!id || (!IDENTIFIER_LOCAL_VALUE (id) && !IDENTIFIER_CLASS_VALUE (id))) continue; for (t1 = old_bindings; t1; t1 = TREE_CHAIN (t1)) if (TREE_VEC_ELT (t1, 0) == id) goto skip_it; binding = make_tree_vec (4); if (id) { my_friendly_assert (TREE_CODE (id) == IDENTIFIER_NODE, 135); TREE_VEC_ELT (binding, 0) = id; TREE_VEC_ELT (binding, 1) = IDENTIFIER_TYPE_VALUE (id); TREE_VEC_ELT (binding, 2) = IDENTIFIER_LOCAL_VALUE (id); TREE_VEC_ELT (binding, 3) = IDENTIFIER_CLASS_VALUE (id); IDENTIFIER_LOCAL_VALUE (id) = NULL_TREE; IDENTIFIER_CLASS_VALUE (id) = NULL_TREE; } TREE_CHAIN (binding) = old_bindings; old_bindings = binding; skip_it: ; } /* Unwind type-value slots back to top level. */ for (t = b->type_shadowed; t; t = TREE_CHAIN (t)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (t), TREE_VALUE (t)); } /* Clear out class-level bindings cache. */ if (current_binding_level == global_binding_level && previous_class_type != NULL_TREE) { popclass (-1); previous_class_type = NULL_TREE; } s->old_binding_level = current_binding_level; current_binding_level = global_binding_level; s->class_name = current_class_name; s->class_type = current_class_type; s->function_decl = current_function_decl; s->base_init_list = current_base_init_list; s->member_init_list = current_member_init_list; s->class_bindings = class_binding_level; s->previous_class_type = previous_class_type; s->lang_stack = current_lang_stack; s->lang_base = current_lang_base; s->lang_stacksize = current_lang_stacksize; s->lang_name = current_lang_name; s->named_labels = named_labels; current_class_name = current_class_type = NULL_TREE; current_function_decl = NULL_TREE; class_binding_level = (struct binding_level *)0; previous_class_type = NULL_TREE; current_lang_stacksize = 10; current_lang_stack = current_lang_base = (tree *) xmalloc (current_lang_stacksize * sizeof (tree)); current_lang_name = lang_name_cplusplus; strict_prototype = strict_prototypes_lang_cplusplus; named_labels = NULL_TREE; s->prev = current_saved_scope; s->old_bindings = old_bindings; current_saved_scope = s; } void pop_from_top_level () { extern int current_lang_stacksize; struct saved_scope *s = current_saved_scope; tree t; if (previous_class_type) previous_class_type = NULL_TREE; current_binding_level = s->old_binding_level; current_saved_scope = s->prev; for (t = s->old_bindings; t; t = TREE_CHAIN (t)) { tree id = TREE_VEC_ELT (t, 0); if (id) { IDENTIFIER_TYPE_VALUE (id) = TREE_VEC_ELT (t, 1); IDENTIFIER_LOCAL_VALUE (id) = TREE_VEC_ELT (t, 2); IDENTIFIER_CLASS_VALUE (id) = TREE_VEC_ELT (t, 3); } } current_class_name = s->class_name; current_class_type = s->class_type; current_base_init_list = s->base_init_list; current_member_init_list = s->member_init_list; current_function_decl = s->function_decl; class_binding_level = s->class_bindings; previous_class_type = s->previous_class_type; free (current_lang_base); current_lang_base = s->lang_base; current_lang_stack = s->lang_stack; current_lang_name = s->lang_name; current_lang_stacksize = s->lang_stacksize; if (current_lang_name == lang_name_cplusplus) strict_prototype = strict_prototypes_lang_cplusplus; else if (current_lang_name == lang_name_c) strict_prototype = strict_prototypes_lang_c; named_labels = s->named_labels; free (s); } /* Push a definition of struct, union or enum tag "name". into binding_level "b". "type" should be the type node, We assume that the tag "name" is not already defined. Note that the definition may really be just a forward reference. In that case, the TYPE_SIZE will be a NULL_TREE. C++ gratuitously puts all these tags in the name space. */ /* When setting the IDENTIFIER_TYPE_VALUE field of an identifier ID, record the shadowed value for this binding contour. TYPE is the type that ID maps to. */ static void set_identifier_type_value_with_scope (id, type, b) tree id; tree type; struct binding_level *b; { if (b != global_binding_level) { tree old_type_value = IDENTIFIER_TYPE_VALUE (id); b->type_shadowed = tree_cons (id, old_type_value, b->type_shadowed); } SET_IDENTIFIER_TYPE_VALUE (id, type); } /* As set_identifier_type_value_with_scope, but using inner_binding_level. */ void set_identifier_type_value (id, type) tree id; tree type; { set_identifier_type_value_with_scope (id, type, inner_binding_level); } /* Subroutine "set_nested_typename" builds the nested-typename of the type decl in question. (Argument CLASSNAME can actually be a function as well, if that's the smallest containing scope.) */ static void set_nested_typename (decl, classname, name, type) tree decl, classname, name, type; { char *buf; my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 136); /* No need to do this for anonymous names, since they're unique. */ if (ANON_AGGRNAME_P (name)) { DECL_NESTED_TYPENAME (decl) = name; return; } if (classname == NULL_TREE) classname = get_identifier (""); my_friendly_assert (TREE_CODE (classname) == IDENTIFIER_NODE, 137); my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 138); buf = (char *) alloca (4 + IDENTIFIER_LENGTH (classname) + IDENTIFIER_LENGTH (name)); sprintf (buf, "%s::%s", IDENTIFIER_POINTER (classname), IDENTIFIER_POINTER (name)); DECL_NESTED_TYPENAME (decl) = get_identifier (buf); TREE_MANGLED (DECL_NESTED_TYPENAME (decl)) = 1; /* Create an extra decl so that the nested name will have a type value where appropriate. */ { tree nested, type_decl; nested = DECL_NESTED_TYPENAME (decl); type_decl = build_decl (TYPE_DECL, nested, type); DECL_NESTED_TYPENAME (type_decl) = nested; SET_DECL_ARTIFICIAL (type_decl); /* Mark the TYPE_DECL node created just above as a gratuitous one so that dwarfout.c will know not to generate a TAG_typedef DIE for it, and sdbout.c won't try to output a .def for "::foo". */ DECL_IGNORED_P (type_decl) = 1; /* Remove this when local classes are fixed. */ SET_IDENTIFIER_TYPE_VALUE (nested, type); pushdecl_nonclass_level (type_decl); } } /* Pop off extraneous binding levels left over due to syntax errors. We don't pop past namespaces, as they might be valid. */ void pop_everything () { #ifdef DEBUG_CP_BINDING_LEVELS fprintf (stderr, "XXX entering pop_everything ()\n"); #endif while (! toplevel_bindings_p () && ! pseudo_global_level_p ()) { if (class_binding_level) pop_nested_class (1); else poplevel (0, 0, 0); } #ifdef DEBUG_CP_BINDING_LEVELS fprintf (stderr, "XXX leaving pop_everything ()\n"); #endif } #if 0 /* not yet, should get fixed properly later */ /* Create a TYPE_DECL node with the correct DECL_ASSEMBLER_NAME. Other routines shouldn't use build_decl directly; they'll produce incorrect results with `-g' unless they duplicate this code. This is currently needed mainly for dbxout.c, but we can make use of it in method.c later as well. */ tree make_type_decl (name, type) tree name, type; { tree decl, id; decl = build_decl (TYPE_DECL, name, type); if (TYPE_NAME (type) == name) /* Class/union/enum definition, or a redundant typedef for same. */ { id = get_identifier (build_overload_name (type, 1, 1)); DECL_ASSEMBLER_NAME (decl) = id; } else if (TYPE_NAME (type) != NULL_TREE) /* Explicit typedef, or implicit typedef for template expansion. */ DECL_ASSEMBLER_NAME (decl) = DECL_ASSEMBLER_NAME (TYPE_NAME (type)); else { /* XXX: Typedef for unnamed struct; some other situations. TYPE_NAME is null; what's right here? */ } return decl; } #endif /* Push a tag name NAME for struct/class/union/enum type TYPE. Normally put into into the inner-most non-tag-transparent scope, but if GLOBALIZE is true, put it in the inner-most non-class scope. The latter is needed for implicit declarations. */ void pushtag (name, type, globalize) tree name, type; int globalize; { register struct binding_level *b; tree context = 0; tree c_decl = 0; b = inner_binding_level; while (b->tag_transparent || (globalize && b->parm_flag == 2)) b = b->level_chain; if (toplevel_bindings_p ()) b->tags = perm_tree_cons (name, type, b->tags); else b->tags = saveable_tree_cons (name, type, b->tags); if (name) { context = type ? TYPE_CONTEXT (type) : NULL_TREE; if (! context && ! globalize) context = current_scope (); if (context) c_decl = TREE_CODE (context) == FUNCTION_DECL ? context : TYPE_MAIN_DECL (context); #if 0 /* Record the identifier as the type's name if it has none. */ if (TYPE_NAME (type) == NULL_TREE) TYPE_NAME (type) = name; #endif /* Do C++ gratuitous typedefing. */ if (IDENTIFIER_TYPE_VALUE (name) != type) { register tree d; int newdecl = 0; if (b->parm_flag != 2 || TYPE_SIZE (current_class_type) != NULL_TREE) { d = lookup_nested_type (type, c_decl); if (d == NULL_TREE) { newdecl = 1; #if 0 /* not yet, should get fixed properly later */ d = make_type_decl (name, type); #else d = build_decl (TYPE_DECL, name, type); DECL_ASSEMBLER_NAME (d) = current_namespace_id (DECL_ASSEMBLER_NAME (d)); #endif SET_DECL_ARTIFICIAL (d); #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) { /* Mark the TYPE_DECL node we created just above as an gratuitous one. We need to do this so that dwarfout.c will understand that it is not supposed to output a TAG_typedef DIE for it. */ DECL_IGNORED_P (d) = 1; } #endif /* DWARF_DEBUGGING_INFO */ set_identifier_type_value_with_scope (name, type, b); } else d = TYPE_NAME (d); TYPE_NAME (type) = d; /* If it is anonymous, then we are called from pushdecl, and we don't want to infinitely recurse. */ if (! ANON_AGGRNAME_P (name)) { if (b->parm_flag == 2) d = pushdecl_class_level (d); else d = pushdecl_with_scope (d, b); } } else { /* Make nested declarations go into class-level scope. */ newdecl = 1; d = build_decl (TYPE_DECL, name, type); SET_DECL_ARTIFICIAL (d); #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) { /* Mark the TYPE_DECL node we created just above as an gratuitous one. We need to do this so that dwarfout.c will understand that it is not supposed to output a TAG_typedef DIE for it. */ DECL_IGNORED_P (d) = 1; } #endif /* DWARF_DEBUGGING_INFO */ TYPE_MAIN_DECL (type) = d; /* Make sure we're in this type's scope when we push the decl for a template, otherwise class_binding_level will be NULL and we'll end up dying inside of push_class_level_binding. */ if (TREE_CODE (type) == UNINSTANTIATED_P_TYPE) pushclass (type, 0); d = pushdecl_class_level (d); if (TREE_CODE (type) == UNINSTANTIATED_P_TYPE) popclass (0); } if (newdecl) { if (write_symbols != DWARF_DEBUG) { if (ANON_AGGRNAME_P (name)) DECL_IGNORED_P (d) = 1; } if (context == NULL_TREE) /* Non-nested class. */ set_nested_typename (d, NULL_TREE, name, type); else if (context && TREE_CODE (context) == FUNCTION_DECL) /* Function-nested class. */ set_nested_typename (d, DECL_ASSEMBLER_NAME (c_decl), name, type); else /* if (context && IS_AGGR_TYPE (context)) */ /* Class-nested class. */ set_nested_typename (d, DECL_NESTED_TYPENAME (c_decl), name, type); DECL_CONTEXT (d) = context; TYPE_CONTEXT (type) = DECL_CONTEXT (d); DECL_ASSEMBLER_NAME (d) = get_identifier (build_overload_name (type, 1, 1)); } } if (b->parm_flag == 2) { TREE_NONLOCAL_FLAG (type) = 1; if (TYPE_SIZE (current_class_type) == NULL_TREE) CLASSTYPE_TAGS (current_class_type) = b->tags; } } if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL) /* Use the canonical TYPE_DECL for this node. */ TYPE_STUB_DECL (type) = TYPE_NAME (type); else { /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the tagged type we just added to the current binding level. This fake NULL-named TYPE_DECL node helps dwarfout.c to know when it needs to output a representation of a tagged type, and it also gives us a convenient place to record the "scope start" address for the tagged type. */ #if 0 /* not yet, should get fixed properly later */ tree d = make_type_decl (NULL_TREE, type); #else tree d = build_decl (TYPE_DECL, NULL_TREE, type); #endif TYPE_STUB_DECL (type) = pushdecl_with_scope (d, b); } } /* Counter used to create anonymous type names. */ static int anon_cnt = 0; /* Return an IDENTIFIER which can be used as a name for anonymous structs and unions. */ tree make_anon_name () { char buf[32]; sprintf (buf, ANON_AGGRNAME_FORMAT, anon_cnt++); return get_identifier (buf); } /* Clear the TREE_PURPOSE slot of tags which have anonymous typenames. This keeps dbxout from getting confused. */ void clear_anon_tags () { register struct binding_level *b; register tree tags; static int last_cnt = 0; /* Fast out if no new anon names were declared. */ if (last_cnt == anon_cnt) return; b = current_binding_level; while (b->tag_transparent) b = b->level_chain; tags = b->tags; while (tags) { /* A NULL purpose means we have already processed all tags from here to the end of the list. */ if (TREE_PURPOSE (tags) == NULL_TREE) break; if (ANON_AGGRNAME_P (TREE_PURPOSE (tags))) TREE_PURPOSE (tags) = NULL_TREE; tags = TREE_CHAIN (tags); } last_cnt = anon_cnt; } /* Subroutine of duplicate_decls: return truthvalue of whether or not types of these decls match. For C++, we must compare the parameter list so that `int' can match `int&' in a parameter position, but `int&' is not confused with `const int&'. */ int decls_match (newdecl, olddecl) tree newdecl, olddecl; { int types_match; if (TREE_CODE (newdecl) == FUNCTION_DECL && TREE_CODE (olddecl) == FUNCTION_DECL) { tree f1 = TREE_TYPE (newdecl); tree f2 = TREE_TYPE (olddecl); tree p1 = TYPE_ARG_TYPES (f1); tree p2 = TYPE_ARG_TYPES (f2); /* When we parse a static member function definition, we put together a FUNCTION_DECL which thinks its type is METHOD_TYPE. Change that to FUNCTION_TYPE, and proceed. */ if (TREE_CODE (f1) == METHOD_TYPE && DECL_STATIC_FUNCTION_P (olddecl)) revert_static_member_fn (&newdecl, &f1, &p1); else if (TREE_CODE (f2) == METHOD_TYPE && DECL_STATIC_FUNCTION_P (newdecl)) revert_static_member_fn (&olddecl, &f2, &p2); /* Here we must take care of the case where new default parameters are specified. Also, warn if an old declaration becomes ambiguous because default parameters may cause the two to be ambiguous. */ if (TREE_CODE (f1) != TREE_CODE (f2)) { if (TREE_CODE (f1) == OFFSET_TYPE) cp_compiler_error ("`%D' redeclared as member function", newdecl); else cp_compiler_error ("`%D' redeclared as non-member function", newdecl); return 0; } if (comptypes (TREE_TYPE (f1), TREE_TYPE (f2), 1)) { if (! strict_prototypes_lang_c && DECL_LANGUAGE (olddecl) == lang_c && p2 == NULL_TREE) { types_match = self_promoting_args_p (p1); if (p1 == void_list_node) TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } else if (!strict_prototypes_lang_c && DECL_LANGUAGE (olddecl)==lang_c && DECL_LANGUAGE (newdecl) == lang_c && p1 == NULL_TREE) { types_match = self_promoting_args_p (p2); TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } else types_match = compparms (p1, p2, 3); } else types_match = 0; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL && TREE_CODE (olddecl) == TEMPLATE_DECL) { tree newargs = DECL_TEMPLATE_PARMS (newdecl); tree oldargs = DECL_TEMPLATE_PARMS (olddecl); int i, len = TREE_VEC_LENGTH (newargs); if (TREE_VEC_LENGTH (oldargs) != len) return 0; for (i = 0; i < len; i++) { tree newarg = TREE_VALUE (TREE_VEC_ELT (newargs, i)); tree oldarg = TREE_VALUE (TREE_VEC_ELT (oldargs, i)); if (TREE_CODE (newarg) != TREE_CODE (oldarg)) return 0; else if (TREE_CODE (newarg) == TYPE_DECL) /* continue */; else if (! comptypes (TREE_TYPE (newarg), TREE_TYPE (oldarg), 1)) return 0; } if (DECL_TEMPLATE_IS_CLASS (newdecl) != DECL_TEMPLATE_IS_CLASS (olddecl)) types_match = 0; else if (DECL_TEMPLATE_IS_CLASS (newdecl)) types_match = 1; else types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl), DECL_TEMPLATE_RESULT (newdecl)); } else { if (TREE_TYPE (newdecl) == error_mark_node) types_match = TREE_TYPE (olddecl) == error_mark_node; else if (TREE_TYPE (olddecl) == NULL_TREE) types_match = TREE_TYPE (newdecl) == NULL_TREE; else if (TREE_TYPE (newdecl) == NULL_TREE) types_match = 0; else types_match = comptypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl), 1); } return types_match; } /* If NEWDECL is `static' and an `extern' was seen previously, warn about it. (OLDDECL may be NULL_TREE; NAME contains information about previous usage as an `extern'.) Note that this does not apply to the C++ case of declaring a variable `extern const' and then later `const'. Don't complain if -traditional, since traditional compilers don't complain. Don't complain about built-in functions, since they are beyond the user's control. */ static void warn_extern_redeclared_static (newdecl, olddecl) tree newdecl, olddecl; { tree name; static char *explicit_extern_static_warning = "`%D' was declared `extern' and later `static'"; static char *implicit_extern_static_warning = "`%D' was declared implicitly `extern' and later `static'"; if (flag_traditional || TREE_CODE (newdecl) == TYPE_DECL) return; name = DECL_ASSEMBLER_NAME (newdecl); if (TREE_PUBLIC (name) && DECL_THIS_STATIC (newdecl)) { /* It's okay to redeclare an ANSI built-in function as static, or to declare a non-ANSI built-in function as anything. */ if (! (TREE_CODE (newdecl) == FUNCTION_DECL && olddecl != NULL_TREE && TREE_CODE (olddecl) == FUNCTION_DECL && (DECL_BUILT_IN (olddecl) || DECL_BUILT_IN_NONANSI (olddecl)))) { cp_pedwarn (IDENTIFIER_IMPLICIT_DECL (name) ? implicit_extern_static_warning : explicit_extern_static_warning, newdecl); if (olddecl != NULL_TREE) cp_pedwarn_at ("previous declaration of `%D'", olddecl); } } } /* Handle when a new declaration NEWDECL has the same name as an old one OLDDECL in the same binding contour. Prints an error message if appropriate. If safely possible, alter OLDDECL to look like NEWDECL, and return 1. Otherwise, return 0. */ int duplicate_decls (newdecl, olddecl) register tree newdecl, olddecl; { extern struct obstack permanent_obstack; unsigned olddecl_uid = DECL_UID (olddecl); int olddecl_friend = 0, types_match = 0; int new_defines_function; tree previous_c_decl = NULL_TREE; if (TREE_CODE_CLASS (TREE_CODE (olddecl)) == 'd') DECL_MACHINE_ATTRIBUTES (newdecl) = DECL_MACHINE_ATTRIBUTES (olddecl); types_match = decls_match (newdecl, olddecl); if (TREE_CODE (olddecl) != TREE_LIST) olddecl_friend = DECL_LANG_SPECIFIC (olddecl) && DECL_FRIEND_P (olddecl); /* If either the type of the new decl or the type of the old decl is an error_mark_node, then that implies that we have already issued an error (earlier) for some bogus type specification, and in that case, it is rather pointless to harass the user with yet more error message about the same declaration, so well just pretent the types match here. */ if ((TREE_TYPE (newdecl) && TREE_CODE (TREE_TYPE (newdecl)) == ERROR_MARK) || (TREE_TYPE (olddecl) && TREE_CODE (TREE_TYPE (olddecl)) == ERROR_MARK)) types_match = 1; if (flag_traditional && TREE_CODE (newdecl) == FUNCTION_DECL && IDENTIFIER_IMPLICIT_DECL (DECL_ASSEMBLER_NAME (newdecl)) == olddecl) /* If -traditional, avoid error for redeclaring fcn after implicit decl. */ ; else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_ARTIFICIAL (olddecl) && (DECL_BUILT_IN (olddecl) || DECL_BUILT_IN_NONANSI (olddecl))) { /* If you declare a built-in or predefined function name as static, the old definition is overridden, but optionally warn this was a bad choice of name. Ditto for overloads. */ if (! DECL_PUBLIC (newdecl) || (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl))) { if (warn_shadow) cp_warning ("shadowing %s function `%#D'", DECL_BUILT_IN (olddecl) ? "built-in" : "library", olddecl); /* Discard the old built-in function. */ return 0; } else if (! types_match) { if (TREE_CODE (newdecl) != FUNCTION_DECL) { /* If the built-in is not ansi, then programs can override it even globally without an error. */ if (! DECL_BUILT_IN (olddecl)) cp_warning ("library function `%#D' redeclared as non-function `%#D'", olddecl, newdecl); else { cp_error ("declaration of `%#D'", newdecl); cp_error ("conflicts with built-in declaration `%#D'", olddecl); } return 0; } cp_warning ("declaration of `%#D'", newdecl); cp_warning ("conflicts with built-in declaration `%#D'", olddecl); } } else if (TREE_CODE (olddecl) != TREE_CODE (newdecl)) { if ((TREE_CODE (newdecl) == FUNCTION_DECL && TREE_CODE (olddecl) == TEMPLATE_DECL && ! DECL_TEMPLATE_IS_CLASS (olddecl)) || (TREE_CODE (olddecl) == FUNCTION_DECL && TREE_CODE (newdecl) == TEMPLATE_DECL && ! DECL_TEMPLATE_IS_CLASS (newdecl))) return 0; cp_error ("`%#D' redeclared as different kind of symbol", newdecl); if (TREE_CODE (olddecl) == TREE_LIST) olddecl = TREE_VALUE (olddecl); cp_error_at ("previous declaration of `%#D'", olddecl); /* New decl is completely inconsistent with the old one => tell caller to replace the old one. */ return 0; } else if (!types_match) { if (TREE_CODE (newdecl) == TEMPLATE_DECL) { /* The name of a class template may not be declared to refer to any other template, class, function, object, namespace, value, or type in the same scope. */ if (DECL_TEMPLATE_IS_CLASS (olddecl) || DECL_TEMPLATE_IS_CLASS (newdecl)) { cp_error ("declaration of template `%#D'", newdecl); cp_error_at ("conflicts with previous declaration `%#D'", olddecl); } return 0; } if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_LANGUAGE (newdecl) == lang_c && DECL_LANGUAGE (olddecl) == lang_c) { cp_error ("declaration of C function `%#D' conflicts with", newdecl); cp_error_at ("previous declaration `%#D' here", olddecl); } else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)), TYPE_ARG_TYPES (TREE_TYPE (olddecl)), 3)) { cp_error ("new declaration `%#D'", newdecl); cp_error_at ("ambiguates old declaration `%#D'", olddecl); } else return 0; } /* Already complained about this, so don't do so again. */ else if (current_class_type == NULL_TREE || IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (newdecl)) != current_class_type) { cp_error ("conflicting types for `%#D'", newdecl); cp_error_at ("previous declaration as `%#D'", olddecl); } } else { char *errmsg = redeclaration_error_message (newdecl, olddecl); if (errmsg) { cp_error (errmsg, newdecl); if (DECL_NAME (olddecl) != NULL_TREE) cp_error_at ((DECL_INITIAL (olddecl) && current_binding_level == global_binding_level) ? "`%#D' previously defined here" : "`%#D' previously declared here", olddecl); } else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_INITIAL (olddecl) != NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE) { /* Prototype decl follows defn w/o prototype. */ cp_warning_at ("prototype for `%#D'", newdecl); cp_warning_at ("follows non-prototype definition here", olddecl); } else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl)) { /* extern "C" int foo (); int foo () { bar (); } is OK. */ if (current_lang_stack == current_lang_base) DECL_LANGUAGE (newdecl) = DECL_LANGUAGE (olddecl); else { cp_error_at ("previous declaration of `%#D' with %L linkage", olddecl, DECL_LANGUAGE (olddecl)); cp_error ("conflicts with new declaration with %L linkage", DECL_LANGUAGE (newdecl)); } } if (TREE_CODE (olddecl) == FUNCTION_DECL) { tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl)); tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)); int i = 1; if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE) t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2); for (; t1 && t1 != void_list_node; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++) if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2)) { if (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) { if (pedantic) { cp_pedwarn ("default argument given for parameter %d of `%#D'", i, newdecl); cp_pedwarn_at ("after previous specification in `%#D'", olddecl); } } else { cp_error ("default argument given for parameter %d of `%#D'", i, newdecl); cp_error_at ("conflicts with previous specification in `%#D'", olddecl); } } if (DECL_THIS_INLINE (newdecl) && ! DECL_THIS_INLINE (olddecl)) { #if 0 /* I think this will be correct, but it's really annoying. We should fix the compiler to find vtables by indirection so it isn't necessary. (jason 8/25/95) */ if (DECL_VINDEX (olddecl) && ! DECL_ABSTRACT_VIRTUAL_P (olddecl)) { cp_pedwarn ("virtual function `%#D' redeclared inline", newdecl); cp_pedwarn_at ("previous non-inline declaration here", olddecl); } else #endif if (TREE_ADDRESSABLE (olddecl)) { cp_pedwarn ("`%#D' was used before it was declared inline", newdecl); cp_pedwarn_at ("previous non-inline declaration here", olddecl); } } } /* These bits are logically part of the type for non-functions. */ else if (TREE_READONLY (newdecl) != TREE_READONLY (olddecl) || TREE_THIS_VOLATILE (newdecl) != TREE_THIS_VOLATILE (olddecl)) { cp_pedwarn ("type qualifiers for `%#D'", newdecl); cp_pedwarn_at ("conflict with previous decl `%#D'", olddecl); } } /* If new decl is `static' and an `extern' was seen previously, warn about it. */ warn_extern_redeclared_static (newdecl, olddecl); /* We have committed to returning 1 at this point. */ if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* Now that functions must hold information normally held by field decls, there is extra work to do so that declaration information does not get destroyed during definition. */ if (DECL_VINDEX (olddecl)) DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl); if (DECL_CONTEXT (olddecl)) DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl); if (DECL_CLASS_CONTEXT (olddecl)) DECL_CLASS_CONTEXT (newdecl) = DECL_CLASS_CONTEXT (olddecl); if (DECL_CHAIN (newdecl) == NULL_TREE) DECL_CHAIN (newdecl) = DECL_CHAIN (olddecl); if (DECL_NEXT_METHOD (newdecl) == NULL_TREE) DECL_NEXT_METHOD (newdecl) = DECL_NEXT_METHOD (olddecl); if (DECL_PENDING_INLINE_INFO (newdecl) == (struct pending_inline *)0) DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl); DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl); DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl); DECL_ABSTRACT_VIRTUAL_P (newdecl) |= DECL_ABSTRACT_VIRTUAL_P (olddecl); } /* Deal with C++: must preserve virtual function table size. */ if (TREE_CODE (olddecl) == TYPE_DECL) { register tree newtype = TREE_TYPE (newdecl); register tree oldtype = TREE_TYPE (olddecl); DECL_NESTED_TYPENAME (newdecl) = DECL_NESTED_TYPENAME (olddecl); if (newtype != error_mark_node && oldtype != error_mark_node && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype)) { CLASSTYPE_VSIZE (newtype) = CLASSTYPE_VSIZE (oldtype); CLASSTYPE_FRIEND_CLASSES (newtype) = CLASSTYPE_FRIEND_CLASSES (oldtype); } #if 0 /* why assert here? Just because debugging information is messed up? (mrs) */ /* it happens on something like: typedef struct Thing { Thing(); int x; } Thing; */ my_friendly_assert (DECL_IGNORED_P (olddecl) == DECL_IGNORED_P (newdecl), 139); #endif } /* Special handling ensues if new decl is a function definition. */ new_defines_function = (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_INITIAL (newdecl) != NULL_TREE); /* Optionally warn about more than one declaration for the same name, but don't warn about a function declaration followed by a definition. */ if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl) && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE) /* Don't warn about extern decl followed by (tentative) definition. */ && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl))) { cp_warning ("redundant redeclaration of `%D' in same scope", newdecl); cp_warning_at ("previous declaration of `%D'", olddecl); } /* Copy all the DECL_... slots specified in the new decl except for any that we copy here from the old type. */ if (types_match) { /* Automatically handles default parameters. */ tree oldtype = TREE_TYPE (olddecl); tree newtype; /* Make sure we put the new type in the same obstack as the old one. */ if (oldtype) push_obstacks (TYPE_OBSTACK (oldtype), TYPE_OBSTACK (oldtype)); else { push_obstacks_nochange (); end_temporary_allocation (); } /* Merge the data types specified in the two decls. */ newtype = common_type (TREE_TYPE (newdecl), TREE_TYPE (olddecl)); if (TREE_CODE (newdecl) == VAR_DECL) DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl); /* Do this after calling `common_type' so that default parameters don't confuse us. */ else if (TREE_CODE (newdecl) == FUNCTION_DECL && (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)) != TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl)))) { tree ctype = NULL_TREE; ctype = DECL_CLASS_CONTEXT (newdecl); TREE_TYPE (newdecl) = build_exception_variant (newtype, TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl))); TREE_TYPE (olddecl) = build_exception_variant (newtype, TYPE_RAISES_EXCEPTIONS (oldtype)); if (! compexcepttypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl), 0)) { cp_error ("declaration of `%D' throws different exceptions...", newdecl); cp_error_at ("...from previous declaration here", olddecl); } } TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype; /* Lay the type out, unless already done. */ if (oldtype != TREE_TYPE (newdecl) && TREE_TYPE (newdecl) != error_mark_node) layout_type (TREE_TYPE (newdecl)); if (TREE_CODE (newdecl) == VAR_DECL || TREE_CODE (newdecl) == PARM_DECL || TREE_CODE (newdecl) == RESULT_DECL || TREE_CODE (newdecl) == FIELD_DECL || TREE_CODE (newdecl) == TYPE_DECL) layout_decl (newdecl, 0); /* Merge the type qualifiers. */ if (TREE_READONLY (newdecl)) TREE_READONLY (olddecl) = 1; if (TREE_THIS_VOLATILE (newdecl)) TREE_THIS_VOLATILE (olddecl) = 1; /* Merge the initialization information. */ if (DECL_INITIAL (newdecl) == NULL_TREE && DECL_INITIAL (olddecl) != NULL_TREE) { DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl); DECL_SOURCE_FILE (newdecl) = DECL_SOURCE_FILE (olddecl); DECL_SOURCE_LINE (newdecl) = DECL_SOURCE_LINE (olddecl); } /* Merge the section attribute. We want to issue an error if the sections conflict but that must be done later in decl_attributes since we are called before attributes are assigned. */ if (DECL_SECTION_NAME (newdecl) == NULL_TREE) DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl); /* Keep the old rtl since we can safely use it, unless it's the call to abort() used for abstract virtuals. */ if ((DECL_LANG_SPECIFIC (olddecl) && !DECL_ABSTRACT_VIRTUAL_P (olddecl)) || DECL_RTL (olddecl) != DECL_RTL (abort_fndecl)) DECL_RTL (newdecl) = DECL_RTL (olddecl); pop_obstacks (); } /* If cannot merge, then use the new type and qualifiers, and don't preserve the old rtl. */ else { /* Clean out any memory we had of the old declaration. */ tree oldstatic = value_member (olddecl, static_aggregates); if (oldstatic) TREE_VALUE (oldstatic) = error_mark_node; TREE_TYPE (olddecl) = TREE_TYPE (newdecl); TREE_READONLY (olddecl) = TREE_READONLY (newdecl); TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl); TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl); } /* Merge the storage class information. */ DECL_WEAK (newdecl) |= DECL_WEAK (olddecl); TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl); TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl); if (! DECL_EXTERNAL (olddecl)) DECL_EXTERNAL (newdecl) = 0; if (TREE_CODE (newdecl) == FUNCTION_DECL) { DECL_C_STATIC (newdecl) = DECL_C_STATIC (olddecl); DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl); DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl); } if (TREE_CODE (newdecl) == FUNCTION_DECL) { DECL_THIS_INLINE (newdecl) |= DECL_THIS_INLINE (olddecl); /* If either decl says `inline', this fn is inline, unless its definition was passed already. */ if (DECL_INLINE (newdecl) && DECL_INITIAL (olddecl) == NULL_TREE) DECL_INLINE (olddecl) = 1; DECL_INLINE (newdecl) = DECL_INLINE (olddecl); if (! types_match) { DECL_LANGUAGE (olddecl) = DECL_LANGUAGE (newdecl); DECL_ASSEMBLER_NAME (olddecl) = DECL_ASSEMBLER_NAME (newdecl); DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl); DECL_RESULT (olddecl) = DECL_RESULT (newdecl); DECL_RTL (olddecl) = DECL_RTL (newdecl); } if (new_defines_function) /* If defining a function declared with other language linkage, use the previously declared language linkage. */ DECL_LANGUAGE (newdecl) = DECL_LANGUAGE (olddecl); else { /* If redeclaring a builtin function, and not a definition, it stays built in. */ if (DECL_BUILT_IN (olddecl)) { DECL_BUILT_IN (newdecl) = 1; DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl); /* If we're keeping the built-in definition, keep the rtl, regardless of declaration matches. */ DECL_RTL (newdecl) = DECL_RTL (olddecl); } else DECL_FRAME_SIZE (newdecl) = DECL_FRAME_SIZE (olddecl); DECL_RESULT (newdecl) = DECL_RESULT (olddecl); if ((DECL_SAVED_INSNS (newdecl) = DECL_SAVED_INSNS (olddecl))) /* Previously saved insns go together with the function's previous definition. */ DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl); /* Don't clear out the arguments if we're redefining a function. */ if (DECL_ARGUMENTS (olddecl)) DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl); } if (DECL_LANG_SPECIFIC (olddecl)) DECL_MAIN_VARIANT (newdecl) = DECL_MAIN_VARIANT (olddecl); } if (TREE_CODE (newdecl) == NAMESPACE_DECL) { NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl); } if (TREE_CODE (newdecl) == TEMPLATE_DECL) { if (DECL_TEMPLATE_INFO (olddecl)->length) DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl); DECL_TEMPLATE_MEMBERS (newdecl) = DECL_TEMPLATE_MEMBERS (olddecl); DECL_TEMPLATE_INSTANTIATIONS (newdecl) = DECL_TEMPLATE_INSTANTIATIONS (olddecl); if (DECL_CHAIN (newdecl) == NULL_TREE) DECL_CHAIN (newdecl) = DECL_CHAIN (olddecl); } /* Now preserve various other info from the definition. */ TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl); TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl); DECL_COMMON (newdecl) = DECL_COMMON (olddecl); DECL_ASSEMBLER_NAME (newdecl) = DECL_ASSEMBLER_NAME (olddecl); /* Don't really know how much of the language-specific values we should copy from old to new. */ if (DECL_LANG_SPECIFIC (olddecl)) { DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl); DECL_ACCESS (newdecl) = DECL_ACCESS (olddecl); DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl); } if (TREE_CODE (newdecl) == FUNCTION_DECL) { int function_size; struct lang_decl *ol = DECL_LANG_SPECIFIC (olddecl); struct lang_decl *nl = DECL_LANG_SPECIFIC (newdecl); function_size = sizeof (struct tree_decl); bcopy ((char *) newdecl + sizeof (struct tree_common), (char *) olddecl + sizeof (struct tree_common), function_size - sizeof (struct tree_common)); /* Can we safely free the storage used by newdecl? */ #define ROUND(x) ((x + obstack_alignment_mask (&permanent_obstack)) \ & ~ obstack_alignment_mask (&permanent_obstack)) if ((char *)newdecl + ROUND (function_size) + ROUND (sizeof (struct lang_decl)) == obstack_next_free (&permanent_obstack)) { DECL_MAIN_VARIANT (newdecl) = olddecl; DECL_LANG_SPECIFIC (olddecl) = ol; bcopy ((char *)nl, (char *)ol, sizeof (struct lang_decl)); obstack_free (&permanent_obstack, newdecl); } else if (LANG_DECL_PERMANENT (ol)) { if (DECL_MAIN_VARIANT (olddecl) == olddecl) { /* Save these lang_decls that would otherwise be lost. */ extern tree free_lang_decl_chain; tree free_lang_decl = (tree) ol; TREE_CHAIN (free_lang_decl) = free_lang_decl_chain; free_lang_decl_chain = free_lang_decl; } else { /* Storage leak. */ } } } else { bcopy ((char *) newdecl + sizeof (struct tree_common), (char *) olddecl + sizeof (struct tree_common), sizeof (struct tree_decl) - sizeof (struct tree_common) + tree_code_length [(int)TREE_CODE (newdecl)] * sizeof (char *)); } DECL_UID (olddecl) = olddecl_uid; if (olddecl_friend) DECL_FRIEND_P (olddecl) = 1; return 1; } /* Record a decl-node X as belonging to the current lexical scope. Check for errors (such as an incompatible declaration for the same name already seen in the same scope). Returns either X or an old decl for the same name. If an old decl is returned, it may have been smashed to agree with what X says. */ tree pushdecl (x) tree x; { register tree t; #if 0 /* not yet, should get fixed properly later */ register tree name; #else register tree name = DECL_ASSEMBLER_NAME (x); #endif register struct binding_level *b = current_binding_level; #if 0 static int nglobals; int len; len = list_length (global_binding_level->names); if (len < nglobals) my_friendly_abort (8); else if (len > nglobals) nglobals = len; #endif if (x != current_function_decl /* Don't change DECL_CONTEXT of virtual methods. */ && (TREE_CODE (x) != FUNCTION_DECL || !DECL_VIRTUAL_P (x)) && ! DECL_CONTEXT (x)) DECL_CONTEXT (x) = current_function_decl; /* A local declaration for a function doesn't constitute nesting. */ if (TREE_CODE (x) == FUNCTION_DECL && DECL_INITIAL (x) == 0) DECL_CONTEXT (x) = 0; #if 0 /* not yet, should get fixed properly later */ /* For functions and class static data, we currently look up the encoded form of the name. For types, we want the real name. The former will probably be changed soon, according to MDT. */ if (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == VAR_DECL) name = DECL_ASSEMBLER_NAME (x); else name = DECL_NAME (x); #else /* Type are looked up using the DECL_NAME, as that is what the rest of the compiler wants to use. */ if (TREE_CODE (x) == TYPE_DECL || TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == NAMESPACE_DECL) name = DECL_NAME (x); #endif if (name) { char *file; int line; t = lookup_name_current_level (name); if (t == error_mark_node) { /* error_mark_node is 0 for a while during initialization! */ t = NULL_TREE; cp_error_at ("`%#D' used prior to declaration", x); } else if (t != NULL_TREE) { file = DECL_SOURCE_FILE (t); line = DECL_SOURCE_LINE (t); if (TREE_CODE (x) == VAR_DECL && DECL_DEAD_FOR_LOCAL (x)) ; /* This is OK. */ else if (TREE_CODE (t) == PARM_DECL) { if (DECL_CONTEXT (t) == NULL_TREE) fatal ("parse errors have confused me too much"); } else if (((TREE_CODE (x) == FUNCTION_DECL && DECL_LANGUAGE (x) == lang_c) || (TREE_CODE (x) == TEMPLATE_DECL && ! DECL_TEMPLATE_IS_CLASS (x))) && is_overloaded_fn (t)) /* don't do anything just yet */; else if (t == wchar_decl_node) { if (pedantic && ! DECL_IN_SYSTEM_HEADER (x)) cp_pedwarn ("redeclaration of wchar_t as `%T'", TREE_TYPE (x)); /* Throw away the redeclaration. */ return t; } else if (TREE_CODE (t) != TREE_CODE (x)) { if ((TREE_CODE (t) == TYPE_DECL && DECL_ARTIFICIAL (t)) || (TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x))) { /* We do nothing special here, because C++ does such nasty things with TYPE_DECLs. Instead, just let the TYPE_DECL get shadowed, and know that if we need to find a TYPE_DECL for a given name, we can look in the IDENTIFIER_TYPE_VALUE slot of the identifier. */ ; } else if (duplicate_decls (x, t)) return t; } else if (duplicate_decls (x, t)) { #if 0 /* This is turned off until I have time to do it right (bpk). */ /* Also warn if they did a prototype with `static' on it, but then later left the `static' off. */ if (! TREE_PUBLIC (name) && TREE_PUBLIC (x)) { if (DECL_LANG_SPECIFIC (t) && DECL_FRIEND_P (t)) return t; if (extra_warnings) { cp_warning ("`static' missing from declaration of `%D'", t); warning_with_file_and_line (file, line, "previous declaration of `%s'", decl_as_string (t, 0)); } /* Now fix things so it'll do what they expect. */ if (current_function_decl) TREE_PUBLIC (current_function_decl) = 0; } /* Due to interference in memory reclamation (X may be obstack-deallocated at this point), we must guard against one really special case. [jason: This should be handled by start_function] */ if (current_function_decl == x) current_function_decl = t; #endif if (TREE_CODE (t) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (name, TREE_TYPE (t)); else if (TREE_CODE (t) == FUNCTION_DECL) check_default_args (t); return t; } } if (TREE_CODE (x) == FUNCTION_DECL && ! DECL_FUNCTION_MEMBER_P (x)) { t = push_overloaded_decl (x, 1); if (t != x || DECL_LANGUAGE (x) == lang_c) return t; } else if (TREE_CODE (x) == TEMPLATE_DECL && ! DECL_TEMPLATE_IS_CLASS (x)) return push_overloaded_decl (x, 0); /* If declaring a type as a typedef, and the type has no known typedef name, install this TYPE_DECL as its typedef name. */ if (TREE_CODE (x) == TYPE_DECL) { tree type = TREE_TYPE (x); tree name = (type != error_mark_node) ? TYPE_NAME (type) : x; if (name == NULL_TREE || TREE_CODE (name) != TYPE_DECL) { /* If these are different names, and we're at the global binding level, make two equivalent definitions. */ name = x; if (global_bindings_p ()) TYPE_NAME (type) = x; } else { tree tname = DECL_NAME (name); /* This is a disgusting kludge for dealing with UPTs. */ if (global_bindings_p () && ANON_AGGRNAME_P (tname)) { /* do gratuitous C++ typedefing, and make sure that we access this type either through TREE_TYPE field or via the tags list. */ TYPE_NAME (TREE_TYPE (x)) = x; pushtag (tname, TREE_TYPE (x), 0); } } my_friendly_assert (TREE_CODE (name) == TYPE_DECL, 140); /* Don't set nested_typename on template type parms, for instance. Any artificial decls that need DECL_NESTED_TYPENAME will have it set in pushtag. */ if (! DECL_NESTED_TYPENAME (x) && ! DECL_ARTIFICIAL (x)) set_nested_typename (x, current_class_name, DECL_NAME (x), type); if (type != error_mark_node && TYPE_NAME (type) && TYPE_IDENTIFIER (type)) set_identifier_type_value_with_scope (DECL_NAME (x), type, b); } /* Multiple external decls of the same identifier ought to match. We get warnings about inline functions where they are defined. We get warnings about other functions from push_overloaded_decl. Avoid duplicate warnings where they are used. */ if (TREE_PUBLIC (x) && TREE_CODE (x) != FUNCTION_DECL) { tree decl; if (IDENTIFIER_GLOBAL_VALUE (name) != NULL_TREE && (DECL_EXTERNAL (IDENTIFIER_GLOBAL_VALUE (name)) || TREE_PUBLIC (IDENTIFIER_GLOBAL_VALUE (name)))) decl = IDENTIFIER_GLOBAL_VALUE (name); else decl = NULL_TREE; if (decl /* If different sort of thing, we already gave an error. */ && TREE_CODE (decl) == TREE_CODE (x) && ! comptypes (TREE_TYPE (x), TREE_TYPE (decl), 1)) { cp_pedwarn ("type mismatch with previous external decl", x); cp_pedwarn_at ("previous external decl of `%#D'", decl); } } /* In PCC-compatibility mode, extern decls of vars with no current decl take effect at top level no matter where they are. */ if (flag_traditional && DECL_EXTERNAL (x) && lookup_name (name, 0) == NULL_TREE) b = global_binding_level; /* This name is new in its binding level. Install the new declaration and return it. */ if (b == global_binding_level) { /* Install a global value. */ /* If the first global decl has external linkage, warn if we later see static one. */ if (IDENTIFIER_GLOBAL_VALUE (name) == NULL_TREE && DECL_PUBLIC (x)) TREE_PUBLIC (name) = 1; /* Don't install an artificial TYPE_DECL if we already have another _DECL with that name. */ if (TREE_CODE (x) != TYPE_DECL || t == NULL_TREE || ! DECL_ARTIFICIAL (x)) IDENTIFIER_GLOBAL_VALUE (name) = x; /* Don't forget if the function was used via an implicit decl. */ if (IDENTIFIER_IMPLICIT_DECL (name) && TREE_USED (IDENTIFIER_IMPLICIT_DECL (name))) TREE_USED (x) = 1; /* Don't forget if its address was taken in that way. */ if (IDENTIFIER_IMPLICIT_DECL (name) && TREE_ADDRESSABLE (IDENTIFIER_IMPLICIT_DECL (name))) TREE_ADDRESSABLE (x) = 1; /* Warn about mismatches against previous implicit decl. */ if (IDENTIFIER_IMPLICIT_DECL (name) != NULL_TREE /* If this real decl matches the implicit, don't complain. */ && ! (TREE_CODE (x) == FUNCTION_DECL && TREE_TYPE (TREE_TYPE (x)) == integer_type_node)) cp_warning ("`%D' was previously implicitly declared to return `int'", x); /* If new decl is `static' and an `extern' was seen previously, warn about it. */ if (x != NULL_TREE && t != NULL_TREE && decls_match (x, t)) warn_extern_redeclared_static (x, t); } else { /* Here to install a non-global value. */ tree oldlocal = IDENTIFIER_LOCAL_VALUE (name); tree oldglobal = IDENTIFIER_GLOBAL_VALUE (name); /* Don't install an artificial TYPE_DECL if we already have another _DECL with that name. */ if (TREE_CODE (x) != TYPE_DECL || t == NULL_TREE || ! DECL_ARTIFICIAL (x)) { b->shadowed = tree_cons (name, oldlocal, b->shadowed); IDENTIFIER_LOCAL_VALUE (name) = x; } /* If this is a TYPE_DECL, push it into the type value slot. */ if (TREE_CODE (x) == TYPE_DECL) set_identifier_type_value_with_scope (name, TREE_TYPE (x), b); /* Clear out any TYPE_DECL shadowed by a namespace so that we won't think this is a type. The C struct hack doesn't go through namespaces. */ if (TREE_CODE (x) == NAMESPACE_DECL) set_identifier_type_value_with_scope (name, NULL_TREE, b); /* If this is an extern function declaration, see if we have a global definition or declaration for the function. */ if (oldlocal == NULL_TREE && DECL_EXTERNAL (x) && oldglobal != NULL_TREE && TREE_CODE (x) == FUNCTION_DECL && TREE_CODE (oldglobal) == FUNCTION_DECL) { /* We have one. Their types must agree. */ if (decls_match (x, oldglobal)) /* OK */; else { cp_warning ("extern declaration of `%#D' doesn't match", x); cp_warning_at ("global declaration `%#D'", oldglobal); } } /* If we have a local external declaration, and no file-scope declaration has yet been seen, then if we later have a file-scope decl it must not be static. */ if (oldlocal == NULL_TREE && oldglobal == NULL_TREE && DECL_EXTERNAL (x) && TREE_PUBLIC (x)) { TREE_PUBLIC (name) = 1; } if (DECL_FROM_INLINE (x)) /* Inline decls shadow nothing. */; /* Warn if shadowing an argument at the top level of the body. */ else if (oldlocal != NULL_TREE && !DECL_EXTERNAL (x) && TREE_CODE (oldlocal) == PARM_DECL && TREE_CODE (x) != PARM_DECL) { /* Go to where the parms should be and see if we find them there. */ struct binding_level *b = current_binding_level->level_chain; if (cleanup_label) b = b->level_chain; /* ARM $8.3 */ if (b->parm_flag == 1) cp_error ("declaration of `%#D' shadows a parameter", name); } else if (oldlocal != NULL_TREE && b->is_for_scope && !DECL_DEAD_FOR_LOCAL (oldlocal)) { warning ("variable `%s' shadows local", IDENTIFIER_POINTER (name)); cp_warning_at (" this is the shadowed declaration", oldlocal); } /* Maybe warn if shadowing something else. */ else if (warn_shadow && !DECL_EXTERNAL (x) /* No shadow warnings for internally generated vars. */ && ! DECL_ARTIFICIAL (x) /* No shadow warnings for vars made for inlining. */ && ! DECL_FROM_INLINE (x)) { char *warnstring = NULL; if (oldlocal != NULL_TREE && TREE_CODE (oldlocal) == PARM_DECL) warnstring = "declaration of `%s' shadows a parameter"; else if (IDENTIFIER_CLASS_VALUE (name) != NULL_TREE && current_class_decl && !TREE_STATIC (name)) warnstring = "declaration of `%s' shadows a member of `this'"; else if (oldlocal != NULL_TREE) warnstring = "declaration of `%s' shadows previous local"; else if (oldglobal != NULL_TREE) warnstring = "declaration of `%s' shadows global declaration"; if (warnstring) warning (warnstring, IDENTIFIER_POINTER (name)); } } if (TREE_CODE (x) == FUNCTION_DECL) check_default_args (x); /* Keep count of variables in this level with incomplete type. */ if (TREE_CODE (x) == VAR_DECL && TREE_TYPE (x) != error_mark_node && ((TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE && PROMOTES_TO_AGGR_TYPE (TREE_TYPE (x), ARRAY_TYPE)) /* RTTI TD entries are created while defining the type_info. */ || (TYPE_LANG_SPECIFIC (TREE_TYPE (x)) && TYPE_BEING_DEFINED (TREE_TYPE (x))))) b->incomplete = tree_cons (NULL_TREE, x, b->incomplete); } /* Put decls on list in reverse order. We will reverse them later if necessary. */ TREE_CHAIN (x) = b->names; b->names = x; if (! (b != global_binding_level || TREE_PERMANENT (x))) my_friendly_abort (124); return x; } /* Same as pushdecl, but define X in binding-level LEVEL. */ static tree pushdecl_with_scope (x, level) tree x; struct binding_level *level; { register struct binding_level *b = current_binding_level; current_binding_level = level; x = pushdecl (x); current_binding_level = b; return x; } /* Like pushdecl, only it places X in GLOBAL_BINDING_LEVEL, if appropriate. */ tree pushdecl_top_level (x) tree x; { register struct binding_level *b = inner_binding_level; register tree t = pushdecl_with_scope (x, global_binding_level); /* Now, the type_shadowed stack may screw us. Munge it so it does what we want. */ if (TREE_CODE (x) == TYPE_DECL) { tree name = DECL_NAME (x); tree newval; tree *ptr = (tree *)0; for (; b != global_binding_level; b = b->level_chain) { tree shadowed = b->type_shadowed; for (; shadowed; shadowed = TREE_CHAIN (shadowed)) if (TREE_PURPOSE (shadowed) == name) { ptr = &TREE_VALUE (shadowed); /* Can't break out of the loop here because sometimes a binding level will have duplicate bindings for PT names. It's gross, but I haven't time to fix it. */ } } newval = TREE_TYPE (x); if (ptr == (tree *)0) { /* @@ This shouldn't be needed. My test case "zstring.cc" trips up here if this is changed to an assertion. --KR */ SET_IDENTIFIER_TYPE_VALUE (name, newval); } else { #if 0 /* Disabled this 11/10/92, since there are many cases which behave just fine when *ptr doesn't satisfy either of these. For example, nested classes declared as friends of their enclosing class will not meet this criteria. (bpk) */ my_friendly_assert (*ptr == NULL_TREE || *ptr == newval, 141); #endif *ptr = newval; } } return t; } /* Like push_overloaded_decl, only it places X in GLOBAL_BINDING_LEVEL, if appropriate. */ void push_overloaded_decl_top_level (x, forget) tree x; int forget; { struct binding_level *b = current_binding_level; current_binding_level = global_binding_level; push_overloaded_decl (x, forget); current_binding_level = b; } /* Make the declaration of X appear in CLASS scope. */ tree pushdecl_class_level (x) tree x; { /* Don't use DECL_ASSEMBLER_NAME here! Everything that looks in class scope looks for the pre-mangled name. */ register tree name = DECL_NAME (x); if (name) { if (TYPE_BEING_DEFINED (current_class_type)) { /* Check for inconsistent use of this name in the class body. Types, enums, and static vars are checked here; other members are checked in finish_struct. */ tree icv = IDENTIFIER_CLASS_VALUE (name); if (icv /* Don't complain about inherited names. */ && id_in_current_class (name) /* Or shadowed tags. */ && !(TREE_CODE (icv) == TYPE_DECL && DECL_CONTEXT (icv) == current_class_type)) { cp_error ("declaration of identifier `%D' as `%#D'", name, x); cp_error_at ("conflicts with previous use in class as `%#D'", icv); } } push_class_level_binding (name, x); if (TREE_CODE (x) == TYPE_DECL) { set_identifier_type_value (name, TREE_TYPE (x)); /* Don't set nested_typename on template type parms, for instance. Any artificial decls that need DECL_NESTED_TYPENAME will have it set in pushtag. */ if (! DECL_NESTED_TYPENAME (x) && ! DECL_ARTIFICIAL (x)) set_nested_typename (x, current_class_name, name, TREE_TYPE (x)); } } return x; } /* This function is used to push the mangled decls for nested types into the appropriate scope. Previously pushdecl_top_level was used, but that is incorrect for members of local classes. */ tree pushdecl_nonclass_level (x) tree x; { struct binding_level *b = current_binding_level; #if 0 /* Get out of class scope -- this isn't necessary, because class scope doesn't make it into current_binding_level. */ while (b->parm_flag == 2) b = b->level_chain; #else my_friendly_assert (b->parm_flag != 2, 180); #endif /* Get out of template binding levels */ while (b->pseudo_global) b = b->level_chain; pushdecl_with_scope (x, b); } /* Make the declaration(s) of X appear in CLASS scope under the name NAME. */ void push_class_level_binding (name, x) tree name; tree x; { if (TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x) && purpose_member (name, class_binding_level->class_shadowed)) return; maybe_push_cache_obstack (); class_binding_level->class_shadowed = tree_cons (name, IDENTIFIER_CLASS_VALUE (name), class_binding_level->class_shadowed); pop_obstacks (); IDENTIFIER_CLASS_VALUE (name) = x; obstack_ptr_grow (&decl_obstack, x); } /* Tell caller how to interpret a TREE_LIST which contains chains of FUNCTION_DECLS. */ int overloaded_globals_p (list) tree list; { my_friendly_assert (TREE_CODE (list) == TREE_LIST, 142); /* Don't commit caller to seeing them as globals. */ if (TREE_NONLOCAL_FLAG (list)) return -1; /* Do commit caller to seeing them as globals. */ if (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE) return 1; /* Do commit caller to not seeing them as globals. */ return 0; } /* DECL is a FUNCTION_DECL which may have other definitions already in place. We get around this by making the value of the identifier point to a list of all the things that want to be referenced by that name. It is then up to the users of that name to decide what to do with that list. DECL may also be a TEMPLATE_DECL, with a FUNCTION_DECL in its DECL_RESULT slot. It is dealt with the same way. The value returned may be a previous declaration if we guessed wrong about what language DECL should belong to (C or C++). Otherwise, it's always DECL (and never something that's not a _DECL). */ tree push_overloaded_decl (decl, forgettable) tree decl; int forgettable; { tree orig_name = DECL_NAME (decl); tree old; int doing_global = (global_bindings_p () || ! forgettable || flag_traditional || pseudo_global_level_p ()); if (doing_global) { old = IDENTIFIER_GLOBAL_VALUE (orig_name); if (old && TREE_CODE (old) == FUNCTION_DECL && DECL_ARTIFICIAL (old) && (DECL_BUILT_IN (old) || DECL_BUILT_IN_NONANSI (old))) { if (duplicate_decls (decl, old)) return old; old = NULL_TREE; } } else { old = IDENTIFIER_LOCAL_VALUE (orig_name); if (! purpose_member (orig_name, current_binding_level->shadowed)) { current_binding_level->shadowed = tree_cons (orig_name, old, current_binding_level->shadowed); old = NULL_TREE; } } if (old) { #if 0 /* We cache the value of builtin functions as ADDR_EXPRs in the name space. Convert it to some kind of _DECL after remembering what to forget. */ if (TREE_CODE (old) == ADDR_EXPR) old = TREE_OPERAND (old, 0); else #endif if (TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old)) { tree t = TREE_TYPE (old); if (IS_AGGR_TYPE (t) && warn_shadow) cp_warning ("`%#D' hides constructor for `%#T'", decl, t); old = NULL_TREE; } else if (is_overloaded_fn (old)) { tree tmp; for (tmp = get_first_fn (old); tmp; tmp = DECL_CHAIN (tmp)) if (decl == tmp || duplicate_decls (decl, tmp)) return tmp; } else { cp_error_at ("previous non-function declaration `%#D'", old); cp_error ("conflicts with function declaration `%#D'", decl); return decl; } } if (old || TREE_CODE (decl) == TEMPLATE_DECL) { if (old && is_overloaded_fn (old)) DECL_CHAIN (decl) = get_first_fn (old); else DECL_CHAIN (decl) = NULL_TREE; old = tree_cons (orig_name, decl, NULL_TREE); TREE_TYPE (old) = unknown_type_node; } else /* orig_name is not ambiguous. */ old = decl; if (doing_global) IDENTIFIER_GLOBAL_VALUE (orig_name) = old; else IDENTIFIER_LOCAL_VALUE (orig_name) = old; return decl; } /* Generate an implicit declaration for identifier FUNCTIONID as a function of type int (). Print a warning if appropriate. */ tree implicitly_declare (functionid) tree functionid; { register tree decl; int temp = allocation_temporary_p (); push_obstacks_nochange (); /* Save the decl permanently so we can warn if definition follows. In ANSI C, warn_implicit is usually false, so the saves little space. But in C++, it's usually true, hence the extra code. */ if (temp && (flag_traditional || !warn_implicit || toplevel_bindings_p ())) end_temporary_allocation (); /* We used to reuse an old implicit decl here, but this loses with inline functions because it can clobber the saved decl chains. */ decl = build_lang_decl (FUNCTION_DECL, functionid, default_function_type); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; /* ANSI standard says implicit declarations are in the innermost block. So we record the decl in the standard fashion. If flag_traditional is set, pushdecl does it top-level. */ pushdecl (decl); rest_of_decl_compilation (decl, NULL_PTR, 0, 0); if (warn_implicit /* Only one warning per identifier. */ && IDENTIFIER_IMPLICIT_DECL (functionid) == NULL_TREE) { cp_pedwarn ("implicit declaration of function `%#D'", decl); } SET_IDENTIFIER_IMPLICIT_DECL (functionid, decl); pop_obstacks (); return decl; } /* Return zero if the declaration NEWDECL is valid when the declaration OLDDECL (assumed to be for the same name) has already been seen. Otherwise return an error message format string with a %s where the identifier should go. */ static char * redeclaration_error_message (newdecl, olddecl) tree newdecl, olddecl; { if (TREE_CODE (newdecl) == TYPE_DECL) { /* Because C++ can put things into name space for free, constructs like "typedef struct foo { ... } foo" would look like an erroneous redeclaration. */ if (comptypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl), 0)) return 0; else return "redefinition of `%#D'"; } else if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* If this is a pure function, its olddecl will actually be the original initialization to `0' (which we force to call abort()). Don't complain about redefinition in this case. */ if (DECL_LANG_SPECIFIC (olddecl) && DECL_ABSTRACT_VIRTUAL_P (olddecl)) return 0; /* We'll complain about linkage mismatches in warn_extern_redeclared_static. */ /* defining the same name twice is no good. */ if (DECL_INITIAL (olddecl) != NULL_TREE && DECL_INITIAL (newdecl) != NULL_TREE) { if (DECL_NAME (olddecl) == NULL_TREE) return "`%#D' not declared in class"; else return "redefinition of `%#D'"; } return 0; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL) { if (DECL_INITIAL (olddecl) && DECL_INITIAL (newdecl)) return "redefinition of `%#D'"; return 0; } else if (current_binding_level == global_binding_level) { /* Objects declared at top level: */ /* If at least one is a reference, it's ok. */ if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl)) return 0; /* Reject two definitions. */ return "redefinition of `%#D'"; } else { /* Objects declared with block scope: */ /* Reject two definitions, and reject a definition together with an external reference. */ if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl))) return "redeclaration of `%#D'"; return 0; } } /* Get the LABEL_DECL corresponding to identifier ID as a label. Create one if none exists so far for the current function. This function is called for both label definitions and label references. */ tree lookup_label (id) tree id; { register tree decl = IDENTIFIER_LABEL_VALUE (id); if (current_function_decl == NULL_TREE) { error ("label `%s' referenced outside of any function", IDENTIFIER_POINTER (id)); return NULL_TREE; } if ((decl == NULL_TREE || DECL_SOURCE_LINE (decl) == 0) && (named_label_uses == NULL_TREE || TREE_PURPOSE (named_label_uses) != current_binding_level->names || TREE_VALUE (named_label_uses) != decl)) { named_label_uses = tree_cons (current_binding_level->names, decl, named_label_uses); TREE_TYPE (named_label_uses) = (tree)current_binding_level; } /* Use a label already defined or ref'd with this name. */ if (decl != NULL_TREE) { /* But not if it is inherited and wasn't declared to be inheritable. */ if (DECL_CONTEXT (decl) != current_function_decl && ! C_DECLARED_LABEL_FLAG (decl)) return shadow_label (id); return decl; } decl = build_decl (LABEL_DECL, id, void_type_node); /* A label not explicitly declared must be local to where it's ref'd. */ DECL_CONTEXT (decl) = current_function_decl; DECL_MODE (decl) = VOIDmode; /* Say where one reference is to the label, for the sake of the error if it is not defined. */ DECL_SOURCE_LINE (decl) = lineno; DECL_SOURCE_FILE (decl) = input_filename; SET_IDENTIFIER_LABEL_VALUE (id, decl); named_labels = tree_cons (NULL_TREE, decl, named_labels); TREE_VALUE (named_label_uses) = decl; return decl; } /* Make a label named NAME in the current function, shadowing silently any that may be inherited from containing functions or containing scopes. Note that valid use, if the label being shadowed comes from another scope in the same function, requires calling declare_nonlocal_label right away. */ tree shadow_label (name) tree name; { register tree decl = IDENTIFIER_LABEL_VALUE (name); if (decl != NULL_TREE) { shadowed_labels = tree_cons (NULL_TREE, decl, shadowed_labels); SET_IDENTIFIER_LABEL_VALUE (name, NULL_TREE); SET_IDENTIFIER_LABEL_VALUE (decl, NULL_TREE); } return lookup_label (name); } /* Define a label, specifying the location in the source file. Return the LABEL_DECL node for the label, if the definition is valid. Otherwise return 0. */ tree define_label (filename, line, name) char *filename; int line; tree name; { tree decl = lookup_label (name); /* After labels, make any new cleanups go into their own new (temporary) binding contour. */ current_binding_level->more_cleanups_ok = 0; /* If label with this name is known from an outer context, shadow it. */ if (decl != NULL_TREE && DECL_CONTEXT (decl) != current_function_decl) { shadowed_labels = tree_cons (NULL_TREE, decl, shadowed_labels); SET_IDENTIFIER_LABEL_VALUE (name, NULL_TREE); decl = lookup_label (name); } if (name == get_identifier ("wchar_t")) cp_pedwarn ("label named wchar_t"); if (DECL_INITIAL (decl) != NULL_TREE) { cp_error ("duplicate label `%D'", decl); return 0; } else { tree uses, prev; int identified = 0; /* Mark label as having been defined. */ DECL_INITIAL (decl) = error_mark_node; /* Say where in the source. */ DECL_SOURCE_FILE (decl) = filename; DECL_SOURCE_LINE (decl) = line; for (prev = NULL_TREE, uses = named_label_uses; uses; prev = uses, uses = TREE_CHAIN (uses)) if (TREE_VALUE (uses) == decl) { struct binding_level *b = current_binding_level; while (b) { tree new_decls = b->names; tree old_decls = ((tree)b == TREE_TYPE (uses) ? TREE_PURPOSE (uses) : NULL_TREE); while (new_decls != old_decls) { if (TREE_CODE (new_decls) == VAR_DECL /* Don't complain about crossing initialization of internal entities. They can't be accessed, and they should be cleaned up by the time we get to the label. */ && ! DECL_ARTIFICIAL (new_decls) && ((DECL_INITIAL (new_decls) != NULL_TREE && DECL_INITIAL (new_decls) != error_mark_node) || TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (new_decls)))) { if (! identified) cp_error ("jump to label `%D'", decl); identified = 1; cp_error_at (" crosses initialization of `%#D'", new_decls); } new_decls = TREE_CHAIN (new_decls); } if ((tree)b == TREE_TYPE (uses)) break; b = b->level_chain; } if (prev) TREE_CHAIN (prev) = TREE_CHAIN (uses); else named_label_uses = TREE_CHAIN (uses); } current_function_return_value = NULL_TREE; return decl; } } struct cp_switch { struct binding_level *level; struct cp_switch *next; }; static struct cp_switch *switch_stack; void push_switch () { struct cp_switch *p = (struct cp_switch *) oballoc (sizeof (struct cp_switch)); p->level = current_binding_level; p->next = switch_stack; switch_stack = p; } void pop_switch () { switch_stack = switch_stack->next; } /* Same, but for CASE labels. If DECL is NULL_TREE, it's the default. */ /* XXX Note decl is never actually used. (bpk) */ void define_case_label (decl) tree decl; { tree cleanup = last_cleanup_this_contour (); struct binding_level *b = current_binding_level; int identified = 0; if (cleanup) { static int explained = 0; cp_warning_at ("destructor needed for `%#D'", TREE_PURPOSE (cleanup)); warning ("where case label appears here"); if (!explained) { warning ("(enclose actions of previous case statements requiring"); warning ("destructors in their own binding contours.)"); explained = 1; } } for (; b && b != switch_stack->level; b = b->level_chain) { tree new_decls = b->names; for (; new_decls; new_decls = TREE_CHAIN (new_decls)) { if (TREE_CODE (new_decls) == VAR_DECL /* Don't complain about crossing initialization of internal entities. They can't be accessed, and they should be cleaned up by the time we get to the label. */ && ! DECL_ARTIFICIAL (new_decls) && ((DECL_INITIAL (new_decls) != NULL_TREE && DECL_INITIAL (new_decls) != error_mark_node) || TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (new_decls)))) { if (! identified) error ("jump to case label"); identified = 1; cp_error_at (" crosses initialization of `%#D'", new_decls); } } } /* After labels, make any new cleanups go into their own new (temporary) binding contour. */ current_binding_level->more_cleanups_ok = 0; current_function_return_value = NULL_TREE; } /* Return the list of declarations of the current level. Note that this list is in reverse order unless/until you nreverse it; and when you do nreverse it, you must store the result back using `storedecls' or you will lose. */ tree getdecls () { return current_binding_level->names; } /* Return the list of type-tags (for structs, etc) of the current level. */ tree gettags () { return current_binding_level->tags; } /* Store the list of declarations of the current level. This is done for the parameter declarations of a function being defined, after they are modified in the light of any missing parameters. */ static void storedecls (decls) tree decls; { current_binding_level->names = decls; } /* Similarly, store the list of tags of the current level. */ static void storetags (tags) tree tags; { current_binding_level->tags = tags; } /* Given NAME, an IDENTIFIER_NODE, return the structure (or union or enum) definition for that name. Searches binding levels from BINDING_LEVEL up to the global level. If THISLEVEL_ONLY is nonzero, searches only the specified context (but skips any tag-transparent contexts to find one that is meaningful for tags). FORM says which kind of type the caller wants; it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE. If the wrong kind of type is found, and it's not a template, an error is reported. */ static tree lookup_tag (form, name, binding_level, thislevel_only) enum tree_code form; struct binding_level *binding_level; tree name; int thislevel_only; { register struct binding_level *level; for (level = binding_level; level; level = level->level_chain) { register tree tail; if (ANON_AGGRNAME_P (name)) for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { /* There's no need for error checking here, because anon names are unique throughout the compilation. */ if (TYPE_IDENTIFIER (TREE_VALUE (tail)) == name) return TREE_VALUE (tail); } else for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { if (TREE_PURPOSE (tail) == name) { enum tree_code code = TREE_CODE (TREE_VALUE (tail)); /* Should tighten this up; it'll probably permit UNION_TYPE and a struct template, for example. */ if (code != form && !(form != ENUMERAL_TYPE && (code == TEMPLATE_DECL || code == UNINSTANTIATED_P_TYPE))) { /* Definition isn't the kind we were looking for. */ cp_error ("`%#D' redeclared as %C", TREE_VALUE (tail), form); } return TREE_VALUE (tail); } } if (thislevel_only && ! level->tag_transparent) return NULL_TREE; if (current_class_type && level->level_chain == global_binding_level) { /* Try looking in this class's tags before heading into global binding level. */ tree context = current_class_type; while (context) { switch (TREE_CODE_CLASS (TREE_CODE (context))) { tree these_tags; case 't': these_tags = CLASSTYPE_TAGS (context); if (ANON_AGGRNAME_P (name)) while (these_tags) { if (TYPE_IDENTIFIER (TREE_VALUE (these_tags)) == name) return TREE_VALUE (tail); these_tags = TREE_CHAIN (these_tags); } else while (these_tags) { if (TREE_PURPOSE (these_tags) == name) { if (TREE_CODE (TREE_VALUE (these_tags)) != form) { cp_error ("`%#D' redeclared as %C in class scope", TREE_VALUE (tail), form); } return TREE_VALUE (tail); } these_tags = TREE_CHAIN (these_tags); } /* If this type is not yet complete, then don't look at its context. */ if (TYPE_SIZE (context) == NULL_TREE) goto no_context; /* Go to next enclosing type, if any. */ context = DECL_CONTEXT (TYPE_NAME (context)); break; case 'd': context = DECL_CONTEXT (context); break; default: my_friendly_abort (10); } continue; no_context: break; } } } return NULL_TREE; } void set_current_level_tags_transparency (tags_transparent) int tags_transparent; { current_binding_level->tag_transparent = tags_transparent; } /* Given a type, find the tag that was defined for it and return the tag name. Otherwise return 0. However, the value can never be 0 in the cases in which this is used. C++: If NAME is non-zero, this is the new name to install. This is done when replacing anonymous tags with real tag names. */ static tree lookup_tag_reverse (type, name) tree type; tree name; { register struct binding_level *level; for (level = current_binding_level; level; level = level->level_chain) { register tree tail; for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { if (TREE_VALUE (tail) == type) { if (name) TREE_PURPOSE (tail) = name; return TREE_PURPOSE (tail); } } } return NULL_TREE; } /* Given type TYPE which was not declared in C++ language context, attempt to find a name by which it is referred. */ tree typedecl_for_tag (tag) tree tag; { struct binding_level *b = current_binding_level; if (TREE_CODE (TYPE_NAME (tag)) == TYPE_DECL) return TYPE_NAME (tag); while (b) { tree decls = b->names; while (decls) { if (TREE_CODE (decls) == TYPE_DECL && TREE_TYPE (decls) == tag) break; decls = TREE_CHAIN (decls); } if (decls) return decls; b = b->level_chain; } return NULL_TREE; } /* Lookup TYPE in CONTEXT (a chain of nested types or a FUNCTION_DECL). Return the type value, or NULL_TREE if not found. */ static tree lookup_nested_type (type, context) tree type; tree context; { if (context == NULL_TREE) return NULL_TREE; while (context) { switch (TREE_CODE (context)) { case TYPE_DECL: { tree ctype = TREE_TYPE (context); tree match = value_member (type, CLASSTYPE_TAGS (ctype)); if (match) return TREE_VALUE (match); context = DECL_CONTEXT (context); /* When we have a nested class whose member functions have local types (e.g., a set of enums), we'll arrive here with the DECL_CONTEXT as the actual RECORD_TYPE node for the enclosing class. Instead, we want to make sure we come back in here with the TYPE_DECL, not the RECORD_TYPE. */ if (context && TREE_CODE (context) == RECORD_TYPE) context = TREE_CHAIN (context); } break; case FUNCTION_DECL: if (TYPE_NAME (type) && TYPE_IDENTIFIER (type)) return lookup_name (TYPE_IDENTIFIER (type), 1); return NULL_TREE; default: my_friendly_abort (12); } } return NULL_TREE; } /* Look up NAME in the NAMESPACE. */ tree lookup_namespace_name (namespace, name) tree namespace, name; { struct binding_level *b = (struct binding_level *)NAMESPACE_LEVEL (namespace); tree x; for (x = NULL_TREE; b && !x; b = b->level_chain) { for (x = b->names; x; x = TREE_CHAIN (x)) if (DECL_NAME (x) == name || DECL_ASSEMBLER_NAME (x) == name) break; /* Must find directly in the namespace. */ break; } return x; } /* Look up NAME in the current binding level and its superiors in the namespace of variables, functions and typedefs. Return a ..._DECL node of some kind representing its definition if there is only one such declaration, or return a TREE_LIST with all the overloaded definitions if there are many, or return 0 if it is undefined. If PREFER_TYPE is > 0, we prefer TYPE_DECLs. If PREFER_TYPE is -2, we're being called from yylex(). (UGLY) Otherwise we prefer non-TYPE_DECLs. */ tree lookup_name_real (name, prefer_type, nonclass) tree name; int prefer_type, nonclass; { register tree val; int yylex = 0; tree from_obj = NULL_TREE; if (prefer_type == -2) { extern int looking_for_typename; tree type; yylex = 1; prefer_type = looking_for_typename; if (got_scope) type = got_scope; else if (got_object != error_mark_node) type = got_object; if (type) { if (type == error_mark_node) return error_mark_node; else if (type == void_type_node) val = IDENTIFIER_GLOBAL_VALUE (name); else if (TREE_CODE (type) == TEMPLATE_TYPE_PARM /* TFIXME -- don't do this for UPTs in new model. */ || TREE_CODE (type) == UNINSTANTIATED_P_TYPE) { if (prefer_type > 0) val = create_nested_upt (type, name); else val = NULL_TREE; } else if (TREE_CODE (type) == NAMESPACE_DECL) { val = lookup_namespace_name (type, name); } else if (! IS_AGGR_TYPE (type)) /* Someone else will give an error about this if needed. */ val = NULL_TREE; else if (TYPE_BEING_DEFINED (type)) { val = IDENTIFIER_CLASS_VALUE (name); if (val && DECL_CONTEXT (val) != type) { struct binding_level *b = class_binding_level; for (val = NULL_TREE; b; b = b->level_chain) { tree t = purpose_member (name, b->class_shadowed); if (t && TREE_VALUE (t) && DECL_CONTEXT (TREE_VALUE (t)) == type) { val = TREE_VALUE (t); break; } } } if (val == NULL_TREE && CLASSTYPE_LOCAL_TYPEDECLS (type)) val = lookup_field (type, name, 0, 1); } else if (type == current_class_type) val = IDENTIFIER_CLASS_VALUE (name); else val = lookup_field (type, name, 0, prefer_type); } else val = NULL_TREE; if (got_scope) goto done; /* This special lookup only applies to types. */ else if (got_object && val && TREE_CODE (val) == TYPE_DECL) from_obj = val; } if (current_binding_level != global_binding_level && IDENTIFIER_LOCAL_VALUE (name)) val = IDENTIFIER_LOCAL_VALUE (name); /* In C++ class fields are between local and global scope, just before the global scope. */ else if (current_class_type && ! nonclass) { val = IDENTIFIER_CLASS_VALUE (name); if (val == NULL_TREE && TYPE_BEING_DEFINED (current_class_type) && CLASSTYPE_LOCAL_TYPEDECLS (current_class_type)) /* Try to find values from base classes if we are presently defining a type. We are presently only interested in TYPE_DECLs. */ val = lookup_field (current_class_type, name, 0, 1); /* yylex() calls this with -2, since we should never start digging for the nested name at the point where we haven't even, for example, created the COMPONENT_REF or anything like that. */ if (val == NULL_TREE) val = lookup_nested_field (name, ! yylex); if (val == NULL_TREE) val = IDENTIFIER_GLOBAL_VALUE (name); } else val = IDENTIFIER_GLOBAL_VALUE (name); done: if (val) { if (from_obj && from_obj != val) cp_error ("lookup in the scope of `%#T' does not match lookup in the current scope", got_object); if ((TREE_CODE (val) == TEMPLATE_DECL && looking_for_template) || TREE_CODE (val) == TYPE_DECL || prefer_type <= 0) ; else if (IDENTIFIER_HAS_TYPE_VALUE (name)) val = TYPE_NAME (IDENTIFIER_TYPE_VALUE (name)); else if (TREE_TYPE (val) == error_mark_node) val = error_mark_node; } else if (from_obj) val = from_obj; return val; } tree lookup_name_nonclass (name) tree name; { return lookup_name_real (name, 0, 1); } tree lookup_name (name, prefer_type) tree name; int prefer_type; { return lookup_name_real (name, prefer_type, 0); } /* Similar to `lookup_name' but look only at current binding level. */ tree lookup_name_current_level (name) tree name; { register tree t = NULL_TREE; if (current_binding_level == global_binding_level) { t = IDENTIFIER_GLOBAL_VALUE (name); /* extern "C" function() */ if (t != NULL_TREE && TREE_CODE (t) == TREE_LIST) t = TREE_VALUE (t); } else if (IDENTIFIER_LOCAL_VALUE (name) != NULL_TREE) { struct binding_level *b = current_binding_level; while (1) { for (t = b->names; t; t = TREE_CHAIN (t)) if (DECL_NAME (t) == name || DECL_ASSEMBLER_NAME (t) == name) goto out; if (b->keep == 2) b = b->level_chain; else break; } out: ; } return t; } /* Arrange for the user to get a source line number, even when the compiler is going down in flames, so that she at least has a chance of working around problems in the compiler. We used to call error(), but that let the segmentation fault continue through; now, it's much more passive by asking them to send the maintainers mail about the problem. */ static void signal_catch (sig) int sig; { signal (SIGSEGV, SIG_DFL); #ifdef SIGIOT signal (SIGIOT, SIG_DFL); #endif #ifdef SIGILL signal (SIGILL, SIG_DFL); #endif #ifdef SIGABRT signal (SIGABRT, SIG_DFL); #endif #ifdef SIGBUS signal (SIGBUS, SIG_DFL); #endif my_friendly_abort (0); } /* Array for holding types considered "built-in". These types are output in the module in which `main' is defined. */ static tree *builtin_type_tdescs_arr; static int builtin_type_tdescs_len, builtin_type_tdescs_max; /* Push the declarations of builtin types into the namespace. RID_INDEX, if < RID_MAX is the index of the builtin type in the array RID_POINTERS. NAME is the name used when looking up the builtin type. TYPE is the _TYPE node for the builtin type. */ static void record_builtin_type (rid_index, name, type) enum rid rid_index; char *name; tree type; { tree rname = NULL_TREE, tname = NULL_TREE; tree tdecl; if ((int) rid_index < (int) RID_MAX) rname = ridpointers[(int) rid_index]; if (name) tname = get_identifier (name); TYPE_BUILT_IN (type) = 1; if (tname) { #if 0 /* not yet, should get fixed properly later */ tdecl = pushdecl (make_type_decl (tname, type)); #else tdecl = pushdecl (build_decl (TYPE_DECL, tname, type)); #endif set_identifier_type_value (tname, NULL_TREE); if ((int) rid_index < (int) RID_MAX) IDENTIFIER_GLOBAL_VALUE (tname) = tdecl; } if (rname != NULL_TREE) { if (tname != NULL_TREE) { set_identifier_type_value (rname, NULL_TREE); IDENTIFIER_GLOBAL_VALUE (rname) = tdecl; } else { #if 0 /* not yet, should get fixed properly later */ tdecl = pushdecl (make_type_decl (rname, type)); #else tdecl = pushdecl (build_decl (TYPE_DECL, rname, type)); #endif set_identifier_type_value (rname, NULL_TREE); } } if (flag_rtti) { if (builtin_type_tdescs_len+5 >= builtin_type_tdescs_max) { builtin_type_tdescs_max *= 2; builtin_type_tdescs_arr = (tree *)xrealloc (builtin_type_tdescs_arr, builtin_type_tdescs_max * sizeof (tree)); } builtin_type_tdescs_arr[builtin_type_tdescs_len++] = type; if (TREE_CODE (type) != POINTER_TYPE) { builtin_type_tdescs_arr[builtin_type_tdescs_len++] = build_pointer_type (type); builtin_type_tdescs_arr[builtin_type_tdescs_len++] = build_pointer_type (build_type_variant (type, 1, 0)); } if (TREE_CODE (type) != VOID_TYPE) { builtin_type_tdescs_arr[builtin_type_tdescs_len++] = build_reference_type (type); builtin_type_tdescs_arr[builtin_type_tdescs_len++] = build_reference_type (build_type_variant (type, 1, 0)); } } } static void output_builtin_tdesc_entries () { extern struct obstack permanent_obstack; /* If there's more than one main in this file, don't crash. */ if (builtin_type_tdescs_arr == 0) return; push_obstacks (&permanent_obstack, &permanent_obstack); while (builtin_type_tdescs_len > 0) { tree type = builtin_type_tdescs_arr[--builtin_type_tdescs_len]; tree tdesc = build_t_desc (type, 0); TREE_ASM_WRITTEN (tdesc) = 0; build_t_desc (type, 2); } free (builtin_type_tdescs_arr); builtin_type_tdescs_arr = 0; pop_obstacks (); } /* Push overloaded decl, in global scope, with one argument so it can be used as a callback from define_function. */ static void push_overloaded_decl_1 (x) tree x; { push_overloaded_decl (x, 0); } #define builtin_function(NAME, TYPE, CODE, LIBNAME) \ define_function (NAME, TYPE, CODE, (void (*)())pushdecl, LIBNAME) #ifdef __GNUC__ __inline #endif tree auto_function (name, type, code) tree name, type; enum built_in_function code; { return define_function (IDENTIFIER_POINTER (name), type, code, (void (*)())push_overloaded_decl_1, IDENTIFIER_POINTER (build_decl_overload (name, TYPE_ARG_TYPES (type), 0))); } /* Create the predefined scalar types of C, and some nodes representing standard constants (0, 1, (void *)0). Initialize the global binding level. Make definitions for built-in primitive functions. */ void init_decl_processing () { tree decl; register tree endlink, int_endlink, double_endlink, ptr_endlink; tree fields[20]; /* Either char* or void*. */ tree traditional_ptr_type_node; /* Data type of memcpy. */ tree memcpy_ftype; #if 0 /* Not yet. */ /* Data type of strncpy. */ tree strncpy_ftype; #endif int wchar_type_size; tree temp; tree array_domain_type; extern int flag_strict_prototype; /* Have to make these distinct before we try using them. */ lang_name_cplusplus = get_identifier ("C++"); lang_name_c = get_identifier ("C"); if (flag_strict_prototype == 2) { if (pedantic) strict_prototypes_lang_c = strict_prototypes_lang_cplusplus; } else strict_prototypes_lang_c = flag_strict_prototype; /* Initially, C. */ current_lang_name = lang_name_c; current_function_decl = NULL_TREE; named_labels = NULL_TREE; named_label_uses = NULL_TREE; current_binding_level = NULL_BINDING_LEVEL; free_binding_level = NULL_BINDING_LEVEL; /* Because most segmentation signals can be traced back into user code, catch them and at least give the user a chance of working around compiler bugs. */ signal (SIGSEGV, signal_catch); /* We will also catch aborts in the back-end through signal_catch and give the user a chance to see where the error might be, and to defeat aborts in the back-end when there have been errors previously in their code. */ #ifdef SIGIOT signal (SIGIOT, signal_catch); #endif #ifdef SIGILL signal (SIGILL, signal_catch); #endif #ifdef SIGABRT signal (SIGABRT, signal_catch); #endif #ifdef SIGBUS signal (SIGBUS, signal_catch); #endif gcc_obstack_init (&decl_obstack); if (flag_rtti) { builtin_type_tdescs_max = 100; builtin_type_tdescs_arr = (tree *)xmalloc (100 * sizeof (tree)); } /* Must lay these out before anything else gets laid out. */ error_mark_node = make_node (ERROR_MARK); TREE_PERMANENT (error_mark_node) = 1; TREE_TYPE (error_mark_node) = error_mark_node; error_mark_list = build_tree_list (error_mark_node, error_mark_node); TREE_TYPE (error_mark_list) = error_mark_node; /* Make the binding_level structure for global names. */ pushlevel (0); global_binding_level = current_binding_level; this_identifier = get_identifier (THIS_NAME); in_charge_identifier = get_identifier (IN_CHARGE_NAME); pfn_identifier = get_identifier (VTABLE_PFN_NAME); index_identifier = get_identifier (VTABLE_INDEX_NAME); delta_identifier = get_identifier (VTABLE_DELTA_NAME); delta2_identifier = get_identifier (VTABLE_DELTA2_NAME); pfn_or_delta2_identifier = get_identifier ("__pfn_or_delta2"); if (flag_handle_signatures) { tag_identifier = get_identifier (SIGTABLE_TAG_NAME); vb_off_identifier = get_identifier (SIGTABLE_VB_OFF_NAME); vt_off_identifier = get_identifier (SIGTABLE_VT_OFF_NAME); } /* Define `int' and `char' first so that dbx will output them first. */ integer_type_node = make_signed_type (INT_TYPE_SIZE); record_builtin_type (RID_INT, NULL_PTR, integer_type_node); /* Define `char', which is like either `signed char' or `unsigned char' but not the same as either. */ char_type_node = (flag_signed_char ? make_signed_type (CHAR_TYPE_SIZE) : make_unsigned_type (CHAR_TYPE_SIZE)); record_builtin_type (RID_CHAR, "char", char_type_node); long_integer_type_node = make_signed_type (LONG_TYPE_SIZE); record_builtin_type (RID_LONG, "long int", long_integer_type_node); unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE); record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node); long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE); record_builtin_type (RID_MAX, "long unsigned int", long_unsigned_type_node); record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node); long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE); record_builtin_type (RID_MAX, "long long int", long_long_integer_type_node); long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE); record_builtin_type (RID_MAX, "long long unsigned int", long_long_unsigned_type_node); record_builtin_type (RID_MAX, "long long unsigned", long_long_unsigned_type_node); /* `unsigned long' is the standard type for sizeof. Traditionally, use a signed type. Note that stddef.h uses `unsigned long', and this must agree, even of long and int are the same size. */ sizetype = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (get_identifier (SIZE_TYPE))); if (flag_traditional && TREE_UNSIGNED (sizetype)) sizetype = signed_type (sizetype); ptrdiff_type_node = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (get_identifier (PTRDIFF_TYPE))); TREE_TYPE (TYPE_SIZE (integer_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (char_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (unsigned_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (long_unsigned_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (long_integer_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (long_long_integer_type_node)) = sizetype; TREE_TYPE (TYPE_SIZE (long_long_unsigned_type_node)) = sizetype; short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE); record_builtin_type (RID_SHORT, "short int", short_integer_type_node); short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE); record_builtin_type (RID_MAX, "short unsigned int", short_unsigned_type_node); record_builtin_type (RID_MAX, "unsigned short", short_unsigned_type_node); /* Define both `signed char' and `unsigned char'. */ signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE); record_builtin_type (RID_MAX, "signed char", signed_char_type_node); unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE); record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node); /* These are types that type_for_size and type_for_mode use. */ intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, intQI_type_node)); intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, intHI_type_node)); intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, intSI_type_node)); intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, intDI_type_node)); unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intQI_type_node)); unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intHI_type_node)); unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intSI_type_node)); unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode)); pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intDI_type_node)); float_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE; record_builtin_type (RID_FLOAT, NULL_PTR, float_type_node); layout_type (float_type_node); double_type_node = make_node (REAL_TYPE); if (flag_short_double) TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE; else TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE; record_builtin_type (RID_DOUBLE, NULL_PTR, double_type_node); layout_type (double_type_node); long_double_type_node = make_node (REAL_TYPE); TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE; record_builtin_type (RID_MAX, "long double", long_double_type_node); layout_type (long_double_type_node); integer_zero_node = build_int_2 (0, 0); TREE_TYPE (integer_zero_node) = integer_type_node; integer_one_node = build_int_2 (1, 0); TREE_TYPE (integer_one_node) = integer_type_node; integer_two_node = build_int_2 (2, 0); TREE_TYPE (integer_two_node) = integer_type_node; integer_three_node = build_int_2 (3, 0); TREE_TYPE (integer_three_node) = integer_type_node; boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE); TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE); record_builtin_type (RID_BOOL, "bool", boolean_type_node); boolean_false_node = build_int_2 (0, 0); TREE_TYPE (boolean_false_node) = boolean_type_node; boolean_true_node = build_int_2 (1, 0); TREE_TYPE (boolean_true_node) = boolean_type_node; /* These are needed by stor-layout.c. */ size_zero_node = size_int (0); size_one_node = size_int (1); void_type_node = make_node (VOID_TYPE); record_builtin_type (RID_VOID, NULL_PTR, void_type_node); layout_type (void_type_node); /* Uses integer_zero_node. */ void_list_node = build_tree_list (NULL_TREE, void_type_node); TREE_PARMLIST (void_list_node) = 1; null_pointer_node = build_int_2 (0, 0); TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node); layout_type (TREE_TYPE (null_pointer_node)); /* Used for expressions that do nothing, but are not errors. */ void_zero_node = build_int_2 (0, 0); TREE_TYPE (void_zero_node) = void_type_node; string_type_node = build_pointer_type (char_type_node); const_string_type_node = build_pointer_type (build_type_variant (char_type_node, 1, 0)); record_builtin_type (RID_MAX, NULL_PTR, string_type_node); /* Make a type to be the domain of a few array types whose domains don't really matter. 200 is small enough that it always fits in size_t and large enough that it can hold most function names for the initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */ array_domain_type = build_index_type (build_int_2 (200, 0)); /* make a type for arrays of characters. With luck nothing will ever really depend on the length of this array type. */ char_array_type_node = build_array_type (char_type_node, array_domain_type); /* Likewise for arrays of ints. */ int_array_type_node = build_array_type (integer_type_node, array_domain_type); /* This is just some anonymous class type. Nobody should ever need to look inside this envelope. */ class_star_type_node = build_pointer_type (make_lang_type (RECORD_TYPE)); default_function_type = build_function_type (integer_type_node, NULL_TREE); build_pointer_type (default_function_type); ptr_type_node = build_pointer_type (void_type_node); const_ptr_type_node = build_pointer_type (build_type_variant (void_type_node, 1, 0)); record_builtin_type (RID_MAX, NULL_PTR, ptr_type_node); endlink = void_list_node; int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink); double_endlink = tree_cons (NULL_TREE, double_type_node, endlink); ptr_endlink = tree_cons (NULL_TREE, ptr_type_node, endlink); double_ftype_double = build_function_type (double_type_node, double_endlink); double_ftype_double_double = build_function_type (double_type_node, tree_cons (NULL_TREE, double_type_node, double_endlink)); int_ftype_int = build_function_type (integer_type_node, int_endlink); long_ftype_long = build_function_type (long_integer_type_node, tree_cons (NULL_TREE, long_integer_type_node, endlink)); void_ftype_ptr_ptr_int = build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, ptr_type_node, int_endlink))); int_ftype_cptr_cptr_sizet = build_function_type (integer_type_node, tree_cons (NULL_TREE, const_ptr_type_node, tree_cons (NULL_TREE, const_ptr_type_node, tree_cons (NULL_TREE, sizetype, endlink)))); void_ftype_ptr_int_int = build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, integer_type_node, int_endlink))); string_ftype_ptr_ptr /* strcpy prototype */ = build_function_type (string_type_node, tree_cons (NULL_TREE, string_type_node, tree_cons (NULL_TREE, const_string_type_node, endlink))); #if 0 /* Not yet. */ strncpy_ftype /* strncpy prototype */ = build_function_type (string_type_node, tree_cons (NULL_TREE, string_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, sizetype, endlink)))); #endif int_ftype_string_string /* strcmp prototype */ = build_function_type (integer_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, const_string_type_node, endlink))); sizet_ftype_string /* strlen prototype */ = build_function_type (sizetype, tree_cons (NULL_TREE, const_string_type_node, endlink)); traditional_ptr_type_node = (flag_traditional ? string_type_node : ptr_type_node); memcpy_ftype /* memcpy prototype */ = build_function_type (traditional_ptr_type_node, tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_ptr_type_node, tree_cons (NULL_TREE, sizetype, endlink)))); if (flag_huge_objects) delta_type_node = long_integer_type_node; else delta_type_node = short_integer_type_node; builtin_function ("__builtin_constant_p", int_ftype_int, BUILT_IN_CONSTANT_P, NULL_PTR); builtin_return_address_fndecl = builtin_function ("__builtin_return_address", build_function_type (ptr_type_node, tree_cons (NULL_TREE, unsigned_type_node, endlink)), BUILT_IN_RETURN_ADDRESS, NULL_PTR); builtin_function ("__builtin_frame_address", build_function_type (ptr_type_node, tree_cons (NULL_TREE, unsigned_type_node, endlink)), BUILT_IN_FRAME_ADDRESS, NULL_PTR); builtin_function ("__builtin_alloca", build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, endlink)), BUILT_IN_ALLOCA, "alloca"); /* Define alloca, ffs as builtins. Declare _exit just to mark it as volatile. */ if (! flag_no_builtin && !flag_no_nonansi_builtin) { temp = builtin_function ("alloca", build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, endlink)), BUILT_IN_ALLOCA, NULL_PTR); /* Suppress error if redefined as a non-function. */ DECL_BUILT_IN_NONANSI (temp) = 1; temp = builtin_function ("ffs", int_ftype_int, BUILT_IN_FFS, NULL_PTR); /* Suppress error if redefined as a non-function. */ DECL_BUILT_IN_NONANSI (temp) = 1; temp = builtin_function ("_exit", build_function_type (void_type_node, int_endlink), NOT_BUILT_IN, NULL_PTR); TREE_THIS_VOLATILE (temp) = 1; TREE_SIDE_EFFECTS (temp) = 1; /* Suppress error if redefined as a non-function. */ DECL_BUILT_IN_NONANSI (temp) = 1; } builtin_function ("__builtin_abs", int_ftype_int, BUILT_IN_ABS, NULL_PTR); builtin_function ("__builtin_fabs", double_ftype_double, BUILT_IN_FABS, NULL_PTR); builtin_function ("__builtin_labs", long_ftype_long, BUILT_IN_LABS, NULL_PTR); builtin_function ("__builtin_ffs", int_ftype_int, BUILT_IN_FFS, NULL_PTR); builtin_function ("__builtin_fsqrt", double_ftype_double, BUILT_IN_FSQRT, NULL_PTR); builtin_function ("__builtin_sin", double_ftype_double, BUILT_IN_SIN, "sin"); builtin_function ("__builtin_cos", double_ftype_double, BUILT_IN_COS, "cos"); builtin_function ("__builtin_saveregs", build_function_type (ptr_type_node, NULL_TREE), BUILT_IN_SAVEREGS, NULL_PTR); /* EXPAND_BUILTIN_VARARGS is obsolete. */ #if 0 builtin_function ("__builtin_varargs", build_function_type (ptr_type_node, tree_cons (NULL_TREE, integer_type_node, endlink)), BUILT_IN_VARARGS, NULL_PTR); #endif builtin_function ("__builtin_classify_type", default_function_type, BUILT_IN_CLASSIFY_TYPE, NULL_PTR); builtin_function ("__builtin_next_arg", build_function_type (ptr_type_node, NULL_TREE), BUILT_IN_NEXT_ARG, NULL_PTR); builtin_function ("__builtin_args_info", build_function_type (integer_type_node, tree_cons (NULL_TREE, integer_type_node, endlink)), BUILT_IN_ARGS_INFO, NULL_PTR); /* Untyped call and return. */ builtin_function ("__builtin_apply_args", build_function_type (ptr_type_node, NULL_TREE), BUILT_IN_APPLY_ARGS, NULL_PTR); temp = tree_cons (NULL_TREE, build_pointer_type (build_function_type (void_type_node, NULL_TREE)), tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, sizetype, endlink))); builtin_function ("__builtin_apply", build_function_type (ptr_type_node, temp), BUILT_IN_APPLY, NULL_PTR); builtin_function ("__builtin_return", build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, endlink)), BUILT_IN_RETURN, NULL_PTR); /* Currently under experimentation. */ builtin_function ("__builtin_memcpy", memcpy_ftype, BUILT_IN_MEMCPY, "memcpy"); builtin_function ("__builtin_memcmp", int_ftype_cptr_cptr_sizet, BUILT_IN_MEMCMP, "memcmp"); builtin_function ("__builtin_strcmp", int_ftype_string_string, BUILT_IN_STRCMP, "strcmp"); builtin_function ("__builtin_strcpy", string_ftype_ptr_ptr, BUILT_IN_STRCPY, "strcpy"); #if 0 /* Not yet. */ builtin_function ("__builtin_strncpy", strncpy_ftype, BUILT_IN_STRNCPY, "strncpy"); #endif builtin_function ("__builtin_strlen", sizet_ftype_string, BUILT_IN_STRLEN, "strlen"); if (!flag_no_builtin) { #if 0 /* These do not work well with libg++. */ builtin_function ("abs", int_ftype_int, BUILT_IN_ABS, NULL_PTR); builtin_function ("fabs", double_ftype_double, BUILT_IN_FABS, NULL_PTR); builtin_function ("labs", long_ftype_long, BUILT_IN_LABS, NULL_PTR); #endif builtin_function ("memcpy", memcpy_ftype, BUILT_IN_MEMCPY, NULL_PTR); builtin_function ("memcmp", int_ftype_cptr_cptr_sizet, BUILT_IN_MEMCMP, NULL_PTR); builtin_function ("strcmp", int_ftype_string_string, BUILT_IN_STRCMP, NULL_PTR); builtin_function ("strcpy", string_ftype_ptr_ptr, BUILT_IN_STRCPY, NULL_PTR); #if 0 /* Not yet. */ builtin_function ("strncpy", strncpy_ftype, BUILT_IN_STRNCPY, NULL_PTR); #endif builtin_function ("strlen", sizet_ftype_string, BUILT_IN_STRLEN, NULL_PTR); builtin_function ("sin", double_ftype_double, BUILT_IN_SIN, NULL_PTR); builtin_function ("cos", double_ftype_double, BUILT_IN_COS, NULL_PTR); /* Declare these functions volatile to avoid spurious "control drops through" warnings. */ temp = builtin_function ("abort", build_function_type (void_type_node, endlink), NOT_BUILT_IN, NULL_PTR); TREE_THIS_VOLATILE (temp) = 1; TREE_SIDE_EFFECTS (temp) = 1; /* Well, these are actually ANSI, but we can't set DECL_BUILT_IN on them... */ DECL_BUILT_IN_NONANSI (temp) = 1; temp = builtin_function ("exit", build_function_type (void_type_node, int_endlink), NOT_BUILT_IN, NULL_PTR); TREE_THIS_VOLATILE (temp) = 1; TREE_SIDE_EFFECTS (temp) = 1; DECL_BUILT_IN_NONANSI (temp) = 1; } #if 0 /* Support for these has not been written in either expand_builtin or build_function_call. */ builtin_function ("__builtin_div", default_ftype, BUILT_IN_DIV, 0); builtin_function ("__builtin_ldiv", default_ftype, BUILT_IN_LDIV, 0); builtin_function ("__builtin_ffloor", double_ftype_double, BUILT_IN_FFLOOR, 0); builtin_function ("__builtin_fceil", double_ftype_double, BUILT_IN_FCEIL, 0); builtin_function ("__builtin_fmod", double_ftype_double_double, BUILT_IN_FMOD, 0); builtin_function ("__builtin_frem", double_ftype_double_double, BUILT_IN_FREM, 0); builtin_function ("__builtin_memset", ptr_ftype_ptr_int_int, BUILT_IN_MEMSET, 0); builtin_function ("__builtin_getexp", double_ftype_double, BUILT_IN_GETEXP, 0); builtin_function ("__builtin_getman", double_ftype_double, BUILT_IN_GETMAN, 0); #endif /* C++ extensions */ unknown_type_node = make_node (UNKNOWN_TYPE); #if 0 /* not yet, should get fixed properly later */ pushdecl (make_type_decl (get_identifier ("unknown type"), unknown_type_node)); #else decl = pushdecl (build_decl (TYPE_DECL, get_identifier ("unknown type"), unknown_type_node)); /* Make sure the "unknown type" typedecl gets ignored for debug info. */ DECL_IGNORED_P (decl) = 1; TYPE_DECL_SUPPRESS_DEBUG (decl) = 1; #endif TYPE_SIZE (unknown_type_node) = TYPE_SIZE (void_type_node); TYPE_ALIGN (unknown_type_node) = 1; TYPE_MODE (unknown_type_node) = TYPE_MODE (void_type_node); /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node. */ TREE_TYPE (unknown_type_node) = unknown_type_node; /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same result. */ TYPE_POINTER_TO (unknown_type_node) = unknown_type_node; TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node; /* This is for handling opaque types in signatures. */ opaque_type_node = copy_node (ptr_type_node); TYPE_MAIN_VARIANT (opaque_type_node) = opaque_type_node; record_builtin_type (RID_MAX, 0, opaque_type_node); /* This is special for C++ so functions can be overloaded. */ wchar_type_node = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (get_identifier (WCHAR_TYPE))); wchar_type_size = TYPE_PRECISION (wchar_type_node); signed_wchar_type_node = make_signed_type (wchar_type_size); unsigned_wchar_type_node = make_unsigned_type (wchar_type_size); wchar_type_node = TREE_UNSIGNED (wchar_type_node) ? unsigned_wchar_type_node : signed_wchar_type_node; record_builtin_type (RID_WCHAR, "__wchar_t", wchar_type_node); /* Artificial declaration of wchar_t -- can be bashed */ wchar_decl_node = build_decl (TYPE_DECL, get_identifier ("wchar_t"), wchar_type_node); pushdecl (wchar_decl_node); /* This is for wide string constants. */ wchar_array_type_node = build_array_type (wchar_type_node, array_domain_type); /* This is a hack that should go away when we deliver the real gc code. */ if (flag_gc) { builtin_function ("__gc_main", default_function_type, NOT_BUILT_IN, 0); pushdecl (lookup_name (get_identifier ("__gc_main"), 0)); } if (flag_vtable_thunks) { /* Make sure we get a unique function type, so we can give its pointer type a name. (This wins for gdb.) */ tree vfunc_type = make_node (FUNCTION_TYPE); TREE_TYPE (vfunc_type) = integer_type_node; TYPE_ARG_TYPES (vfunc_type) = NULL_TREE; layout_type (vfunc_type); vtable_entry_type = build_pointer_type (vfunc_type); } else { vtable_entry_type = make_lang_type (RECORD_TYPE); fields[0] = build_lang_field_decl (FIELD_DECL, delta_identifier, delta_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, index_identifier, delta_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, pfn_identifier, ptr_type_node); finish_builtin_type (vtable_entry_type, VTBL_PTR_TYPE, fields, 2, double_type_node); /* Make this part of an invisible union. */ fields[3] = copy_node (fields[2]); TREE_TYPE (fields[3]) = delta_type_node; DECL_NAME (fields[3]) = delta2_identifier; DECL_MODE (fields[3]) = TYPE_MODE (delta_type_node); DECL_SIZE (fields[3]) = TYPE_SIZE (delta_type_node); TREE_UNSIGNED (fields[3]) = 0; TREE_CHAIN (fields[2]) = fields[3]; vtable_entry_type = build_type_variant (vtable_entry_type, 1, 0); } record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type); vtbl_type_node = build_array_type (vtable_entry_type, NULL_TREE); layout_type (vtbl_type_node); vtbl_type_node = cp_build_type_variant (vtbl_type_node, 1, 0); record_builtin_type (RID_MAX, NULL_PTR, vtbl_type_node); /* Simplify life by making a "sigtable_entry_type". Give its fields names so that the debugger can use them. */ if (flag_handle_signatures) { sigtable_entry_type = make_lang_type (RECORD_TYPE); fields[0] = build_lang_field_decl (FIELD_DECL, tag_identifier, delta_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, vb_off_identifier, delta_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, delta_identifier, delta_type_node); fields[3] = build_lang_field_decl (FIELD_DECL, index_identifier, delta_type_node); fields[4] = build_lang_field_decl (FIELD_DECL, pfn_identifier, ptr_type_node); /* Set the alignment to the max of the alignment of ptr_type_node and delta_type_node. Double alignment wastes a word on the Sparc. */ finish_builtin_type (sigtable_entry_type, SIGTABLE_PTR_TYPE, fields, 4, (TYPE_ALIGN (ptr_type_node) > TYPE_ALIGN (delta_type_node)) ? ptr_type_node : delta_type_node); /* Make this part of an invisible union. */ fields[5] = copy_node (fields[4]); TREE_TYPE (fields[5]) = delta_type_node; DECL_NAME (fields[5]) = vt_off_identifier; DECL_MODE (fields[5]) = TYPE_MODE (delta_type_node); DECL_SIZE (fields[5]) = TYPE_SIZE (delta_type_node); TREE_UNSIGNED (fields[5]) = 0; TREE_CHAIN (fields[4]) = fields[5]; sigtable_entry_type = build_type_variant (sigtable_entry_type, 1, 0); record_builtin_type (RID_MAX, SIGTABLE_PTR_TYPE, sigtable_entry_type); } #if 0 if (flag_rtti) { /* Must build __t_desc type. Currently, type descriptors look like this: struct __t_desc { const char *name; int size; int bits; struct __t_desc *points_to; int ivars_count, meths_count; struct __i_desc *ivars[]; struct __m_desc *meths[]; struct __t_desc *parents[]; struct __t_desc *vbases[]; int offsets[]; }; ...as per Linton's paper. */ __t_desc_type_node = make_lang_type (RECORD_TYPE); __i_desc_type_node = make_lang_type (RECORD_TYPE); __m_desc_type_node = make_lang_type (RECORD_TYPE); __t_desc_array_type = build_array_type (build_pointer_type (__t_desc_type_node), NULL_TREE); __i_desc_array_type = build_array_type (build_pointer_type (__i_desc_type_node), NULL_TREE); __m_desc_array_type = build_array_type (build_pointer_type (__m_desc_type_node), NULL_TREE); fields[0] = build_lang_field_decl (FIELD_DECL, get_identifier ("name"), string_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, get_identifier ("size"), unsigned_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, get_identifier ("bits"), unsigned_type_node); fields[3] = build_lang_field_decl (FIELD_DECL, get_identifier ("points_to"), build_pointer_type (__t_desc_type_node)); fields[4] = build_lang_field_decl (FIELD_DECL, get_identifier ("ivars_count"), integer_type_node); fields[5] = build_lang_field_decl (FIELD_DECL, get_identifier ("meths_count"), integer_type_node); fields[6] = build_lang_field_decl (FIELD_DECL, get_identifier ("ivars"), build_pointer_type (__i_desc_array_type)); fields[7] = build_lang_field_decl (FIELD_DECL, get_identifier ("meths"), build_pointer_type (__m_desc_array_type)); fields[8] = build_lang_field_decl (FIELD_DECL, get_identifier ("parents"), build_pointer_type (__t_desc_array_type)); fields[9] = build_lang_field_decl (FIELD_DECL, get_identifier ("vbases"), build_pointer_type (__t_desc_array_type)); fields[10] = build_lang_field_decl (FIELD_DECL, get_identifier ("offsets"), build_pointer_type (integer_type_node)); finish_builtin_type (__t_desc_type_node, "__t_desc", fields, 10, integer_type_node); /* ivar descriptors look like this: struct __i_desc { const char *name; int offset; struct __t_desc *type; }; */ fields[0] = build_lang_field_decl (FIELD_DECL, get_identifier ("name"), string_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, get_identifier ("offset"), integer_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, get_identifier ("type"), build_pointer_type (__t_desc_type_node)); finish_builtin_type (__i_desc_type_node, "__i_desc", fields, 2, integer_type_node); /* method descriptors look like this: struct __m_desc { const char *name; int vindex; struct __t_desc *vcontext; struct __t_desc *return_type; void (*address)(); short parm_count; short required_parms; struct __t_desc *parm_types[]; }; */ fields[0] = build_lang_field_decl (FIELD_DECL, get_identifier ("name"), string_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, get_identifier ("vindex"), integer_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, get_identifier ("vcontext"), build_pointer_type (__t_desc_type_node)); fields[3] = build_lang_field_decl (FIELD_DECL, get_identifier ("return_type"), build_pointer_type (__t_desc_type_node)); fields[4] = build_lang_field_decl (FIELD_DECL, get_identifier ("address"), build_pointer_type (default_function_type)); fields[5] = build_lang_field_decl (FIELD_DECL, get_identifier ("parm_count"), short_integer_type_node); fields[6] = build_lang_field_decl (FIELD_DECL, get_identifier ("required_parms"), short_integer_type_node); fields[7] = build_lang_field_decl (FIELD_DECL, get_identifier ("parm_types"), build_pointer_type (build_array_type (build_pointer_type (__t_desc_type_node), NULL_TREE))); finish_builtin_type (__m_desc_type_node, "__m_desc", fields, 7, integer_type_node); } if (flag_rtti) { int i = builtin_type_tdescs_len; while (i > 0) { tree tdesc = build_t_desc (builtin_type_tdescs_arr[--i], 0); TREE_ASM_WRITTEN (tdesc) = 1; TREE_PUBLIC (TREE_OPERAND (tdesc, 0)) = 1; } } #endif /*flag_rtti*/ /* Now, C++. */ current_lang_name = lang_name_cplusplus; auto_function (ansi_opname[(int) NEW_EXPR], build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, void_list_node)), NOT_BUILT_IN); auto_function (ansi_opname[(int) VEC_NEW_EXPR], build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, void_list_node)), NOT_BUILT_IN); auto_function (ansi_opname[(int) DELETE_EXPR], build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, void_list_node)), NOT_BUILT_IN); auto_function (ansi_opname[(int) VEC_DELETE_EXPR], build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, void_list_node)), NOT_BUILT_IN); abort_fndecl = define_function ("__pure_virtual", build_function_type (void_type_node, void_list_node), NOT_BUILT_IN, 0, 0); /* Perform other language dependent initializations. */ init_class_processing (); init_init_processing (); init_search_processing (); if (flag_handle_exceptions) init_exception_processing (); if (flag_gc) init_gc_processing (); if (flag_no_inline) { flag_inline_functions = 0; #if 0 /* This causes unnecessary emission of inline functions. */ flag_default_inline = 0; #endif } if (flag_cadillac) init_cadillac (); /* Create the global bindings for __FUNCTION__ and __PRETTY_FUNCTION__. */ declare_function_name (); /* Prepare to check format strings against argument lists. */ init_function_format_info (); } /* initialize type descriptor type node of various rtti type. */ int init_type_desc() { tree tdecl; tdecl = lookup_name (get_identifier ("type_info"), 0); if (tdecl == NULL_TREE) return 0; __t_desc_type_node = TREE_TYPE(tdecl); __tp_desc_type_node = build_pointer_type (__t_desc_type_node); #if 0 tdecl = lookup_name (get_identifier ("__baselist_type_info"), 0); if (tdecl == NULL_TREE) return 0; __baselist_desc_type_node = TREE_TYPE (tdecl); #endif tdecl = lookup_name (get_identifier ("__builtin_type_info"), 0); if (tdecl == NULL_TREE) return 0; __bltn_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__user_type_info"), 0); if (tdecl == NULL_TREE) return 0; __user_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__class_type_info"), 0); if (tdecl == NULL_TREE) return 0; __class_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_field (__class_desc_type_node, get_identifier ("access_mode"), 0, 0); if (tdecl == NULL_TREE) return 0; __access_mode_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__attr_type_info"), 0); if (tdecl == NULL_TREE) return 0; __attr_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__pointer_type_info"), 0); if (tdecl == NULL_TREE) return 0; __ptr_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__func_type_info"), 0); if (tdecl == NULL_TREE) return 0; __func_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__ptmf_type_info"), 0); if (tdecl == NULL_TREE) return 0; __ptmf_desc_type_node = TREE_TYPE (tdecl); tdecl = lookup_name (get_identifier ("__ptmd_type_info"), 0); if (tdecl == NULL_TREE) return 0; __ptmd_desc_type_node = TREE_TYPE (tdecl); return 1; } /* Make a definition for a builtin function named NAME and whose data type is TYPE. TYPE should be a function type with argument types. FUNCTION_CODE tells later passes how to compile calls to this function. See tree.h for its possible values. If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME, the name to be called if we can't opencode the function. */ tree define_function (name, type, function_code, pfn, library_name) char *name; tree type; enum built_in_function function_code; void (*pfn)(); char *library_name; { tree decl = build_lang_decl (FUNCTION_DECL, get_identifier (name), type); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_ARTIFICIAL (decl) = 1; /* Since `pushdecl' relies on DECL_ASSEMBLER_NAME instead of DECL_NAME, we cannot change DECL_ASSEMBLER_NAME until we have installed this function in the namespace. */ if (pfn) (*pfn) (decl); if (library_name) DECL_ASSEMBLER_NAME (decl) = get_identifier (library_name); make_function_rtl (decl); if (function_code != NOT_BUILT_IN) { DECL_BUILT_IN (decl) = 1; DECL_FUNCTION_CODE (decl) = function_code; } return decl; } /* Called when a declaration is seen that contains no names to declare. If its type is a reference to a structure, union or enum inherited from a containing scope, shadow that tag name for the current scope with a forward reference. If its type defines a new named structure or union or defines an enum, it is valid but we need not do anything here. Otherwise, it is an error. C++: may have to grok the declspecs to learn about static, complain for anonymous unions. */ void shadow_tag (declspecs) tree declspecs; { int found_tag = 0; tree ob_modifier = NULL_TREE; register tree link; register enum tree_code code, ok_code = ERROR_MARK; register tree t = NULL_TREE; for (link = declspecs; link; link = TREE_CHAIN (link)) { register tree value = TREE_VALUE (link); code = TREE_CODE (value); if (IS_AGGR_TYPE_CODE (code) || code == ENUMERAL_TYPE) { my_friendly_assert (TYPE_NAME (value) != NULL_TREE, 261); if (code == ENUMERAL_TYPE && TYPE_SIZE (value) == 0) cp_error ("forward declaration of `%#T'", value); t = value; ok_code = code; found_tag++; } else if (value == ridpointers[(int) RID_STATIC] || value == ridpointers[(int) RID_EXTERN] || value == ridpointers[(int) RID_AUTO] || value == ridpointers[(int) RID_REGISTER] || value == ridpointers[(int) RID_INLINE] || value == ridpointers[(int) RID_VIRTUAL] || value == ridpointers[(int) RID_EXPLICIT]) ob_modifier = value; } /* This is where the variables in an anonymous union are declared. An anonymous union declaration looks like: union { ... } ; because there is no declarator after the union, the parser sends that declaration here. */ if (ok_code == UNION_TYPE && t != NULL_TREE && ((TREE_CODE (TYPE_NAME (t)) == IDENTIFIER_NODE && ANON_AGGRNAME_P (TYPE_NAME (t))) || (TREE_CODE (TYPE_NAME (t)) == TYPE_DECL && ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))))) { /* ANSI C++ June 5 1992 WP 9.5.3. Anonymous unions may not have function members. */ if (TYPE_FIELDS (t)) { tree decl = grokdeclarator (NULL_TREE, declspecs, NORMAL, 0, NULL_TREE, NULL_TREE); finish_anon_union (decl); } else error ("anonymous union cannot have a function member"); } else { /* Anonymous unions are objects, that's why we only check for inappropriate specifiers in this branch. */ if (ob_modifier) { if (ob_modifier == ridpointers[(int) RID_INLINE] || ob_modifier == ridpointers[(int) RID_VIRTUAL]) cp_error ("`%D' can only be specified for functions", ob_modifier); else if (ob_modifier == ridpointers[(int) RID_EXPLICIT]) cp_error ("`%D' can only be specified for constructors", ob_modifier); else cp_error ("`%D' can only be specified for objects and functions", ob_modifier); } if (found_tag == 0) pedwarn ("abstract declarator used as declaration"); else if (found_tag > 1) pedwarn ("multiple types in one declaration"); } } /* Decode a "typename", such as "int **", returning a ..._TYPE node. */ tree groktypename (typename) tree typename; { if (TREE_CODE (typename) != TREE_LIST) return typename; return grokdeclarator (TREE_VALUE (typename), TREE_PURPOSE (typename), TYPENAME, 0, NULL_TREE, NULL_TREE); } /* Decode a declarator in an ordinary declaration or data definition. This is called as soon as the type information and variable name have been parsed, before parsing the initializer if any. Here we create the ..._DECL node, fill in its type, and put it on the list of decls for the current context. The ..._DECL node is returned as the value. Exception: for arrays where the length is not specified, the type is left null, to be filled in by `cp_finish_decl'. Function definitions do not come here; they go to start_function instead. However, external and forward declarations of functions do go through here. Structure field declarations are done by grokfield and not through here. */ /* Set this to zero to debug not using the temporary obstack to parse initializers. */ int debug_temp_inits = 1; tree start_decl (declarator, declspecs, initialized, raises) tree declarator, declspecs; int initialized; tree raises; { register tree decl; register tree type, tem; tree context; extern int have_extern_spec; extern int used_extern_spec; int init_written = initialized; /* This should only be done once on the top most decl. */ if (have_extern_spec && !used_extern_spec) { declspecs = decl_tree_cons (NULL_TREE, get_identifier ("extern"), declspecs); used_extern_spec = 1; } decl = grokdeclarator (declarator, declspecs, NORMAL, initialized, raises, NULL_TREE); if (decl == NULL_TREE || decl == void_type_node) return NULL_TREE; type = TREE_TYPE (decl); /* Don't lose if destructors must be executed at file-level. */ if (TREE_STATIC (decl) && TYPE_NEEDS_DESTRUCTOR (type) && !TREE_PERMANENT (decl)) { push_obstacks (&permanent_obstack, &permanent_obstack); decl = copy_node (decl); if (TREE_CODE (type) == ARRAY_TYPE) { tree itype = TYPE_DOMAIN (type); if (itype && ! TREE_PERMANENT (itype)) { itype = build_index_type (copy_to_permanent (TYPE_MAX_VALUE (itype))); type = build_cplus_array_type (TREE_TYPE (type), itype); TREE_TYPE (decl) = type; } } pop_obstacks (); } /* Corresponding pop_obstacks is done in `cp_finish_decl'. */ push_obstacks_nochange (); context = (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) ? DECL_CLASS_CONTEXT (decl) : DECL_CONTEXT (decl); if (processing_template_decl) { tree d; if (TREE_CODE (decl) == FUNCTION_DECL) { /* Declarator is a call_expr; extract arguments from it, since grokdeclarator didn't do it. */ tree args; args = copy_to_permanent (last_function_parms); if (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) { tree t = TREE_TYPE (decl); t = TYPE_METHOD_BASETYPE (t); /* type method belongs to */ if (TREE_CODE (t) != UNINSTANTIATED_P_TYPE) { t = build_pointer_type (t); /* base type of `this' */ #if 1 /* I suspect this is wrong. */ t = build_type_variant (t, flag_this_is_variable <= 0, 0); /* type of `this' */ #else t = build_type_variant (t, 0, 0); /* type of `this' */ #endif t = build (PARM_DECL, t, this_identifier); TREE_CHAIN (t) = args; args = t; } } DECL_ARGUMENTS (decl) = args; } d = build_lang_decl (TEMPLATE_DECL, DECL_NAME (decl), TREE_TYPE (decl)); TREE_PUBLIC (d) = TREE_PUBLIC (decl); TREE_STATIC (d) = TREE_STATIC (decl); DECL_EXTERNAL (d) = (DECL_EXTERNAL (decl) && !(context && !DECL_THIS_EXTERN (decl))); DECL_TEMPLATE_RESULT (d) = decl; decl = d; } /* If this type of object needs a cleanup, and control may jump past it, make a new binding level so that it is cleaned up only when it is initialized first. */ if (TYPE_NEEDS_DESTRUCTOR (type) && current_binding_level->more_cleanups_ok == 0) pushlevel_temporary (1); if (initialized) /* Is it valid for this decl to have an initializer at all? If not, set INITIALIZED to zero, which will indirectly tell `cp_finish_decl' to ignore the initializer once it is parsed. */ switch (TREE_CODE (decl)) { case TYPE_DECL: /* typedef foo = bar means give foo the same type as bar. We haven't parsed bar yet, so `cp_finish_decl' will fix that up. Any other case of an initialization in a TYPE_DECL is an error. */ if (pedantic || list_length (declspecs) > 1) { cp_error ("typedef `%D' is initialized", decl); initialized = 0; } break; case FUNCTION_DECL: cp_error ("function `%#D' is initialized like a variable", decl); initialized = 0; break; default: /* Don't allow initializations for incomplete types except for arrays which might be completed by the initialization. */ if (type == error_mark_node) ; /* Don't complain again. */ else if (TYPE_SIZE (type) != NULL_TREE) ; /* A complete type is ok. */ else if (TREE_CODE (type) != ARRAY_TYPE) { cp_error ("variable `%#D' has initializer but incomplete type", decl); initialized = 0; } else if (TYPE_SIZE (TREE_TYPE (type)) == NULL_TREE) { cp_error ("elements of array `%#D' have incomplete type", decl); initialized = 0; } } if (!initialized && TREE_CODE (decl) != TYPE_DECL && TREE_CODE (decl) != TEMPLATE_DECL && IS_AGGR_TYPE (type) && ! DECL_EXTERNAL (decl)) { if (TYPE_SIZE (type) == NULL_TREE) { cp_error ("aggregate `%#D' has incomplete type and cannot be initialized", decl); /* Change the type so that assemble_variable will give DECL an rtl we can live with: (mem (const_int 0)). */ TREE_TYPE (decl) = error_mark_node; type = error_mark_node; } else { /* If any base type in the hierarchy of TYPE needs a constructor, then we set initialized to 1. This way any nodes which are created for the purposes of initializing this aggregate will live as long as it does. This is necessary for global aggregates which do not have their initializers processed until the end of the file. */ initialized = TYPE_NEEDS_CONSTRUCTING (type); } } if (initialized) { if (! toplevel_bindings_p () && DECL_EXTERNAL (decl)) cp_warning ("declaration of `%#D' has `extern' and is initialized", decl); DECL_EXTERNAL (decl) = 0; if ( toplevel_bindings_p ()) TREE_STATIC (decl) = 1; /* Tell `pushdecl' this is an initialized decl even though we don't yet have the initializer expression. Also tell `cp_finish_decl' it may store the real initializer. */ DECL_INITIAL (decl) = error_mark_node; } if (context && TYPE_SIZE (context) != NULL_TREE) { if (TREE_CODE (decl) == VAR_DECL) { tree field = lookup_field (context, DECL_NAME (decl), 0, 0); if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL) cp_error ("`%#D' is not a static member of `%#T'", decl, context); else if (duplicate_decls (decl, field)) decl = field; } else { tree field = check_classfn (context, NULL_TREE, decl); if (field && duplicate_decls (decl, field)) decl = field; } /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set. */ if (DECL_LANG_SPECIFIC (decl)) DECL_IN_AGGR_P (decl) = 0; if (DECL_USE_TEMPLATE (decl) || CLASSTYPE_USE_TEMPLATE (context)) SET_DECL_TEMPLATE_SPECIALIZATION (decl); /* Stupid stupid stupid stupid (jason 7/21/95) */ if (pedantic && DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl)) cp_pedwarn ("declaration of `%#D' outside of class is not definition", decl); pushclass (context, 2); } /* Add this decl to the current binding level, but not if it comes from another scope, e.g. a static member variable. TEM may equal DECL or it may be a previous decl of the same name. */ if ((TREE_CODE (decl) != PARM_DECL && DECL_CONTEXT (decl) != NULL_TREE) || (TREE_CODE (decl) == TEMPLATE_DECL && !global_bindings_p ()) || TREE_CODE (type) == LANG_TYPE) tem = decl; else tem = pushdecl (decl); /* Tell the back-end to use or not use .common as appropriate. If we say -fconserve-space, we want this to save space, at the expense of wrong semantics. If we say -fno-conserve-space, we want this to produce errors about redefs; to do this we force variables into the data segment. Common storage is okay for non-public uninitialized data; the linker can't match it with storage from other files, and we may save some disk space. */ DECL_COMMON (tem) = flag_conserve_space || ! TREE_PUBLIC (tem); #if 0 /* We don't do this yet for GNU C++. */ /* For a local variable, define the RTL now. */ if (! toplevel_bindings_p () /* But not if this is a duplicate decl and we preserved the rtl from the previous one (which may or may not happen). */ && DECL_RTL (tem) == NULL_RTX) { if (TYPE_SIZE (TREE_TYPE (tem)) != NULL_TREE) expand_decl (tem); else if (TREE_CODE (TREE_TYPE (tem)) == ARRAY_TYPE && DECL_INITIAL (tem) != NULL_TREE) expand_decl (tem); } #endif if (TREE_CODE (decl) == TEMPLATE_DECL) { tree result = DECL_TEMPLATE_RESULT (decl); if (DECL_CONTEXT (result) != NULL_TREE) { tree type; type = DECL_CONTEXT (result); if (TREE_CODE (type) != UNINSTANTIATED_P_TYPE) { cp_error ("declaration of `%D' in non-template type `%T'", decl, type); return NULL_TREE; } if (TREE_CODE (result) == FUNCTION_DECL) return tem; else if (TREE_CODE (result) == VAR_DECL) { #if 0 tree tmpl = UPT_TEMPLATE (type); fprintf (stderr, "%s:%d: adding ", __FILE__, __LINE__); print_node_brief (stderr, "", DECL_NAME (tem), 0); fprintf (stderr, " to class %s\n", IDENTIFIER_POINTER (DECL_NAME (tmpl))); DECL_TEMPLATE_MEMBERS (tmpl) = perm_tree_cons (DECL_NAME (tem), tem, DECL_TEMPLATE_MEMBERS (tmpl)); return tem; #else sorry ("static data member templates"); return NULL_TREE; #endif } else my_friendly_abort (13); } else if (TREE_CODE (result) == FUNCTION_DECL) /*tem = push_overloaded_decl (tem, 0)*/; else if (TREE_CODE (result) == VAR_DECL) { cp_error ("data template `%#D' must be member of a class template", result); return NULL_TREE; } else if (TREE_CODE (result) == TYPE_DECL) { cp_error ("invalid template `%#D'", result); return NULL_TREE; } else my_friendly_abort (14); } if (init_written && ! (TREE_CODE (tem) == PARM_DECL || (TREE_READONLY (tem) && (TREE_CODE (tem) == VAR_DECL || TREE_CODE (tem) == FIELD_DECL)))) { /* When parsing and digesting the initializer, use temporary storage. Do this even if we will ignore the value. */ if (toplevel_bindings_p () && debug_temp_inits) { if (TYPE_NEEDS_CONSTRUCTING (type) || TREE_CODE (type) == REFERENCE_TYPE) /* In this case, the initializer must lay down in permanent storage, since it will be saved until `finish_file' is run. */ ; else temporary_allocation (); } } if (flag_cadillac) cadillac_start_decl (tem); return tem; } #if 0 /* unused */ static void make_temporary_for_reference (decl, ctor_call, init, cleanupp) tree decl, ctor_call, init; tree *cleanupp; { tree type = TREE_TYPE (decl); tree target_type = TREE_TYPE (type); tree tmp, tmp_addr; if (ctor_call) { tmp_addr = TREE_VALUE (TREE_OPERAND (ctor_call, 1)); if (TREE_CODE (tmp_addr) == NOP_EXPR) tmp_addr = TREE_OPERAND (tmp_addr, 0); my_friendly_assert (TREE_CODE (tmp_addr) == ADDR_EXPR, 146); tmp = TREE_OPERAND (tmp_addr, 0); } else { tmp = get_temp_name (target_type, toplevel_bindings_p ()); tmp_addr = build_unary_op (ADDR_EXPR, tmp, 0); } TREE_TYPE (tmp_addr) = build_pointer_type (target_type); DECL_INITIAL (decl) = convert (build_pointer_type (target_type), tmp_addr); TREE_TYPE (DECL_INITIAL (decl)) = type; if (TYPE_NEEDS_CONSTRUCTING (target_type)) { if (toplevel_bindings_p ()) { /* lay this variable out now. Otherwise `output_addressed_constants' gets confused by its initializer. */ make_decl_rtl (tmp, NULL_PTR, 1); static_aggregates = perm_tree_cons (init, tmp, static_aggregates); } else { if (ctor_call != NULL_TREE) init = ctor_call; else init = build_method_call (tmp, constructor_name_full (target_type), build_tree_list (NULL_TREE, init), NULL_TREE, LOOKUP_NORMAL); DECL_INITIAL (decl) = build (COMPOUND_EXPR, type, init, DECL_INITIAL (decl)); *cleanupp = maybe_build_cleanup (tmp); } } else { DECL_INITIAL (tmp) = init; TREE_STATIC (tmp) = toplevel_bindings_p (); cp_finish_decl (tmp, init, NULL_TREE, 0, LOOKUP_ONLYCONVERTING); } if (TREE_STATIC (tmp)) preserve_initializer (); } #endif /* Handle initialization of references. These three arguments from from `cp_finish_decl', and have the same meaning here that they do there. */ /* quotes on semantics can be found in ARM 8.4.3. */ static void grok_reference_init (decl, type, init, cleanupp) tree decl, type, init; tree *cleanupp; { tree tmp; if (init == NULL_TREE) { if ((DECL_LANG_SPECIFIC (decl) == 0 || DECL_IN_AGGR_P (decl) == 0) && ! DECL_THIS_EXTERN (decl)) { cp_error ("`%D' declared as reference but not initialized", decl); if (TREE_CODE (decl) == VAR_DECL) SET_DECL_REFERENCE_SLOT (decl, error_mark_node); } return; } if (init == error_mark_node) return; if (TREE_CODE (type) == REFERENCE_TYPE && TREE_CODE (init) == CONSTRUCTOR) { cp_error ("ANSI C++ forbids use of initializer list to initialize reference `%D'", decl); return; } if (TREE_CODE (init) == TREE_LIST) init = build_compound_expr (init); if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE) init = convert_from_reference (init); if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE) { /* Note: default conversion is only called in very special cases. */ init = default_conversion (init); } tmp = convert_to_reference (type, init, CONV_IMPLICIT, LOOKUP_SPECULATIVELY|LOOKUP_NORMAL, decl); if (tmp == error_mark_node) goto fail; else if (tmp != NULL_TREE) { tree subtype = TREE_TYPE (type); init = tmp; /* Associate the cleanup with the reference so that we don't get burned by "aggressive" cleanup policy. */ if (TYPE_NEEDS_DESTRUCTOR (subtype)) { if (TREE_CODE (init) == WITH_CLEANUP_EXPR) { *cleanupp = TREE_OPERAND (init, 2); TREE_OPERAND (init, 2) = error_mark_node; } else { if (TREE_CODE (tmp) == ADDR_EXPR) tmp = TREE_OPERAND (tmp, 0); if (TREE_CODE (tmp) == TARGET_EXPR) { *cleanupp = build_delete (build_pointer_type (subtype), build_unary_op (ADDR_EXPR, TREE_OPERAND (tmp, 0), 0), integer_two_node, LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0); TREE_OPERAND (tmp, 2) = error_mark_node; } } } DECL_INITIAL (decl) = save_expr (init); } else { cp_error ("cannot initialize `%T' from `%T'", type, TREE_TYPE (init)); goto fail; } /* ?? Can this be optimized in some cases to hand back the DECL_INITIAL slot?? */ if (TYPE_SIZE (TREE_TYPE (type))) { init = convert_from_reference (decl); if (TREE_PERMANENT (decl)) init = copy_to_permanent (init); SET_DECL_REFERENCE_SLOT (decl, init); } if (TREE_STATIC (decl) && ! TREE_CONSTANT (DECL_INITIAL (decl))) { expand_static_init (decl, DECL_INITIAL (decl)); DECL_INITIAL (decl) = NULL_TREE; } return; fail: if (TREE_CODE (decl) == VAR_DECL) SET_DECL_REFERENCE_SLOT (decl, error_mark_node); return; } /* Fill in DECL_INITIAL with some magical value to prevent expand_decl from mucking with forces it does not comprehend (i.e. initialization with a constructor). If we are at global scope and won't go into COMMON, fill it in with a dummy CONSTRUCTOR to force the variable into .data; otherwise we can use error_mark_node. */ static tree obscure_complex_init (decl, init) tree decl, init; { if (! flag_no_inline && TREE_STATIC (decl)) { if (extract_init (decl, init)) return NULL_TREE; } if (toplevel_bindings_p () && ! DECL_COMMON (decl)) DECL_INITIAL (decl) = build (CONSTRUCTOR, TREE_TYPE (decl), NULL_TREE, NULL_TREE); else DECL_INITIAL (decl) = error_mark_node; return init; } /* Finish processing of a declaration; install its line number and initial value. If the length of an array type is not known before, it must be determined now, from the initial value, or it is an error. Call `pop_obstacks' iff NEED_POP is nonzero. For C++, `cp_finish_decl' must be fairly evasive: it must keep initializers for aggregates that have constructors alive on the permanent obstack, so that the global initializing functions can be written at the end. INIT0 holds the value of an initializer that should be allowed to escape the normal rules. FLAGS is LOOKUP_ONLYCONVERTING is the = init syntax was used, else 0 if the (init) syntax was used. For functions that take default parameters, DECL points to its "maximal" instantiation. `cp_finish_decl' must then also declared its subsequently lower and lower forms of instantiation, checking for ambiguity as it goes. This can be sped up later. */ void cp_finish_decl (decl, init, asmspec_tree, need_pop, flags) tree decl, init; tree asmspec_tree; int need_pop; int flags; { register tree type; tree cleanup = NULL_TREE, ttype; int was_incomplete; int temporary = allocation_temporary_p (); char *asmspec = NULL; int was_readonly = 0; /* If this is 0, then we did not change obstacks. */ if (! decl) { if (init) error ("assignment (not initialization) in declaration"); return; } /* If a name was specified, get the string. */ if (asmspec_tree) asmspec = TREE_STRING_POINTER (asmspec_tree); /* If the type of the thing we are declaring either has a constructor, or has a virtual function table pointer, AND its initialization was accepted by `start_decl', then we stayed on the permanent obstack through the declaration, otherwise, changed obstacks as GCC would. */ type = TREE_TYPE (decl); if (type == error_mark_node) { if (toplevel_bindings_p () && temporary) end_temporary_allocation (); return; } was_incomplete = (DECL_SIZE (decl) == NULL_TREE); /* Take care of TYPE_DECLs up front. */ if (TREE_CODE (decl) == TYPE_DECL) { if (init && DECL_INITIAL (decl)) { /* typedef foo = bar; store the type of bar as the type of foo. */ TREE_TYPE (decl) = type = TREE_TYPE (init); DECL_INITIAL (decl) = init = NULL_TREE; } if (type != error_mark_node && IS_AGGR_TYPE (type) && DECL_NAME (decl)) { if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type) cp_warning ("shadowing previous type declaration of `%#D'", decl); set_identifier_type_value (DECL_NAME (decl), type); CLASSTYPE_GOT_SEMICOLON (type) = 1; } GNU_xref_decl (current_function_decl, decl); rest_of_decl_compilation (decl, NULL_PTR, DECL_CONTEXT (decl) == NULL_TREE, 0); goto finish_end; } if (TREE_CODE (decl) != FUNCTION_DECL) { ttype = target_type (type); #if 0 /* WTF? -KR Leave this out until we can figure out why it was needed/desirable in the first place. Then put a comment here explaining why. Or just delete the code if no ill effects arise. */ if (TYPE_NAME (ttype) && TREE_CODE (TYPE_NAME (ttype)) == TYPE_DECL && ANON_AGGRNAME_P (TYPE_IDENTIFIER (ttype))) { tree old_id = TYPE_IDENTIFIER (ttype); char *newname = (char *)alloca (IDENTIFIER_LENGTH (old_id) + 2); /* Need to preserve template data for UPT nodes. */ tree old_template = IDENTIFIER_TEMPLATE (old_id); newname[0] = '_'; bcopy (IDENTIFIER_POINTER (old_id), newname + 1, IDENTIFIER_LENGTH (old_id) + 1); old_id = get_identifier (newname); lookup_tag_reverse (ttype, old_id); TYPE_IDENTIFIER (ttype) = old_id; IDENTIFIER_TEMPLATE (old_id) = old_template; } #endif } if (! DECL_EXTERNAL (decl) && TREE_READONLY (decl) && TYPE_NEEDS_CONSTRUCTING (type)) { /* Currently, GNU C++ puts constants in text space, making them impossible to initialize. In the future, one would hope for an operating system which understood the difference between initialization and the running of a program. */ was_readonly = 1; TREE_READONLY (decl) = 0; } if (TREE_CODE (decl) == FIELD_DECL) { if (init && init != error_mark_node) my_friendly_assert (TREE_PERMANENT (init), 147); if (asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ DECL_RTL (TREE_TYPE (decl)) = NULL_RTX; DECL_ASSEMBLER_NAME (decl) = get_identifier (asmspec); make_decl_rtl (decl, asmspec, 0); } } /* If `start_decl' didn't like having an initialization, ignore it now. */ else if (init != NULL_TREE && DECL_INITIAL (decl) == NULL_TREE) init = NULL_TREE; else if (DECL_EXTERNAL (decl)) ; else if (TREE_CODE (type) == REFERENCE_TYPE || (TYPE_LANG_SPECIFIC (type) && IS_SIGNATURE_REFERENCE (type))) { if (TREE_STATIC (decl)) make_decl_rtl (decl, NULL_PTR, toplevel_bindings_p () || pseudo_global_level_p ()); grok_reference_init (decl, type, init, &cleanup); init = NULL_TREE; } GNU_xref_decl (current_function_decl, decl); if (TREE_CODE (decl) == FIELD_DECL) ; else if (TREE_CODE (decl) == CONST_DECL) { my_friendly_assert (TREE_CODE (decl) != REFERENCE_TYPE, 148); DECL_INITIAL (decl) = init; /* This will keep us from needing to worry about our obstacks. */ my_friendly_assert (init != NULL_TREE, 149); init = NULL_TREE; } else if (init) { if (TYPE_HAS_CONSTRUCTOR (type) || TYPE_NEEDS_CONSTRUCTING (type)) { if (TREE_CODE (type) == ARRAY_TYPE) init = digest_init (type, init, (tree *) 0); else if (TREE_CODE (init) == CONSTRUCTOR) { if (TYPE_NON_AGGREGATE_CLASS (type)) { cp_error ("`%D' must be initialized by constructor, not by `{...}'", decl); init = error_mark_node; } else goto dont_use_constructor; } } else { dont_use_constructor: if (TREE_CODE (init) != TREE_VEC) init = store_init_value (decl, init); } if (init) /* We must hide the initializer so that expand_decl won't try to do something it does not understand. */ init = obscure_complex_init (decl, init); } else if (DECL_EXTERNAL (decl)) ; else if (TREE_CODE_CLASS (TREE_CODE (type)) == 't' && (IS_AGGR_TYPE (type) || TYPE_NEEDS_CONSTRUCTING (type))) { tree ctype = type; while (TREE_CODE (ctype) == ARRAY_TYPE) ctype = TREE_TYPE (ctype); if (! TYPE_NEEDS_CONSTRUCTING (ctype)) { if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (ctype)) cp_error ("structure `%D' with uninitialized const members", decl); if (CLASSTYPE_REF_FIELDS_NEED_INIT (ctype)) cp_error ("structure `%D' with uninitialized reference members", decl); } if (TREE_CODE (decl) == VAR_DECL && !DECL_INITIAL (decl) && !TYPE_NEEDS_CONSTRUCTING (type) && (TYPE_READONLY (type) || TREE_READONLY (decl))) cp_error ("uninitialized const `%D'", decl); if (TYPE_SIZE (type) != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (type)) init = obscure_complex_init (decl, NULL_TREE); } else if (TREE_CODE (decl) == VAR_DECL && TREE_CODE (type) != REFERENCE_TYPE && (TYPE_READONLY (type) || TREE_READONLY (decl))) { /* ``Unless explicitly declared extern, a const object does not have external linkage and must be initialized. ($8.4; $12.1)'' ARM 7.1.6 However, if it's `const int foo = 1; const int foo;', don't complain about the second decl, since it does have an initializer before. We deliberately don't complain about arrays, because they're supposed to be initialized by a constructor. */ if (! DECL_INITIAL (decl) && TREE_CODE (type) != ARRAY_TYPE && (!pedantic || !current_class_type)) cp_error ("uninitialized const `%#D'", decl); } /* For top-level declaration, the initial value was read in the temporary obstack. MAXINDEX, rtl, etc. to be made below must go in the permanent obstack; but don't discard the temporary data yet. */ if (toplevel_bindings_p () && temporary) end_temporary_allocation (); /* Deduce size of array from initialization, if not already known. */ if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE && TREE_CODE (decl) != TYPE_DECL) { int do_default = (TREE_STATIC (decl) /* Even if pedantic, an external linkage array may have incomplete type at first. */ ? pedantic && ! DECL_EXTERNAL (decl) : !DECL_EXTERNAL (decl)); tree initializer = init ? init : DECL_INITIAL (decl); int failure = complete_array_type (type, initializer, do_default); if (failure == 1) cp_error ("initializer fails to determine size of `%D'", decl); if (failure == 2) { if (do_default) cp_error ("array size missing in `%D'", decl); /* If a `static' var's size isn't known, make it extern as well as static, so it does not get allocated. If it's not `static', then don't mark it extern; finish_incomplete_decl will give it a default size and it will get allocated. */ else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl)) DECL_EXTERNAL (decl) = 1; } if (pedantic && TYPE_DOMAIN (type) != NULL_TREE && tree_int_cst_lt (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), integer_zero_node)) cp_error ("zero-size array `%D'", decl); layout_decl (decl, 0); } if (TREE_CODE (decl) == VAR_DECL) { if (DECL_SIZE (decl) == NULL_TREE && TYPE_SIZE (TREE_TYPE (decl)) != NULL_TREE) layout_decl (decl, 0); if (TREE_STATIC (decl) && DECL_SIZE (decl) == NULL_TREE) { /* A static variable with an incomplete type: that is an error if it is initialized. Otherwise, let it through, but if it is not `extern' then it may cause an error message later. */ if (DECL_INITIAL (decl) != NULL_TREE) cp_error ("storage size of `%D' isn't known", decl); init = NULL_TREE; } else if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE) { /* An automatic variable with an incomplete type: that is an error. Don't talk about array types here, since we took care of that message in grokdeclarator. */ cp_error ("storage size of `%D' isn't known", decl); TREE_TYPE (decl) = error_mark_node; } else if (!DECL_EXTERNAL (decl) && IS_AGGR_TYPE (ttype)) /* Let debugger know it should output info for this type. */ note_debug_info_needed (ttype); if (TREE_STATIC (decl) && DECL_CONTEXT (decl) && TREE_CODE_CLASS (TREE_CODE (DECL_CONTEXT (decl))) == 't') note_debug_info_needed (DECL_CONTEXT (decl)); if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl)) && DECL_SIZE (decl) != NULL_TREE && ! TREE_CONSTANT (DECL_SIZE (decl))) { if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) constant_expression_warning (DECL_SIZE (decl)); else cp_error ("storage size of `%D' isn't constant", decl); } if (!DECL_EXTERNAL (decl) && TYPE_NEEDS_DESTRUCTOR (type)) { int yes = suspend_momentary (); /* If INIT comes from a functional cast, use the cleanup we built for that. Otherwise, make our own cleanup. */ if (init && TREE_CODE (init) == WITH_CLEANUP_EXPR && comptypes (TREE_TYPE (decl), TREE_TYPE (init), 1)) { cleanup = TREE_OPERAND (init, 2); init = TREE_OPERAND (init, 0); current_binding_level->have_cleanups = 1; } else cleanup = maybe_build_cleanup (decl); resume_momentary (yes); } } /* PARM_DECLs get cleanups, too. */ else if (TREE_CODE (decl) == PARM_DECL && TYPE_NEEDS_DESTRUCTOR (type)) { if (temporary) end_temporary_allocation (); cleanup = maybe_build_cleanup (decl); if (temporary) resume_temporary_allocation (); } /* Output the assembler code and/or RTL code for variables and functions, unless the type is an undefined structure or union. If not, it will get done when the type is completed. */ if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == RESULT_DECL) { /* ??? FIXME: What about nested classes? */ int toplev = toplevel_bindings_p () || pseudo_global_level_p (); int was_temp = ((flag_traditional || (TREE_STATIC (decl) && TYPE_NEEDS_DESTRUCTOR (type))) && allocation_temporary_p ()); if (was_temp) end_temporary_allocation (); if (TREE_CODE (decl) == VAR_DECL && ! toplevel_bindings_p () && ! TREE_STATIC (decl) && type_needs_gc_entry (type)) DECL_GC_OFFSET (decl) = size_int (++current_function_obstack_index); if (TREE_CODE (decl) == VAR_DECL && DECL_VIRTUAL_P (decl)) make_decl_rtl (decl, NULL_PTR, toplev); else if (TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl) && DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))) { DECL_INITIAL (decl) = save_expr (DECL_INITIAL (decl)); if (asmspec) DECL_ASSEMBLER_NAME (decl) = get_identifier (asmspec); if (! toplev && TREE_STATIC (decl) && ! TREE_SIDE_EFFECTS (decl) && ! TREE_PUBLIC (decl) && ! DECL_EXTERNAL (decl) && ! TYPE_NEEDS_DESTRUCTOR (type) && DECL_MODE (decl) != BLKmode) { /* If this variable is really a constant, then fill its DECL_RTL slot with something which won't take up storage. If something later should take its address, we can always give it legitimate RTL at that time. */ DECL_RTL (decl) = gen_reg_rtx (DECL_MODE (decl)); store_expr (DECL_INITIAL (decl), DECL_RTL (decl), 0); TREE_ASM_WRITTEN (decl) = 1; } else if (toplev && ! TREE_PUBLIC (decl)) { /* If this is a static const, change its apparent linkage if it belongs to a #pragma interface. */ if (!interface_unknown) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = interface_only; } make_decl_rtl (decl, asmspec, toplev); } else rest_of_decl_compilation (decl, asmspec, toplev, 0); } else if (TREE_CODE (decl) == VAR_DECL && DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl)) { if (TREE_STATIC (decl)) { if (init == NULL_TREE #ifdef DEFAULT_STATIC_DEFS /* If this code is dead, then users must explicitly declare static member variables outside the class def'n as well. */ && TYPE_NEEDS_CONSTRUCTING (type) #endif ) { DECL_EXTERNAL (decl) = 1; make_decl_rtl (decl, asmspec, 1); } else rest_of_decl_compilation (decl, asmspec, toplev, 0); } else /* Just a constant field. Should not need any rtl. */ goto finish_end0; } else rest_of_decl_compilation (decl, asmspec, toplev, 0); if (was_temp) resume_temporary_allocation (); if (type != error_mark_node && TYPE_LANG_SPECIFIC (type) && CLASSTYPE_ABSTRACT_VIRTUALS (type)) abstract_virtuals_error (decl, type); else if ((TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) && TYPE_LANG_SPECIFIC (TREE_TYPE (type)) && CLASSTYPE_ABSTRACT_VIRTUALS (TREE_TYPE (type))) abstract_virtuals_error (decl, TREE_TYPE (type)); if (TYPE_LANG_SPECIFIC (type) && IS_SIGNATURE (type)) signature_error (decl, type); else if ((TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) && TYPE_LANG_SPECIFIC (TREE_TYPE (type)) && IS_SIGNATURE (TREE_TYPE (type))) signature_error (decl, TREE_TYPE (type)); if (TREE_CODE (decl) == FUNCTION_DECL) ; else if (DECL_EXTERNAL (decl)) ; else if (TREE_STATIC (decl) && type != error_mark_node) { /* Cleanups for static variables are handled by `finish_file'. */ if (TYPE_NEEDS_CONSTRUCTING (type) || init != NULL_TREE || TYPE_NEEDS_DESTRUCTOR (type)) expand_static_init (decl, init); /* Make entry in appropriate vector. */ if (flag_gc && type_needs_gc_entry (type)) build_static_gc_entry (decl, type); } else if (! toplev) { tree old_cleanups = cleanups_this_call; /* This is a declared decl which must live until the end of the binding contour. It may need a cleanup. */ /* Recompute the RTL of a local array now if it used to be an incomplete type. */ if (was_incomplete && ! TREE_STATIC (decl)) { /* If we used it already as memory, it must stay in memory. */ TREE_ADDRESSABLE (decl) = TREE_USED (decl); /* If it's still incomplete now, no init will save it. */ if (DECL_SIZE (decl) == NULL_TREE) DECL_INITIAL (decl) = NULL_TREE; expand_decl (decl); } else if (! TREE_ASM_WRITTEN (decl) && (TYPE_SIZE (type) != NULL_TREE || TREE_CODE (type) == ARRAY_TYPE)) { /* Do this here, because we did not expand this decl's rtl in start_decl. */ if (DECL_RTL (decl) == NULL_RTX) expand_decl (decl); else if (cleanup) { /* XXX: Why don't we use decl here? */ /* Ans: Because it was already expanded? */ if (! cp_expand_decl_cleanup (NULL_TREE, cleanup)) cp_error ("parser lost in parsing declaration of `%D'", decl); /* Cleanup used up here. */ cleanup = NULL_TREE; } } if (DECL_SIZE (decl) && type != error_mark_node) { /* Compute and store the initial value. */ expand_decl_init (decl); if (init || TYPE_NEEDS_CONSTRUCTING (type)) { emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); expand_aggr_init (decl, init, 0, flags); } /* Set this to 0 so we can tell whether an aggregate which was initialized was ever used. Don't do this if it has a destructor, so we don't complain about the 'resource allocation is initialization' idiom. */ if (TYPE_NEEDS_CONSTRUCTING (type) && cleanup == NULL_TREE) TREE_USED (decl) = 0; /* Store the cleanup, if there was one. */ if (cleanup) { if (! cp_expand_decl_cleanup (decl, cleanup)) cp_error ("parser lost in parsing declaration of `%D'", decl); } } /* Cleanup any temporaries needed for the initial value. */ expand_cleanups_to (old_cleanups); } finish_end0: /* Undo call to `pushclass' that was done in `start_decl' due to initialization of qualified member variable. I.e., Foo::x = 10; */ { tree context = DECL_REAL_CONTEXT (decl); if (context && TREE_CODE_CLASS (TREE_CODE (context)) == 't' && (TREE_CODE (decl) == VAR_DECL /* We also have a pushclass done that we need to undo here if we're at top level and declare a method. */ || (TREE_CODE (decl) == FUNCTION_DECL /* If size hasn't been set, we're still defining it, and therefore inside the class body; don't pop the binding level.. */ && TYPE_SIZE (context) != NULL_TREE /* The binding level gets popped elsewhere for a friend declaration inside another class. */ /* && TYPE_IDENTIFIER (context) == current_class_name */ && context == current_class_type ))) popclass (1); } } finish_end: /* If requested, warn about definitions of large data objects. */ if (warn_larger_than && (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) && !DECL_EXTERNAL (decl)) { register tree decl_size = DECL_SIZE (decl); if (decl_size && TREE_CODE (decl_size) == INTEGER_CST) { unsigned units = TREE_INT_CST_LOW (decl_size) / BITS_PER_UNIT; if (units > larger_than_size) warning_with_decl (decl, "size of `%s' is %u bytes", units); } } if (need_pop) { /* Resume permanent allocation, if not within a function. */ /* The corresponding push_obstacks_nochange is in start_decl, start_method, groktypename, and in grokfield. */ pop_obstacks (); } if (was_readonly) TREE_READONLY (decl) = 1; if (flag_cadillac) cadillac_finish_decl (decl); } /* This is here for a midend callback from c-common.c */ void finish_decl (decl, init, asmspec_tree) tree decl, init; tree asmspec_tree; { cp_finish_decl (decl, init, asmspec_tree, 1, 0); } void expand_static_init (decl, init) tree decl; tree init; { tree oldstatic = value_member (decl, static_aggregates); tree old_cleanups; if (oldstatic) { if (TREE_PURPOSE (oldstatic) && init != NULL_TREE) cp_error ("multiple initializations given for `%D'", decl); } else if (! toplevel_bindings_p () && ! pseudo_global_level_p ()) { /* Emit code to perform this initialization but once. */ tree temp; /* Remember this information until end of file. */ push_obstacks (&permanent_obstack, &permanent_obstack); /* Emit code to perform this initialization but once. */ temp = get_temp_name (integer_type_node, 1); rest_of_decl_compilation (temp, NULL_PTR, 0, 0); expand_start_cond (build_binary_op (EQ_EXPR, temp, integer_zero_node, 1), 0); old_cleanups = cleanups_this_call; expand_assignment (temp, integer_one_node, 0, 0); if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)) || (init && TREE_CODE (init) == TREE_LIST)) { expand_aggr_init (decl, init, 0, 0); do_pending_stack_adjust (); } else if (init) expand_assignment (decl, init, 0, 0); /* Cleanup any temporaries needed for the initial value. */ expand_cleanups_to (old_cleanups); expand_end_cond (); if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (decl))) { static_aggregates = perm_tree_cons (temp, decl, static_aggregates); TREE_STATIC (static_aggregates) = 1; } /* Resume old (possibly temporary) allocation. */ pop_obstacks (); } else { /* This code takes into account memory allocation policy of `start_decl'. Namely, if TYPE_NEEDS_CONSTRUCTING does not hold for this object, then we must make permanent the storage currently in the temporary obstack. */ if (! TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))) preserve_initializer (); static_aggregates = perm_tree_cons (init, decl, static_aggregates); } } /* Make TYPE a complete type based on INITIAL_VALUE. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered, 2 if there was no information (in which case assume 1 if DO_DEFAULT). */ int complete_array_type (type, initial_value, do_default) tree type, initial_value; int do_default; { register tree maxindex = NULL_TREE; int value = 0; if (initial_value) { /* Note MAXINDEX is really the maximum index, one less than the size. */ if (TREE_CODE (initial_value) == STRING_CST) { int eltsize = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value))); maxindex = build_int_2 ((TREE_STRING_LENGTH (initial_value) / eltsize) - 1, 0); } else if (TREE_CODE (initial_value) == CONSTRUCTOR) { tree elts = CONSTRUCTOR_ELTS (initial_value); maxindex = size_binop (MINUS_EXPR, integer_zero_node, size_one_node); for (; elts; elts = TREE_CHAIN (elts)) { if (TREE_PURPOSE (elts)) maxindex = TREE_PURPOSE (elts); else maxindex = size_binop (PLUS_EXPR, maxindex, size_one_node); } maxindex = copy_node (maxindex); } else { /* Make an error message unless that happened already. */ if (initial_value != error_mark_node) value = 1; /* Prevent further error messages. */ maxindex = build_int_2 (0, 0); } } if (!maxindex) { if (do_default) maxindex = build_int_2 (0, 0); value = 2; } if (maxindex) { tree itype; TYPE_DOMAIN (type) = build_index_type (maxindex); if (! TREE_TYPE (maxindex)) TREE_TYPE (maxindex) = TYPE_DOMAIN (type); if (initial_value) itype = TREE_TYPE (initial_value); else itype = NULL; if (itype && !TYPE_DOMAIN (itype)) TYPE_DOMAIN (itype) = TYPE_DOMAIN (type); /* The type of the main variant should never be used for arrays of different sizes. It should only ever be completed with the size of the array. */ if (! TYPE_DOMAIN (TYPE_MAIN_VARIANT (type))) TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)) = TYPE_DOMAIN (type); } /* Lay out the type now that we can get the real answer. */ layout_type (type); return value; } /* Return zero if something is declared to be a member of type CTYPE when in the context of CUR_TYPE. STRING is the error message to print in that case. Otherwise, quietly return 1. */ static int member_function_or_else (ctype, cur_type, string) tree ctype, cur_type; char *string; { if (ctype && ctype != cur_type) { error (string, TYPE_NAME_STRING (ctype)); return 0; } return 1; } /* Subroutine of `grokdeclarator'. */ /* Generate errors possibly applicable for a given set of specifiers. This is for ARM $7.1.2. */ static void bad_specifiers (object, type, virtualp, quals, inlinep, friendp, raises) tree object; char *type; int virtualp, quals, friendp, raises, inlinep; { if (virtualp) cp_error ("`%D' declared as a `virtual' %s", object, type); if (inlinep) cp_error ("`%D' declared as an `inline' %s", object, type); if (quals) cp_error ("`const' and `volatile' function specifiers on `%D' invalid in %s declaration", object, type); if (friendp) cp_error_at ("invalid friend declaration", object); if (raises) cp_error_at ("invalid exception specifications", object); } /* CTYPE is class type, or null if non-class. TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE or METHOD_TYPE. DECLARATOR is the function's name. VIRTUALP is truthvalue of whether the function is virtual or not. FLAGS are to be passed through to `grokclassfn'. QUALS are qualifiers indicating whether the function is `const' or `volatile'. RAISES is a list of exceptions that this function can raise. CHECK is 1 if we must find this method in CTYPE, 0 if we should not look, and -1 if we should not call `grokclassfn' at all. */ static tree grokfndecl (ctype, type, declarator, virtualp, flags, quals, raises, attrlist, check, publicp, inlinep) tree ctype, type; tree declarator; int virtualp; enum overload_flags flags; tree quals, raises, attrlist; int check, publicp, inlinep; { tree cname, decl; int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE; if (ctype) cname = TREE_CODE (TYPE_NAME (ctype)) == TYPE_DECL ? TYPE_IDENTIFIER (ctype) : TYPE_NAME (ctype); else cname = NULL_TREE; if (raises) { type = build_exception_variant (type, raises); raises = TYPE_RAISES_EXCEPTIONS (type); } decl = build_lang_decl (FUNCTION_DECL, declarator, type); /* propagate volatile out from type to decl */ if (TYPE_VOLATILE (type)) TREE_THIS_VOLATILE (decl) = 1; /* Should probably propagate const out from type to decl I bet (mrs). */ if (staticp) { DECL_STATIC_FUNCTION_P (decl) = 1; DECL_CONTEXT (decl) = ctype; DECL_CLASS_CONTEXT (decl) = ctype; } /* All function decls start out public; we'll fix their linkage later (at definition or EOF) if appropriate. */ TREE_PUBLIC (decl) = 1; if (ctype == NULL_TREE && ! strcmp (IDENTIFIER_POINTER (declarator), "main")) { if (inlinep) error ("cannot declare `main' to be inline"); else if (! publicp) error ("cannot declare `main' to be static"); inlinep = 0; publicp = 1; } if (! publicp) DECL_C_STATIC (decl) = 1; if (inlinep) DECL_THIS_INLINE (decl) = DECL_INLINE (decl) = 1; DECL_EXTERNAL (decl) = 1; if (quals != NULL_TREE && TREE_CODE (type) == FUNCTION_TYPE) { cp_error ("%smember function `%D' cannot have `%T' method qualifier", (ctype ? "static " : "non-"), decl, TREE_VALUE (quals)); quals = NULL_TREE; } if (IDENTIFIER_OPNAME_P (DECL_NAME (decl))) grok_op_properties (decl, virtualp, check < 0); /* Caller will do the rest of this. */ if (check < 0) return decl; if (flags == NO_SPECIAL && ctype && constructor_name (cname) == declarator) { tree tmp; /* Just handle constructors here. We could do this inside the following if stmt, but I think that the code is more legible by breaking this case out. See comments below for what each of the following calls is supposed to do. */ DECL_CONSTRUCTOR_P (decl) = 1; grokclassfn (ctype, declarator, decl, flags, quals); if (check) check_classfn (ctype, declarator, decl); if (! grok_ctor_properties (ctype, decl)) return NULL_TREE; if (check == 0 && ! current_function_decl) { /* FIXME: this should only need to look at IDENTIFIER_GLOBAL_VALUE. */ tmp = lookup_name (DECL_ASSEMBLER_NAME (decl), 0); if (tmp == NULL_TREE) IDENTIFIER_GLOBAL_VALUE (DECL_ASSEMBLER_NAME (decl)) = decl; else if (TREE_CODE (tmp) != TREE_CODE (decl)) cp_error ("inconsistent declarations for `%D'", decl); else { duplicate_decls (decl, tmp); decl = tmp; /* avoid creating circularities. */ DECL_CHAIN (decl) = NULL_TREE; } make_decl_rtl (decl, NULL_PTR, 1); } } else { tree tmp; /* Function gets the ugly name, field gets the nice one. This call may change the type of the function (because of default parameters)! */ if (ctype != NULL_TREE) grokclassfn (ctype, cname, decl, flags, quals); if (ctype != NULL_TREE && check) check_classfn (ctype, cname, decl); if (ctype == NULL_TREE || check) return decl; /* Now install the declaration of this function so that others may find it (esp. its DECL_FRIENDLIST). Don't do this for local class methods, though. */ if (! current_function_decl) { /* FIXME: this should only need to look at IDENTIFIER_GLOBAL_VALUE. */ tmp = lookup_name (DECL_ASSEMBLER_NAME (decl), 0); if (tmp == NULL_TREE) IDENTIFIER_GLOBAL_VALUE (DECL_ASSEMBLER_NAME (decl)) = decl; else if (TREE_CODE (tmp) != TREE_CODE (decl)) cp_error ("inconsistent declarations for `%D'", decl); else { duplicate_decls (decl, tmp); decl = tmp; /* avoid creating circularities. */ DECL_CHAIN (decl) = NULL_TREE; } if (attrlist) cplus_decl_attributes (decl, TREE_PURPOSE (attrlist), TREE_VALUE (attrlist)); make_decl_rtl (decl, NULL_PTR, 1); } /* If this declaration supersedes the declaration of a method declared virtual in the base class, then mark this field as being virtual as well. */ { tree binfos = BINFO_BASETYPES (TYPE_BINFO (ctype)); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); if (TYPE_VIRTUAL_P (BINFO_TYPE (base_binfo)) || flag_all_virtual == 1) { tmp = get_matching_virtual (base_binfo, decl, flags == DTOR_FLAG); if (tmp) { /* If this function overrides some virtual in some base class, then the function itself is also necessarily virtual, even if the user didn't explicitly say so. */ DECL_VIRTUAL_P (decl) = 1; /* The TMP we really want is the one from the deepest baseclass on this path, taking care not to duplicate if we have already found it (via another path to its virtual baseclass. */ if (staticp) { cp_error ("method `%D' may not be declared static", decl); cp_error_at ("(since `%D' declared virtual in base class.)", tmp); break; } virtualp = 1; { /* The argument types may have changed... */ tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree base_variant = TREE_TYPE (TREE_VALUE (argtypes)); argtypes = commonparms (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (tmp))), TREE_CHAIN (argtypes)); /* But the return type has not. */ type = build_cplus_method_type (base_variant, TREE_TYPE (type), argtypes); if (raises) { type = build_exception_variant (type, raises); raises = TYPE_RAISES_EXCEPTIONS (type); } TREE_TYPE (decl) = type; DECL_VINDEX (decl) = tree_cons (NULL_TREE, tmp, DECL_VINDEX (decl)); } break; } } } } if (virtualp) { if (DECL_VINDEX (decl) == NULL_TREE) DECL_VINDEX (decl) = error_mark_node; IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1; if (ctype && CLASSTYPE_VTABLE_NEEDS_WRITING (ctype) /* If this function is derived from a template, don't make it public. This shouldn't be here, but there's no good way to override the interface pragmas for one function or class only. Bletch. */ && IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (ctype)) == NULL_TREE && (write_virtuals == 2 || (write_virtuals == 3 && CLASSTYPE_INTERFACE_KNOWN (ctype)))) TREE_PUBLIC (decl) = 1; } } return decl; } static tree grokvardecl (type, declarator, specbits, initialized, constp) tree type; tree declarator; RID_BIT_TYPE specbits; int initialized; int constp; { tree decl; if (TREE_CODE (type) == OFFSET_TYPE) { /* If you declare a static member so that it can be initialized, the code will reach here. */ tree basetype = TYPE_OFFSET_BASETYPE (type); type = TREE_TYPE (type); decl = build_lang_field_decl (VAR_DECL, declarator, type); DECL_CONTEXT (decl) = basetype; DECL_CLASS_CONTEXT (decl) = basetype; DECL_ASSEMBLER_NAME (decl) = build_static_name (basetype, declarator); } else decl = build_decl (VAR_DECL, declarator, type); DECL_ASSEMBLER_NAME (decl) = current_namespace_id (DECL_ASSEMBLER_NAME (decl)); if (RIDBIT_SETP (RID_EXTERN, specbits)) { DECL_THIS_EXTERN (decl) = 1; DECL_EXTERNAL (decl) = !initialized; } /* In class context, static means one per class, public access, and static storage. */ if (DECL_FIELD_CONTEXT (decl) != NULL_TREE && IS_AGGR_TYPE (DECL_FIELD_CONTEXT (decl))) { TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_EXTERNAL (decl) = 0; } /* At top level, either `static' or no s.c. makes a definition (perhaps tentative), and absence of `static' makes it public. */ else if (toplevel_bindings_p ()) { TREE_PUBLIC (decl) = (RIDBIT_NOTSETP (RID_STATIC, specbits) && (DECL_THIS_EXTERN (decl) || ! constp)); TREE_STATIC (decl) = ! DECL_EXTERNAL (decl); } /* Not at top level, only `static' makes a static definition. */ else { TREE_STATIC (decl) = !! RIDBIT_SETP (RID_STATIC, specbits); TREE_PUBLIC (decl) = DECL_EXTERNAL (decl); } return decl; } /* Create a canonical pointer to member function type. */ tree build_ptrmemfunc_type (type) tree type; { tree fields[4]; tree t; tree u; /* If a canonical type already exists for this type, use it. We use this method instead of type_hash_canon, because it only does a simple equality check on the list of field members. */ if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type))) return t; push_obstacks (TYPE_OBSTACK (type), TYPE_OBSTACK (type)); u = make_lang_type (UNION_TYPE); IS_AGGR_TYPE (u) = 0; fields[0] = build_lang_field_decl (FIELD_DECL, pfn_identifier, type); fields[1] = build_lang_field_decl (FIELD_DECL, delta2_identifier, delta_type_node); finish_builtin_type (u, "__ptrmemfunc_type", fields, 1, ptr_type_node); TYPE_NAME (u) = NULL_TREE; t = make_lang_type (RECORD_TYPE); /* Let the front-end know this is a pointer to member function. */ TYPE_PTRMEMFUNC_FLAG (t) = 1; /* and not really an aggregate. */ IS_AGGR_TYPE (t) = 0; fields[0] = build_lang_field_decl (FIELD_DECL, delta_identifier, delta_type_node); fields[1] = build_lang_field_decl (FIELD_DECL, index_identifier, delta_type_node); fields[2] = build_lang_field_decl (FIELD_DECL, pfn_or_delta2_identifier, u); finish_builtin_type (t, "__ptrmemfunc_type", fields, 2, ptr_type_node); pop_obstacks (); /* Zap out the name so that the back-end will give us the debugging information for this anonymous RECORD_TYPE. */ TYPE_NAME (t) = NULL_TREE; TYPE_SET_PTRMEMFUNC_TYPE (type, t); /* Seems to be wanted. */ CLASSTYPE_GOT_SEMICOLON (t) = 1; return t; } /* Given declspecs and a declarator, determine the name and type of the object declared and construct a ..._DECL node for it. (In one case we can return a ..._TYPE node instead. For invalid input we sometimes return 0.) DECLSPECS is a chain of tree_list nodes whose value fields are the storage classes and type specifiers. DECL_CONTEXT says which syntactic context this declaration is in: NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL. FUNCDEF for a function definition. Like NORMAL but a few different error messages in each case. Return value may be zero meaning this definition is too screwy to try to parse. MEMFUNCDEF for a function definition. Like FUNCDEF but prepares to handle member functions (which have FIELD context). Return value may be zero meaning this definition is too screwy to try to parse. PARM for a parameter declaration (either within a function prototype or before a function body). Make a PARM_DECL, or return void_type_node. CATCHPARM for a parameter declaration before a catch clause. TYPENAME if for a typename (in a cast or sizeof). Don't make a DECL node; just return the ..._TYPE node. FIELD for a struct or union field; make a FIELD_DECL. BITFIELD for a field with specified width. INITIALIZED is 1 if the decl has an initializer. In the TYPENAME case, DECLARATOR is really an absolute declarator. It may also be so in the PARM case, for a prototype where the argument type is specified but not the name. This function is where the complicated C meanings of `static' and `extern' are interpreted. For C++, if there is any monkey business to do, the function which calls this one must do it, i.e., prepending instance variables, renaming overloaded function names, etc. Note that for this C++, it is an error to define a method within a class which does not belong to that class. Except in the case where SCOPE_REFs are implicitly known (such as methods within a class being redundantly qualified), declarations which involve SCOPE_REFs are returned as SCOPE_REFs (class_name::decl_name). The caller must also deal with this. If a constructor or destructor is seen, and the context is FIELD, then the type gains the attribute TREE_HAS_x. If such a declaration is erroneous, NULL_TREE is returned. QUALS is used only for FUNCDEF and MEMFUNCDEF cases. For a member function, these are the qualifiers to give to the `this' pointer. May return void_type_node if the declarator turned out to be a friend. See grokfield for details. */ enum return_types { return_normal, return_ctor, return_dtor, return_conversion }; tree grokdeclarator (declarator, declspecs, decl_context, initialized, raises, attrlist) tree declspecs; tree declarator; enum decl_context decl_context; int initialized; tree raises, attrlist; { RID_BIT_TYPE specbits; int nclasses = 0; tree spec; tree type = NULL_TREE; int longlong = 0; int constp; int volatilep; int virtualp, explicitp, friendp, inlinep, staticp; int explicit_int = 0; int explicit_char = 0; int opaque_typedef = 0; tree typedef_decl = NULL_TREE; char *name; tree typedef_type = NULL_TREE; int funcdef_flag = 0; enum tree_code innermost_code = ERROR_MARK; int bitfield = 0; int size_varies = 0; tree decl_machine_attr = NULL_TREE; /* Set this to error_mark_node for FIELD_DECLs we could not handle properly. All FIELD_DECLs we build here have `init' put into their DECL_INITIAL. */ tree init = NULL_TREE; /* Keep track of what sort of function is being processed so that we can warn about default return values, or explicit return values which do not match prescribed defaults. */ enum return_types return_type = return_normal; tree dname = NULL_TREE; tree ctype = current_class_type; tree ctor_return_type = NULL_TREE; enum overload_flags flags = NO_SPECIAL; tree quals = NULL_TREE; RIDBIT_RESET_ALL (specbits); if (decl_context == FUNCDEF) funcdef_flag = 1, decl_context = NORMAL; else if (decl_context == MEMFUNCDEF) funcdef_flag = -1, decl_context = FIELD; else if (decl_context == BITFIELD) bitfield = 1, decl_context = FIELD; if (flag_traditional && allocation_temporary_p ()) end_temporary_allocation (); /* Look inside a declarator for the name being declared and get it as a string, for an error message. */ { tree last = NULL_TREE; register tree decl = declarator; name = NULL; while (decl) switch (TREE_CODE (decl)) { case COND_EXPR: ctype = NULL_TREE; decl = TREE_OPERAND (decl, 0); break; case BIT_NOT_EXPR: /* for C++ destructors! */ { tree name = TREE_OPERAND (decl, 0); tree rename = NULL_TREE; my_friendly_assert (flags == NO_SPECIAL, 152); flags = DTOR_FLAG; return_type = return_dtor; my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 153); if (ctype == NULL_TREE) { if (current_class_type == NULL_TREE) { error ("destructors must be member functions"); flags = NO_SPECIAL; } else { tree t = constructor_name (current_class_name); if (t != name) rename = t; } } else { tree t = constructor_name (ctype); if (t != name) rename = t; } if (rename) { error ("destructor `%s' must match class name `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (rename)); TREE_OPERAND (decl, 0) = rename; } decl = name; } break; case ADDR_EXPR: /* C++ reference declaration */ /* fall through */ case ARRAY_REF: case INDIRECT_REF: ctype = NULL_TREE; innermost_code = TREE_CODE (decl); last = decl; decl = TREE_OPERAND (decl, 0); break; case CALL_EXPR: if (parmlist_is_exprlist (TREE_OPERAND (decl, 1))) { /* This is actually a variable declaration using constructor syntax. We need to call start_decl and cp_finish_decl so we can get the variable initialized... */ if (last) /* We need to insinuate ourselves into the declarator in place of the CALL_EXPR. */ TREE_OPERAND (last, 0) = TREE_OPERAND (decl, 0); else declarator = TREE_OPERAND (decl, 0); init = TREE_OPERAND (decl, 1); decl = start_decl (declarator, declspecs, 1, NULL_TREE); finish_decl (decl, init, NULL_TREE); return 0; } innermost_code = TREE_CODE (decl); if (decl_context == FIELD && ctype == NULL_TREE) ctype = current_class_type; if (ctype && TREE_OPERAND (decl, 0) == constructor_name_full (ctype)) TREE_OPERAND (decl, 0) = constructor_name (ctype); decl = TREE_OPERAND (decl, 0); if (ctype != NULL_TREE && decl != NULL_TREE && flags != DTOR_FLAG && decl == constructor_name (ctype)) { return_type = return_ctor; ctor_return_type = ctype; } ctype = NULL_TREE; break; case IDENTIFIER_NODE: dname = decl; decl = NULL_TREE; if (! IDENTIFIER_OPNAME_P (dname) /* Linux headers use '__op'. Arrgh. */ || IDENTIFIER_TYPENAME_P (dname) && ! TREE_TYPE (dname)) name = IDENTIFIER_POINTER (dname); else { if (IDENTIFIER_TYPENAME_P (dname)) { my_friendly_assert (flags == NO_SPECIAL, 154); flags = TYPENAME_FLAG; ctor_return_type = TREE_TYPE (dname); return_type = return_conversion; } name = operator_name_string (dname); } break; case RECORD_TYPE: case UNION_TYPE: case ENUMERAL_TYPE: /* Parse error puts this typespec where a declarator should go. */ error ("declarator name missing"); dname = TYPE_NAME (decl); if (dname && TREE_CODE (dname) == TYPE_DECL) dname = DECL_NAME (dname); name = dname ? IDENTIFIER_POINTER (dname) : ""; declspecs = temp_tree_cons (NULL_TREE, decl, declspecs); decl = NULL_TREE; break; /* C++ extension */ case SCOPE_REF: { /* Perform error checking, and convert class names to types. We may call grokdeclarator multiple times for the same tree structure, so only do the conversion once. In this case, we have exactly what we want for `ctype'. */ tree cname = TREE_OPERAND (decl, 0); if (cname == NULL_TREE) ctype = NULL_TREE; /* Can't use IS_AGGR_TYPE because CNAME might not be a type. */ else if (IS_AGGR_TYPE_CODE (TREE_CODE (cname)) || TREE_CODE (cname) == UNINSTANTIATED_P_TYPE) ctype = cname; else if (! is_aggr_typedef (cname, 1)) { TREE_OPERAND (decl, 0) = NULL_TREE; } /* Must test TREE_OPERAND (decl, 1), in case user gives us `typedef (class::memfunc)(int); memfunc *memfuncptr;' */ else if (TREE_OPERAND (decl, 1) && TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF) { TREE_OPERAND (decl, 0) = IDENTIFIER_TYPE_VALUE (cname); } else if (ctype == NULL_TREE) { ctype = IDENTIFIER_TYPE_VALUE (cname); TREE_OPERAND (decl, 0) = ctype; } else if (TREE_COMPLEXITY (decl) == current_class_depth) TREE_OPERAND (decl, 0) = ctype; else { if (! UNIQUELY_DERIVED_FROM_P (IDENTIFIER_TYPE_VALUE (cname), ctype)) { cp_error ("type `%T' is not derived from type `%T'", IDENTIFIER_TYPE_VALUE (cname), ctype); TREE_OPERAND (decl, 0) = NULL_TREE; } else { ctype = IDENTIFIER_TYPE_VALUE (cname); TREE_OPERAND (decl, 0) = ctype; } } if (ctype && TREE_OPERAND (decl, 1) == constructor_name_full (ctype)) TREE_OPERAND (decl, 1) = constructor_name (ctype); decl = TREE_OPERAND (decl, 1); if (ctype) { if (TREE_CODE (decl) == IDENTIFIER_NODE && constructor_name (ctype) == decl) { return_type = return_ctor; ctor_return_type = ctype; } else if (TREE_CODE (decl) == BIT_NOT_EXPR && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE && (constructor_name (ctype) == TREE_OPERAND (decl, 0) || constructor_name_full (ctype) == TREE_OPERAND (decl, 0))) { return_type = return_dtor; ctor_return_type = ctype; flags = DTOR_FLAG; decl = TREE_OPERAND (decl, 0) = constructor_name (ctype); } } } break; case ERROR_MARK: decl = NULL_TREE; break; default: return 0; /* We used to do a 155 abort here. */ } if (name == NULL) name = "type name"; } /* A function definition's declarator must have the form of a function declarator. */ if (funcdef_flag && innermost_code != CALL_EXPR) return 0; if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG) && innermost_code != CALL_EXPR && ! (ctype && declspecs == NULL_TREE)) { cp_error ("declaration of `%D' as non-function", dname); return void_type_node; } /* Anything declared one level down from the top level must be one of the parameters of a function (because the body is at least two levels down). */ /* This heuristic cannot be applied to C++ nodes! Fixed, however, by not allowing C++ class definitions to specify their parameters with xdecls (must be spec.d in the parmlist). Since we now wait to push a class scope until we are sure that we are in a legitimate method context, we must set oldcname explicitly (since current_class_name is not yet alive). We also want to avoid calling this a PARM if it is in a namespace. */ if (decl_context == NORMAL && ! namespace_bindings_p ()) { struct binding_level *b = current_binding_level; current_binding_level = b->level_chain; if (current_binding_level != 0 && toplevel_bindings_p ()) decl_context = PARM; current_binding_level = b; } /* Look through the decl specs and record which ones appear. Some typespecs are defined as built-in typenames. Others, the ones that are modifiers of other types, are represented by bits in SPECBITS: set the bits for the modifiers that appear. Storage class keywords are also in SPECBITS. If there is a typedef name or a type, store the type in TYPE. This includes builtin typedefs such as `int'. Set EXPLICIT_INT if the type is `int' or `char' and did not come from a user typedef. Set LONGLONG if `long' is mentioned twice. For C++, constructors and destructors have their own fast treatment. */ for (spec = declspecs; spec; spec = TREE_CHAIN (spec)) { register int i; register tree id; /* Certain parse errors slip through. For example, `int class;' is not caught by the parser. Try weakly to recover here. */ if (TREE_CODE (spec) != TREE_LIST) return 0; id = TREE_VALUE (spec); if (TREE_CODE (id) == IDENTIFIER_NODE) { if (id == ridpointers[(int) RID_INT] || id == ridpointers[(int) RID_CHAR] || id == ridpointers[(int) RID_BOOL] || id == ridpointers[(int) RID_WCHAR]) { if (type) { if (id == ridpointers[(int) RID_BOOL]) error ("`bool' is now a keyword"); else cp_error ("extraneous `%T' ignored", id); } else { if (id == ridpointers[(int) RID_INT]) explicit_int = 1; else if (id == ridpointers[(int) RID_CHAR]) explicit_char = 1; type = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (id)); } goto found; } /* C++ aggregate types. */ if (IDENTIFIER_HAS_TYPE_VALUE (id)) { if (type) cp_error ("multiple declarations `%T' and `%T'", type, id); else type = IDENTIFIER_TYPE_VALUE (id); goto found; } for (i = (int) RID_FIRST_MODIFIER; i <= (int) RID_LAST_MODIFIER; i++) { if (ridpointers[i] == id) { if (i == (int) RID_LONG && RIDBIT_SETP (i, specbits)) { if (pedantic && ! in_system_header) pedwarn ("ANSI C++ does not support `long long'"); else if (longlong) error ("`long long long' is too long for GCC"); else longlong = 1; } else if (RIDBIT_SETP (i, specbits)) pedwarn ("duplicate `%s'", IDENTIFIER_POINTER (id)); RIDBIT_SET (i, specbits); goto found; } } } if (type) error ("two or more data types in declaration of `%s'", name); else if (TREE_CODE (id) == IDENTIFIER_NODE) { register tree t = lookup_name (id, 1); if (!t || TREE_CODE (t) != TYPE_DECL) error ("`%s' fails to be a typedef or built in type", IDENTIFIER_POINTER (id)); else { type = TREE_TYPE (t); decl_machine_attr = DECL_MACHINE_ATTRIBUTES (id); typedef_decl = t; } } else if (TREE_CODE (id) != ERROR_MARK) /* Can't change CLASS nodes into RECORD nodes here! */ type = id; found: ; } typedef_type = type; /* No type at all: default to `int', and set EXPLICIT_INT because it was not a user-defined typedef. Except when we have a `typedef' inside a signature, in which case the type defaults to `unknown type' and is instantiated when assigning to a signature pointer or ref. */ if (type == NULL_TREE && (RIDBIT_SETP (RID_SIGNED, specbits) || RIDBIT_SETP (RID_UNSIGNED, specbits) || RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits))) { /* These imply 'int'. */ type = integer_type_node; explicit_int = 1; } if (type == NULL_TREE) { explicit_int = -1; if (return_type == return_dtor) type = void_type_node; else if (return_type == return_ctor) type = build_pointer_type (ctor_return_type); else if (return_type == return_conversion) type = ctor_return_type; else if (current_class_type && IS_SIGNATURE (current_class_type) && (RIDBIT_SETP (RID_TYPEDEF, specbits) || SIGNATURE_GROKKING_TYPEDEF (current_class_type)) && (decl_context == FIELD || decl_context == NORMAL)) { explicit_int = 0; opaque_typedef = 1; type = copy_node (opaque_type_node); } /* access declaration */ else if (decl_context == FIELD && declarator && TREE_CODE (declarator) == SCOPE_REF) type = void_type_node; else { if (funcdef_flag) { if (warn_return_type && return_type == return_normal) /* Save warning until we know what is really going on. */ warn_about_return_type = 1; } else if (RIDBIT_SETP (RID_TYPEDEF, specbits)) pedwarn ("ANSI C++ forbids typedef which does not specify a type"); else if (declspecs == NULL_TREE && (innermost_code != CALL_EXPR || pedantic)) cp_pedwarn ("ANSI C++ forbids declaration `%D' with no type or storage class", dname); type = integer_type_node; } } else if (return_type == return_dtor) { error ("return type specification for destructor invalid"); type = void_type_node; } else if (return_type == return_ctor) { error ("return type specification for constructor invalid"); type = build_pointer_type (ctor_return_type); } else if (return_type == return_conversion) { if (comptypes (type, ctor_return_type, 1) == 0) cp_error ("operator `%T' declared to return `%T'", ctor_return_type, type); else cp_pedwarn ("return type specified for `operator %T'", ctor_return_type); type = ctor_return_type; } /* Catch typedefs that only specify a type, like 'typedef int;'. */ else if (RIDBIT_SETP (RID_TYPEDEF, specbits) && declarator == NULL_TREE) { /* Template "this is a type" syntax; just ignore for now. */ if (processing_template_defn) return void_type_node; } ctype = NULL_TREE; /* Now process the modifiers that were specified and check for invalid combinations. */ /* Long double is a special combination. */ if (RIDBIT_SETP (RID_LONG, specbits) && TYPE_MAIN_VARIANT (type) == double_type_node) { RIDBIT_RESET (RID_LONG, specbits); type = build_type_variant (long_double_type_node, TYPE_READONLY (type), TYPE_VOLATILE (type)); } /* Check all other uses of type modifiers. */ if (RIDBIT_SETP (RID_UNSIGNED, specbits) || RIDBIT_SETP (RID_SIGNED, specbits) || RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) { int ok = 0; if (TREE_CODE (type) == REAL_TYPE) error ("short, signed or unsigned invalid for `%s'", name); else if (TREE_CODE (type) != INTEGER_TYPE) error ("long, short, signed or unsigned invalid for `%s'", name); else if (RIDBIT_SETP (RID_LONG, specbits) && RIDBIT_SETP (RID_SHORT, specbits)) error ("long and short specified together for `%s'", name); else if ((RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) && explicit_char) error ("long or short specified with char for `%s'", name); else if ((RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) && TREE_CODE (type) == REAL_TYPE) error ("long or short specified with floating type for `%s'", name); else if (RIDBIT_SETP (RID_SIGNED, specbits) && RIDBIT_SETP (RID_UNSIGNED, specbits)) error ("signed and unsigned given together for `%s'", name); else { ok = 1; if (!explicit_int && !explicit_char && pedantic) { pedwarn ("long, short, signed or unsigned used invalidly for `%s'", name); if (flag_pedantic_errors) ok = 0; } } /* Discard the type modifiers if they are invalid. */ if (! ok) { RIDBIT_RESET (RID_UNSIGNED, specbits); RIDBIT_RESET (RID_SIGNED, specbits); RIDBIT_RESET (RID_LONG, specbits); RIDBIT_RESET (RID_SHORT, specbits); longlong = 0; } } /* Decide whether an integer type is signed or not. Optionally treat bitfields as signed by default. */ if (RIDBIT_SETP (RID_UNSIGNED, specbits) /* Traditionally, all bitfields are unsigned. */ || (bitfield && flag_traditional) || (bitfield && ! flag_signed_bitfields && (explicit_int || explicit_char /* A typedef for plain `int' without `signed' can be controlled just like plain `int'. */ || ! (typedef_decl != NULL_TREE && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))) && TREE_CODE (type) != ENUMERAL_TYPE && RIDBIT_NOTSETP (RID_SIGNED, specbits))) { if (longlong) type = long_long_unsigned_type_node; else if (RIDBIT_SETP (RID_LONG, specbits)) type = long_unsigned_type_node; else if (RIDBIT_SETP (RID_SHORT, specbits)) type = short_unsigned_type_node; else if (type == char_type_node) type = unsigned_char_type_node; else if (typedef_decl) type = unsigned_type (type); else type = unsigned_type_node; } else if (RIDBIT_SETP (RID_SIGNED, specbits) && type == char_type_node) type = signed_char_type_node; else if (longlong) type = long_long_integer_type_node; else if (RIDBIT_SETP (RID_LONG, specbits)) type = long_integer_type_node; else if (RIDBIT_SETP (RID_SHORT, specbits)) type = short_integer_type_node; /* Set CONSTP if this declaration is `const', whether by explicit specification or via a typedef. Likewise for VOLATILEP. */ constp = !! RIDBIT_SETP (RID_CONST, specbits) + TYPE_READONLY (type); volatilep = !! RIDBIT_SETP (RID_VOLATILE, specbits) + TYPE_VOLATILE (type); staticp = 0; inlinep = !! RIDBIT_SETP (RID_INLINE, specbits); #if 0 /* This sort of redundancy is blessed in a footnote to the Sep 94 WP. */ if (constp > 1) warning ("duplicate `const'"); if (volatilep > 1) warning ("duplicate `volatile'"); #endif virtualp = RIDBIT_SETP (RID_VIRTUAL, specbits); RIDBIT_RESET (RID_VIRTUAL, specbits); explicitp = RIDBIT_SETP (RID_EXPLICIT, specbits) != 0; RIDBIT_RESET (RID_EXPLICIT, specbits); if (RIDBIT_SETP (RID_STATIC, specbits)) staticp = 1 + (decl_context == FIELD); if (virtualp && staticp == 2) { cp_error ("member `%D' cannot be declared both virtual and static", dname); staticp = 0; } friendp = RIDBIT_SETP (RID_FRIEND, specbits); RIDBIT_RESET (RID_FRIEND, specbits); if (RIDBIT_SETP (RID_MUTABLE, specbits)) { if (decl_context == PARM) { error ("non-member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (friendp || decl_context == TYPENAME) { error ("non-object member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } #if 0 if (RIDBIT_SETP (RID_TYPEDEF, specbits)) { error ("non-object member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } /* Because local typedefs are parsed twice, we don't want this message here. */ else if (decl_context != FIELD) { error ("non-member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } #endif } /* Warn if two storage classes are given. Default to `auto'. */ if (RIDBIT_ANY_SET (specbits)) { if (RIDBIT_SETP (RID_STATIC, specbits)) nclasses++; if (RIDBIT_SETP (RID_EXTERN, specbits)) nclasses++; if (decl_context == PARM && nclasses > 0) error ("storage class specifiers invalid in parameter declarations"); if (RIDBIT_SETP (RID_TYPEDEF, specbits)) { if (decl_context == PARM) error ("typedef declaration invalid in parameter declaration"); nclasses++; } if (RIDBIT_SETP (RID_AUTO, specbits)) nclasses++; if (RIDBIT_SETP (RID_REGISTER, specbits)) nclasses++; } /* Give error if `virtual' is used outside of class declaration. */ if (virtualp && (current_class_name == NULL_TREE || decl_context != FIELD)) { error ("virtual outside class declaration"); virtualp = 0; } if (current_class_name == NULL_TREE && RIDBIT_SETP (RID_MUTABLE, specbits)) { error ("only members can be declared mutable"); RIDBIT_RESET (RID_MUTABLE, specbits); } /* Static anonymous unions are dealt with here. */ if (staticp && decl_context == TYPENAME && TREE_CODE (declspecs) == TREE_LIST && TREE_CODE (TREE_VALUE (declspecs)) == UNION_TYPE && ANON_AGGRNAME_P (TYPE_IDENTIFIER (TREE_VALUE (declspecs)))) decl_context = FIELD; /* Give error if `const,' `volatile,' `inline,' `friend,' or `virtual' is used in a signature member function declaration. */ if (decl_context == FIELD && IS_SIGNATURE (current_class_type) && RIDBIT_NOTSETP(RID_TYPEDEF, specbits) && !SIGNATURE_GROKKING_TYPEDEF (current_class_type)) { if (constp) { error ("`const' specified for signature member function `%s'", name); constp = 0; } if (volatilep) { error ("`volatile' specified for signature member function `%s'", name); volatilep = 0; } if (inlinep) { error ("`inline' specified for signature member function `%s'", name); /* Later, we'll make signature member functions inline. */ inlinep = 0; } if (friendp) { error ("`friend' declaration in signature definition"); friendp = 0; } if (virtualp) { error ("`virtual' specified for signature member function `%s'", name); /* Later, we'll make signature member functions virtual. */ virtualp = 0; } } /* Warn about storage classes that are invalid for certain kinds of declarations (parameters, typenames, etc.). */ if (nclasses > 1) error ("multiple storage classes in declaration of `%s'", name); else if (decl_context != NORMAL && nclasses > 0) { if ((decl_context == PARM || decl_context == CATCHPARM) && (RIDBIT_SETP (RID_REGISTER, specbits) || RIDBIT_SETP (RID_AUTO, specbits))) ; else if (decl_context == FIELD && RIDBIT_SETP (RID_TYPEDEF, specbits)) { /* Processing a typedef declaration nested within a class type definition. */ register tree scanner; register tree previous_declspec; tree loc_typedecl; if (initialized) error ("typedef declaration includes an initializer"); /* To process a class-local typedef declaration, we descend down the chain of declspecs looking for the `typedef' spec. When we find it, we replace it with `static', and then recursively call `grokdeclarator' with the original declarator and with the newly adjusted declspecs. This call should return a FIELD_DECL node with the TREE_TYPE (and other parts) set appropriately. We can then just change the TREE_CODE on that from FIELD_DECL to TYPE_DECL and we're done. */ for (previous_declspec = NULL_TREE, scanner = declspecs; scanner; previous_declspec = scanner, scanner = TREE_CHAIN (scanner)) { if (TREE_VALUE (scanner) == ridpointers[(int) RID_TYPEDEF]) break; } if (previous_declspec) TREE_CHAIN (previous_declspec) = TREE_CHAIN (scanner); else declspecs = TREE_CHAIN (scanner); declspecs = tree_cons (NULL_TREE, ridpointers[(int) RID_STATIC], declspecs); /* In the recursive call to grokdeclarator we need to know whether we are working on a signature-local typedef. */ if (IS_SIGNATURE (current_class_type)) SIGNATURE_GROKKING_TYPEDEF (current_class_type) = 1; loc_typedecl = grokdeclarator (declarator, declspecs, FIELD, 0, NULL_TREE, NULL_TREE); if (previous_declspec) TREE_CHAIN (previous_declspec) = scanner; if (loc_typedecl != error_mark_node) { register int i = sizeof (struct lang_decl_flags) / sizeof (int); register int *pi; TREE_SET_CODE (loc_typedecl, TYPE_DECL); /* This is the same field as DECL_ARGUMENTS, which is set for function typedefs by the above grokdeclarator. */ DECL_NESTED_TYPENAME (loc_typedecl) = 0; pi = (int *) permalloc (sizeof (struct lang_decl_flags)); while (i > 0) pi[--i] = 0; DECL_LANG_SPECIFIC (loc_typedecl) = (struct lang_decl *) pi; } if (IS_SIGNATURE (current_class_type)) { SIGNATURE_GROKKING_TYPEDEF (current_class_type) = 0; if (loc_typedecl != error_mark_node && opaque_typedef) SIGNATURE_HAS_OPAQUE_TYPEDECLS (current_class_type) = 1; } return loc_typedecl; } else if (decl_context == FIELD && (! IS_SIGNATURE (current_class_type) || SIGNATURE_GROKKING_TYPEDEF (current_class_type)) /* C++ allows static class elements */ && RIDBIT_SETP (RID_STATIC, specbits)) /* C++ also allows inlines and signed and unsigned elements, but in those cases we don't come in here. */ ; else { if (decl_context == FIELD) { tree tmp = NULL_TREE; register int op = 0; if (declarator) { tmp = TREE_OPERAND (declarator, 0); op = IDENTIFIER_OPNAME_P (tmp); } error ("storage class specified for %s `%s'", IS_SIGNATURE (current_class_type) ? (op ? "signature member operator" : "signature member function") : (op ? "member operator" : "field"), op ? operator_name_string (tmp) : name); } else error (((decl_context == PARM || decl_context == CATCHPARM) ? "storage class specified for parameter `%s'" : "storage class specified for typename"), name); RIDBIT_RESET (RID_REGISTER, specbits); RIDBIT_RESET (RID_AUTO, specbits); RIDBIT_RESET (RID_EXTERN, specbits); if (decl_context == FIELD && IS_SIGNATURE (current_class_type)) { RIDBIT_RESET (RID_STATIC, specbits); staticp = 0; } } } else if (RIDBIT_SETP (RID_EXTERN, specbits) && initialized && !funcdef_flag) { if (toplevel_bindings_p ()) { /* It's common practice (and completely valid) to have a const be initialized and declared extern. */ if (! constp) warning ("`%s' initialized and declared `extern'", name); } else error ("`%s' has both `extern' and initializer", name); } else if (RIDBIT_SETP (RID_EXTERN, specbits) && funcdef_flag && ! toplevel_bindings_p ()) error ("nested function `%s' declared `extern'", name); else if (toplevel_bindings_p ()) { if (RIDBIT_SETP (RID_AUTO, specbits)) error ("top-level declaration of `%s' specifies `auto'", name); #if 0 if (RIDBIT_SETP (RID_REGISTER, specbits)) error ("top-level declaration of `%s' specifies `register'", name); #endif #if 0 /* I'm not sure under what circumstances we should turn on the extern bit, and under what circumstances we should warn if other bits are turned on. */ if (decl_context == NORMAL && RIDBIT_NOSETP (RID_EXTERN, specbits) && ! root_lang_context_p ()) { RIDBIT_SET (RID_EXTERN, specbits); } #endif } /* Now figure out the structure of the declarator proper. Descend through it, creating more complex types, until we reach the declared identifier (or NULL_TREE, in an absolute declarator). */ while (declarator && TREE_CODE (declarator) != IDENTIFIER_NODE) { /* Each level of DECLARATOR is either an ARRAY_REF (for ...[..]), an INDIRECT_REF (for *...), a CALL_EXPR (for ...(...)), an identifier (for the name being declared) or a null pointer (for the place in an absolute declarator where the name was omitted). For the last two cases, we have just exited the loop. For C++ it could also be a SCOPE_REF (for class :: ...). In this case, we have converted sensible names to types, and those are the values we use to qualify the member name. an ADDR_EXPR (for &...), a BIT_NOT_EXPR (for destructors) At this point, TYPE is the type of elements of an array, or for a function to return, or for a pointer to point to. After this sequence of ifs, TYPE is the type of the array or function or pointer, and DECLARATOR has had its outermost layer removed. */ if (TREE_CODE (type) == ERROR_MARK) { if (TREE_CODE (declarator) == SCOPE_REF) declarator = TREE_OPERAND (declarator, 1); else declarator = TREE_OPERAND (declarator, 0); continue; } if (quals != NULL_TREE && (declarator == NULL_TREE || TREE_CODE (declarator) != SCOPE_REF)) { if (ctype == NULL_TREE && TREE_CODE (type) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (type); if (ctype != NULL_TREE) { #if 0 /* not yet, should get fixed properly later */ tree dummy = make_type_decl (NULL_TREE, type); #else tree dummy = build_decl (TYPE_DECL, NULL_TREE, type); #endif ctype = grok_method_quals (ctype, dummy, quals); type = TREE_TYPE (dummy); quals = NULL_TREE; } } switch (TREE_CODE (declarator)) { case ARRAY_REF: { register tree itype = NULL_TREE; register tree size = TREE_OPERAND (declarator, 1); /* The index is a signed object `sizetype' bits wide. */ tree index_type = signed_type (sizetype); declarator = TREE_OPERAND (declarator, 0); /* Check for some types that there cannot be arrays of. */ if (TYPE_MAIN_VARIANT (type) == void_type_node) { cp_error ("declaration of `%D' as array of voids", dname); type = error_mark_node; } if (TREE_CODE (type) == FUNCTION_TYPE) { cp_error ("declaration of `%D' as array of functions", dname); type = error_mark_node; } /* ARM $8.4.3: Since you can't have a pointer to a reference, you can't have arrays of references. If we allowed them, then we'd be saying x[i] is valid for an array x, but then you'd have to ask: what does `*(x + i)' mean? */ if (TREE_CODE (type) == REFERENCE_TYPE) { if (decl_context == TYPENAME) cp_error ("cannot make arrays of references"); else cp_error ("declaration of `%D' as array of references", dname); type = error_mark_node; } if (TREE_CODE (type) == OFFSET_TYPE) { cp_error ("declaration of `%D' as array of data members", dname); type = error_mark_node; } if (TREE_CODE (type) == METHOD_TYPE) { cp_error ("declaration of `%D' as array of function members", dname); type = error_mark_node; } if (size == error_mark_node) type = error_mark_node; if (type == error_mark_node) continue; if (size) { /* Must suspend_momentary here because the index type may need to live until the end of the function. For example, it is used in the declaration of a variable which requires destructing at the end of the function; then build_vec_delete will need this value. */ int yes = suspend_momentary (); /* might be a cast */ if (TREE_CODE (size) == NOP_EXPR && TREE_TYPE (size) == TREE_TYPE (TREE_OPERAND (size, 0))) size = TREE_OPERAND (size, 0); /* If this is a template parameter, it'll be constant, but we don't know what the value is yet. */ if (TREE_CODE (size) == TEMPLATE_CONST_PARM) goto dont_grok_size; if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE && TREE_CODE (TREE_TYPE (size)) != ENUMERAL_TYPE) { cp_error ("size of array `%D' has non-integer type", dname); size = integer_one_node; } if (TREE_READONLY_DECL_P (size)) size = decl_constant_value (size); if (pedantic && integer_zerop (size)) cp_pedwarn ("ANSI C++ forbids zero-size array `%D'", dname); if (TREE_CONSTANT (size)) { int old_flag_pedantic_errors = flag_pedantic_errors; int old_pedantic = pedantic; pedantic = flag_pedantic_errors = 1; /* Always give overflow errors on array subscripts. */ constant_expression_warning (size); pedantic = old_pedantic; flag_pedantic_errors = old_flag_pedantic_errors; if (INT_CST_LT (size, integer_zero_node)) { cp_error ("size of array `%D' is negative", dname); size = integer_one_node; } } else { if (pedantic) { if (dname) cp_pedwarn ("ANSI C++ forbids variable-size array `%D'", dname); else cp_pedwarn ("ANSI C++ forbids variable-size array"); } /* Make sure the array size remains visibly nonconstant even if it is (eg) a const variable with known value. */ size_varies = 1; } dont_grok_size: itype = fold (build_binary_op (MINUS_EXPR, convert (index_type, size), convert (index_type, integer_one_node), 1)); if (! TREE_CONSTANT (itype)) itype = variable_size (itype); itype = build_index_type (itype); resume_momentary (yes); } /* Build the array type itself, then merge any constancy or volatility into the target type. We must do it in this order to ensure that the TYPE_MAIN_VARIANT field of the array type is set correctly. */ type = build_cplus_array_type (type, itype); if (constp || volatilep) type = cp_build_type_variant (type, constp, volatilep); ctype = NULL_TREE; } break; case CALL_EXPR: { tree arg_types; int funcdecl_p; tree inner_parms = TREE_OPERAND (declarator, 1); tree inner_decl = TREE_OPERAND (declarator, 0); /* Declaring a function type. Make sure we have a valid type for the function to return. */ #if 0 /* Is this an error? Should they be merged into TYPE here? */ if (pedantic && (constp || volatilep)) pedwarn ("function declared to return const or volatile result"); #else /* Merge any constancy or volatility into the function return type. */ if (constp || volatilep) { type = cp_build_type_variant (type, constp, volatilep); if (IS_AGGR_TYPE (type)) build_pointer_type (type); constp = 0; volatilep = 0; } #endif /* Warn about some types functions can't return. */ if (TREE_CODE (type) == FUNCTION_TYPE) { error ("`%s' declared as function returning a function", name); type = integer_type_node; } if (TREE_CODE (type) == ARRAY_TYPE) { error ("`%s' declared as function returning an array", name); type = integer_type_node; } if (inner_decl && TREE_CODE (inner_decl) == SCOPE_REF) inner_decl = TREE_OPERAND (inner_decl, 1); /* Pick up type qualifiers which should be applied to `this'. */ quals = TREE_OPERAND (declarator, 2); /* Say it's a definition only for the CALL_EXPR closest to the identifier. */ funcdecl_p = inner_decl && (TREE_CODE (inner_decl) == IDENTIFIER_NODE || TREE_CODE (inner_decl) == BIT_NOT_EXPR); if (ctype == NULL_TREE && decl_context == FIELD && funcdecl_p && (friendp == 0 || dname == current_class_name)) ctype = current_class_type; if (ctype && return_type == return_conversion) TYPE_HAS_CONVERSION (ctype) = 1; if (ctype && constructor_name (ctype) == dname) { /* We are within a class's scope. If our declarator name is the same as the class name, and we are defining a function, then it is a constructor/destructor, and therefore returns a void type. */ if (flags == DTOR_FLAG) { /* ANSI C++ June 5 1992 WP 12.4.1. A destructor may not be declared const or volatile. A destructor may not be static. */ if (staticp == 2) error ("destructor cannot be static member function"); if (quals) { error ("destructors cannot be declared `const' or `volatile'"); return void_type_node; } if (decl_context == FIELD) { if (! member_function_or_else (ctype, current_class_type, "destructor for alien class `%s' cannot be a member")) return void_type_node; } } else /* it's a constructor. */ { if (explicitp == 1) explicitp = 2; /* ANSI C++ June 5 1992 WP 12.1.2. A constructor may not be declared const or volatile. A constructor may not be virtual. A constructor may not be static. */ if (staticp == 2) error ("constructor cannot be static member function"); if (virtualp) { pedwarn ("constructors cannot be declared virtual"); virtualp = 0; } if (quals) { error ("constructors cannot be declared `const' or `volatile'"); return void_type_node; } { RID_BIT_TYPE tmp_bits; bcopy ((void*)&specbits, (void*)&tmp_bits, sizeof(RID_BIT_TYPE)); RIDBIT_RESET (RID_INLINE, tmp_bits); RIDBIT_RESET (RID_STATIC, tmp_bits); if (RIDBIT_ANY_SET (tmp_bits)) error ("return value type specifier for constructor ignored"); } type = build_pointer_type (ctype); if (decl_context == FIELD && IS_SIGNATURE (current_class_type)) { error ("constructor not allowed in signature"); return void_type_node; } else if (decl_context == FIELD) { if (! member_function_or_else (ctype, current_class_type, "constructor for alien class `%s' cannot be member")) return void_type_node; TYPE_HAS_CONSTRUCTOR (ctype) = 1; if (return_type != return_ctor) return NULL_TREE; } } if (decl_context == FIELD) staticp = 0; } else if (friendp) { if (initialized) error ("can't initialize friend function `%s'", name); if (virtualp) { /* Cannot be both friend and virtual. */ error ("virtual functions cannot be friends"); RIDBIT_RESET (RID_FRIEND, specbits); friendp = 0; } if (decl_context == NORMAL) error ("friend declaration not in class definition"); if (current_function_decl && funcdef_flag) cp_error ("can't define friend function `%s' in a local class definition", name); } /* Traditionally, declaring return type float means double. */ if (flag_traditional && TYPE_MAIN_VARIANT (type) == float_type_node) { type = build_type_variant (double_type_node, TYPE_READONLY (type), TYPE_VOLATILE (type)); } /* Construct the function type and go to the next inner layer of declarator. */ declarator = TREE_OPERAND (declarator, 0); /* FIXME: This is where default args should be fully processed. */ arg_types = grokparms (inner_parms, funcdecl_p ? funcdef_flag : 0); if (declarator) { /* Get past destructors, etc. We know we have one because FLAGS will be non-zero. Complain about improper parameter lists here. */ if (TREE_CODE (declarator) == BIT_NOT_EXPR) { declarator = TREE_OPERAND (declarator, 0); if (strict_prototype == 0 && arg_types == NULL_TREE) arg_types = void_list_node; else if (arg_types == NULL_TREE || arg_types != void_list_node) { error ("destructors cannot be specified with parameters"); arg_types = void_list_node; } } } /* ANSI seems to say that `const int foo ();' does not make the function foo const. */ type = build_function_type (type, flag_traditional ? 0 : arg_types); } break; case ADDR_EXPR: case INDIRECT_REF: /* Filter out pointers-to-references and references-to-references. We can get these if a TYPE_DECL is used. */ if (TREE_CODE (type) == REFERENCE_TYPE) { error ("cannot declare %s to references", TREE_CODE (declarator) == ADDR_EXPR ? "references" : "pointers"); declarator = TREE_OPERAND (declarator, 0); continue; } if (TREE_CODE (type) == OFFSET_TYPE && (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE || TREE_CODE (TREE_TYPE (type)) == REFERENCE_TYPE)) { cp_error ("cannot declare pointer to `%#T' member", TREE_TYPE (type)); type = TREE_TYPE (type); } /* Merge any constancy or volatility into the target type for the pointer. */ if (constp || volatilep) { /* A const or volatile signature pointer/reference is pointing to a const or volatile object, i.e., the `optr' is const or volatile, respectively, not the signature pointer/reference itself. */ if (! IS_SIGNATURE (type)) { type = cp_build_type_variant (type, constp, volatilep); if (IS_AGGR_TYPE (type)) build_pointer_type (type); constp = 0; volatilep = 0; } } if (IS_SIGNATURE (type)) { if (TREE_CODE (declarator) == ADDR_EXPR) { if (CLASSTYPE_METHOD_VEC (type) == NULL_TREE && TYPE_SIZE (type)) cp_warning ("empty signature `%T' used in signature reference declaration", type); #if 0 type = build_signature_reference_type (type, constp, volatilep); #else sorry ("signature reference"); return NULL_TREE; #endif } else { if (CLASSTYPE_METHOD_VEC (type) == NULL_TREE && TYPE_SIZE (type)) cp_warning ("empty signature `%T' used in signature pointer declaration", type); type = build_signature_pointer_type (type, constp, volatilep); } constp = 0; volatilep = 0; } else if (TREE_CODE (declarator) == ADDR_EXPR) { if (TREE_CODE (type) == FUNCTION_TYPE) { error ("cannot declare references to functions; use pointer to function instead"); type = build_pointer_type (type); } else { if (TYPE_MAIN_VARIANT (type) == void_type_node) error ("invalid type: `void &'"); else type = build_reference_type (type); } } else if (TREE_CODE (type) == METHOD_TYPE) { type = build_ptrmemfunc_type (build_pointer_type (type)); } else type = build_pointer_type (type); /* Process a list of type modifier keywords (such as const or volatile) that were given inside the `*' or `&'. */ if (TREE_TYPE (declarator)) { register tree typemodlist; int erred = 0; for (typemodlist = TREE_TYPE (declarator); typemodlist; typemodlist = TREE_CHAIN (typemodlist)) { if (TREE_VALUE (typemodlist) == ridpointers[(int) RID_CONST]) constp++; else if (TREE_VALUE (typemodlist) == ridpointers[(int) RID_VOLATILE]) volatilep++; else if (!erred) { erred = 1; error ("invalid type modifier within %s declarator", TREE_CODE (declarator) == ADDR_EXPR ? "reference" : "pointer"); } } if (constp > 1) pedwarn ("duplicate `const'"); if (volatilep > 1) pedwarn ("duplicate `volatile'"); if (TREE_CODE (declarator) == ADDR_EXPR && (constp || volatilep)) { if (constp) pedwarn ("discarding `const' applied to a reference"); if (volatilep) pedwarn ("discarding `volatile' applied to a reference"); constp = volatilep = 0; } } declarator = TREE_OPERAND (declarator, 0); ctype = NULL_TREE; break; case SCOPE_REF: { /* We have converted type names to NULL_TREE if the name was bogus, or to a _TYPE node, if not. The variable CTYPE holds the type we will ultimately resolve to. The code here just needs to build up appropriate member types. */ tree sname = TREE_OPERAND (declarator, 1); /* Destructors can have their visibilities changed as well. */ if (TREE_CODE (sname) == BIT_NOT_EXPR) sname = TREE_OPERAND (sname, 0); if (TREE_COMPLEXITY (declarator) == 0) /* This needs to be here, in case we are called multiple times. */ ; else if (friendp && (TREE_COMPLEXITY (declarator) < 2)) /* don't fall out into global scope. Hides real bug? --eichin */ ; else if (TREE_COMPLEXITY (declarator) == current_class_depth) { /* This pop_nested_class corresponds to the push_nested_class used to push into class scope for parsing the argument list of a function decl, in qualified_id. */ pop_nested_class (1); TREE_COMPLEXITY (declarator) = current_class_depth; } else my_friendly_abort (16); if (TREE_OPERAND (declarator, 0) == NULL_TREE) { /* We had a reference to a global decl, or perhaps we were given a non-aggregate typedef, in which case we cleared this out, and should just keep going as though it wasn't there. */ declarator = sname; continue; } ctype = TREE_OPERAND (declarator, 0); if (sname == NULL_TREE) goto done_scoping; if (TREE_CODE (sname) == IDENTIFIER_NODE) { /* This is the `standard' use of the scoping operator: basetype :: member . */ if (ctype == current_class_type) { /* class A { void A::f (); }; Is this ill-formed? */ if (pedantic) cp_pedwarn ("extra qualification `%T::' on member `%s' ignored", ctype, name); } else if (TREE_CODE (type) == FUNCTION_TYPE) { if (current_class_type == NULL_TREE || friendp) type = build_cplus_method_type (build_type_variant (ctype, constp, volatilep), TREE_TYPE (type), TYPE_ARG_TYPES (type)); else { cp_error ("cannot declare member function `%T::%s' within `%T'", ctype, name, current_class_type); return void_type_node; } } else if (TYPE_SIZE (ctype) != NULL_TREE || (RIDBIT_SETP (RID_TYPEDEF, specbits))) { tree t; /* have to move this code elsewhere in this function. this code is used for i.e., typedef int A::M; M *pm; It is? How? jason 10/2/94 */ if (explicit_int == -1 && decl_context == FIELD && funcdef_flag == 0) { /* The code in here should only be used to build stuff that will be grokked as access decls. */ t = lookup_field (ctype, sname, 0, 0); if (t) { t = build_lang_field_decl (FIELD_DECL, build_nt (SCOPE_REF, ctype, t), type); DECL_INITIAL (t) = init; return t; } /* No such field, try member functions. */ t = lookup_fnfields (TYPE_BINFO (ctype), sname, 0); if (t) { if (flags == DTOR_FLAG) t = TREE_VALUE (t); else if (CLASSTYPE_METHOD_VEC (ctype) && TREE_VALUE (t) == TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (ctype), 0)) { /* Don't include destructor with constructors. */ t = DECL_CHAIN (TREE_VALUE (t)); if (t == NULL_TREE) cp_error ("`%T' does not have any constructors", ctype); t = build_tree_list (NULL_TREE, t); } t = build_lang_field_decl (FIELD_DECL, build_nt (SCOPE_REF, ctype, t), type); DECL_INITIAL (t) = init; return t; } cp_error ("field `%D' is not a member of structure `%T'", sname, ctype); } if (current_class_type) { cp_error ("cannot declare member `%T::%s' within `%T'", ctype, name, current_class_type); return void_type_node; } type = build_offset_type (ctype, type); } else if (uses_template_parms (ctype)) { enum tree_code c; if (TREE_CODE (type) == FUNCTION_TYPE) { type = build_cplus_method_type (build_type_variant (ctype, constp, volatilep), TREE_TYPE (type), TYPE_ARG_TYPES (type)); c = FUNCTION_DECL; } } else { cp_error ("structure `%T' not yet defined", ctype); return error_mark_node; } declarator = sname; } else if (TREE_CODE (sname) == SCOPE_REF) my_friendly_abort (17); else { done_scoping: declarator = TREE_OPERAND (declarator, 1); if (declarator && TREE_CODE (declarator) == CALL_EXPR) /* In this case, we will deal with it later. */ ; else { if (TREE_CODE (type) == FUNCTION_TYPE) type = build_cplus_method_type (build_type_variant (ctype, constp, volatilep), TREE_TYPE (type), TYPE_ARG_TYPES (type)); else type = build_offset_type (ctype, type); } } } break; case BIT_NOT_EXPR: declarator = TREE_OPERAND (declarator, 0); break; case RECORD_TYPE: case UNION_TYPE: case ENUMERAL_TYPE: declarator = NULL_TREE; break; case ERROR_MARK: declarator = NULL_TREE; break; default: my_friendly_abort (158); } } if (explicitp == 1) { error ("only constructors can be declared `explicit'"); explicitp = 0; } /* Now TYPE has the actual type. */ /* If this is declaring a typedef name, return a TYPE_DECL. */ if (RIDBIT_SETP (RID_MUTABLE, specbits)) { if (constp) { error ("const `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (staticp) { error ("static `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } } if (RIDBIT_SETP (RID_TYPEDEF, specbits)) { tree decl; /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (constp || volatilep) type = cp_build_type_variant (type, constp, volatilep); /* If the user declares "struct {...} foo" then `foo' will have an anonymous name. Fill that name in now. Nothing can refer to it, so nothing needs know about the name change. The TYPE_NAME field was filled in by build_struct_xref. */ if (type != error_mark_node && TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && ANON_AGGRNAME_P (TYPE_IDENTIFIER (type))) { /* replace the anonymous name with the real name everywhere. */ lookup_tag_reverse (type, declarator); TYPE_IDENTIFIER (type) = declarator; if (TYPE_LANG_SPECIFIC (type)) TYPE_WAS_ANONYMOUS (type) = 1; { tree d = TYPE_NAME (type), c = DECL_CONTEXT (d); if (!c) set_nested_typename (d, 0, declarator, type); else if (TREE_CODE (c) == FUNCTION_DECL) set_nested_typename (d, DECL_ASSEMBLER_NAME (c), declarator, type); else set_nested_typename (d, TYPE_NESTED_NAME (c), declarator, type); DECL_ASSEMBLER_NAME (d) = DECL_NAME (d); DECL_ASSEMBLER_NAME (d) = get_identifier (build_overload_name (type, 1, 1)); } } #if 0 /* not yet, should get fixed properly later */ decl = make_type_decl (declarator, type); #else decl = build_decl (TYPE_DECL, declarator, type); #endif if (TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == METHOD_TYPE) { cp_error_at ("typedef name may not be class-qualified", decl); return NULL_TREE; } else if (quals) { if (ctype == NULL_TREE) { if (TREE_CODE (type) != METHOD_TYPE) cp_error_at ("invalid type qualifier for non-method type", decl); else ctype = TYPE_METHOD_BASETYPE (type); } if (ctype != NULL_TREE) grok_method_quals (ctype, decl, quals); } if (RIDBIT_SETP (RID_SIGNED, specbits) || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))) C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1; if (RIDBIT_SETP (RID_MUTABLE, specbits)) { error ("non-object member `%s' cannot be declared mutable", name); } return decl; } /* Detect the case of an array type of unspecified size which came, as such, direct from a typedef name. We must copy the type, so that each identifier gets a distinct type, so that each identifier's size can be controlled separately by its own initializer. */ if (type == typedef_type && TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE) { type = build_cplus_array_type (TREE_TYPE (type), TYPE_DOMAIN (type)); } /* If this is a type name (such as, in a cast or sizeof), compute the type and return it now. */ if (decl_context == TYPENAME) { /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (constp || volatilep) if (IS_SIGNATURE (type)) error ("`const' or `volatile' specified with signature type"); else type = cp_build_type_variant (type, constp, volatilep); /* Special case: "friend class foo" looks like a TYPENAME context. */ if (friendp) { if (volatilep) { cp_error ("`volatile' specified for friend class declaration"); volatilep = 0; } if (inlinep) { cp_error ("`inline' specified for friend class declaration"); inlinep = 0; } /* Only try to do this stuff if we didn't already give up. */ if (type != integer_type_node) { /* A friendly class? */ if (current_class_type) make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type)); else error ("trying to make class `%s' a friend of global scope", TYPE_NAME_STRING (type)); type = void_type_node; } } else if (quals) { #if 0 /* not yet, should get fixed properly later */ tree dummy = make_type_decl (declarator, type); #else tree dummy = build_decl (TYPE_DECL, declarator, type); #endif if (ctype == NULL_TREE) { my_friendly_assert (TREE_CODE (type) == METHOD_TYPE, 159); ctype = TYPE_METHOD_BASETYPE (type); } grok_method_quals (ctype, dummy, quals); type = TREE_TYPE (dummy); } return type; } else if (declarator == NULL_TREE && decl_context != PARM && decl_context != CATCHPARM && TREE_CODE (type) != UNION_TYPE && ! bitfield) { cp_error ("abstract declarator `%T' used as declaration", type); declarator = make_anon_name (); } /* `void' at top level (not within pointer) is allowed only in typedefs or type names. We don't complain about parms either, but that is because a better error message can be made later. */ if (TYPE_MAIN_VARIANT (type) == void_type_node && decl_context != PARM) { if (! declarator) error ("unnamed variable or field declared void"); else if (TREE_CODE (declarator) == IDENTIFIER_NODE) { if (IDENTIFIER_OPNAME_P (declarator)) #if 0 /* How could this happen? */ error ("operator `%s' declared void", operator_name_string (declarator)); #else my_friendly_abort (356); #endif else error ("variable or field `%s' declared void", name); } else error ("variable or field declared void"); type = integer_type_node; } /* Now create the decl, which may be a VAR_DECL, a PARM_DECL or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE. */ { register tree decl; if (decl_context == PARM) { if (ctype) error ("cannot use `::' in parameter declaration"); /* A parameter declared as an array of T is really a pointer to T. One declared as a function is really a pointer to a function. One declared as a member is really a pointer to member. */ if (TREE_CODE (type) == ARRAY_TYPE) { /* Transfer const-ness of array into that of type pointed to. */ type = build_pointer_type (cp_build_type_variant (TREE_TYPE (type), constp, volatilep)); volatilep = constp = 0; } else if (TREE_CODE (type) == FUNCTION_TYPE) type = build_pointer_type (type); else if (TREE_CODE (type) == OFFSET_TYPE) type = build_pointer_type (type); else if (type == void_type_node && declarator) { error ("declaration of `%s' as void", name); return NULL_TREE; } decl = build_decl (PARM_DECL, declarator, type); bad_specifiers (decl, "parameter", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); if (current_class_type && IS_SIGNATURE (current_class_type)) { if (inlinep) error ("parameter of signature member function declared `inline'"); if (RIDBIT_SETP (RID_AUTO, specbits)) error ("parameter of signature member function declared `auto'"); if (RIDBIT_SETP (RID_REGISTER, specbits)) error ("parameter of signature member function declared `register'"); } /* Compute the type actually passed in the parmlist, for the case where there is no prototype. (For example, shorts and chars are passed as ints.) When there is a prototype, this is overridden later. */ DECL_ARG_TYPE (decl) = type_promotes_to (type); } else if (decl_context == FIELD) { if (type == error_mark_node) { /* Happens when declaring arrays of sizes which are error_mark_node, for example. */ decl = NULL_TREE; } else if (TREE_CODE (type) == FUNCTION_TYPE) { int publicp = 0; if (friendp == 0) { if (ctype == NULL_TREE) ctype = current_class_type; if (ctype == NULL_TREE) { cp_error ("can't make `%D' into a method -- not in a class", declarator); return void_type_node; } /* ``A union may [ ... ] not [ have ] virtual functions.'' ARM 9.5 */ if (virtualp && TREE_CODE (ctype) == UNION_TYPE) { cp_error ("function `%D' declared virtual inside a union", declarator); return void_type_node; } if (declarator == ansi_opname[(int) NEW_EXPR] || declarator == ansi_opname[(int) VEC_NEW_EXPR] || declarator == ansi_opname[(int) DELETE_EXPR] || declarator == ansi_opname[(int) VEC_DELETE_EXPR]) { if (virtualp) { cp_error ("`%D' cannot be declared virtual, since it is always static", declarator); virtualp = 0; } } else if (staticp < 2) type = build_cplus_method_type (build_type_variant (ctype, constp, volatilep), TREE_TYPE (type), TYPE_ARG_TYPES (type)); } /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node. */ publicp = (! friendp || RIDBIT_SETP (RID_EXTERN, specbits) || ! (funcdef_flag < 0 || inlinep)); decl = grokfndecl (ctype, type, declarator, virtualp, flags, quals, raises, attrlist, friendp ? -1 : 0, publicp, inlinep); if (decl == NULL_TREE) return NULL_TREE; decl = build_decl_attribute_variant (decl, decl_machine_attr); if (explicitp == 2) DECL_NONCONVERTING_P (decl) = 1; } else if (TREE_CODE (type) == METHOD_TYPE) { /* We only get here for friend declarations of members of other classes. */ /* All method decls are public, so tell grokfndecl to set TREE_PUBLIC, also. */ decl = grokfndecl (ctype, type, declarator, virtualp, flags, quals, raises, attrlist, friendp ? -1 : 0, 1, 0); if (decl == NULL_TREE) return NULL_TREE; } else if (TYPE_SIZE (type) == NULL_TREE && !staticp && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0)) { if (declarator) cp_error ("field `%D' has incomplete type", declarator); else cp_error ("name `%T' has incomplete type", type); /* If we're instantiating a template, tell them which instantiation made the field's type be incomplete. */ if (current_class_type && TYPE_NAME (current_class_type) && IDENTIFIER_TEMPLATE (DECL_NAME (TYPE_NAME (current_class_type))) && declspecs && TREE_VALUE (declspecs) && TREE_TYPE (TREE_VALUE (declspecs)) == type) cp_error (" in instantiation of template `%T'", current_class_type); type = error_mark_node; decl = NULL_TREE; } else { if (friendp) { error ("`%s' is neither function nor method; cannot be declared friend", IDENTIFIER_POINTER (declarator)); friendp = 0; } decl = NULL_TREE; } if (friendp) { /* Friends are treated specially. */ if (ctype == current_class_type) warning ("member functions are implicitly friends of their class"); else { tree t = NULL_TREE; if (decl && DECL_NAME (decl)) t = do_friend (ctype, declarator, decl, last_function_parms, flags, quals); if (t && funcdef_flag) return t; return void_type_node; } } /* Structure field. It may not be a function, except for C++ */ if (decl == NULL_TREE) { if (initialized) { /* Motion 10 at San Diego: If a static const integral data member is initialized with an integral constant expression, the initializer may appear either in the declaration (within the class), or in the definition, but not both. If it appears in the class, the member is a member constant. The file-scope definition is always required. */ if (staticp) { if (pedantic) { if (! constp) cp_pedwarn ("ANSI C++ forbids in-class initialization of non-const static member `%D'", declarator); else if (! INTEGRAL_TYPE_P (type)) cp_pedwarn ("ANSI C++ forbids member constant `%D' of non-integral type `%T'", declarator, type); } } /* Note that initialization of const members is prohibited by the draft ANSI standard, though it appears to be in common practice. 12.6.2: The argument list is used to initialize the named nonstatic member.... This (or an initializer list) is the only way to initialize nonstatic const and reference members. */ else if (pedantic || ! constp) cp_pedwarn ("ANSI C++ forbids initialization of %s `%D'", constp ? "const member" : "member", declarator); } if (staticp || (constp && initialized)) { /* ANSI C++ Apr '95 wp 9.2 */ if (staticp && declarator == current_class_name) cp_pedwarn ("ANSI C++ forbids static member `%D' with same name as enclosing class", declarator); /* C++ allows static class members. All other work for this is done by grokfield. This VAR_DECL is built by build_lang_field_decl. All other VAR_DECLs are built by build_decl. */ decl = build_lang_field_decl (VAR_DECL, declarator, type); TREE_STATIC (decl) = 1; /* In class context, 'static' means public access. */ TREE_PUBLIC (decl) = DECL_EXTERNAL (decl) = !!staticp; } else { decl = build_lang_field_decl (FIELD_DECL, declarator, type); if (RIDBIT_SETP (RID_MUTABLE, specbits)) { DECL_MUTABLE_P (decl) = 1; RIDBIT_RESET (RID_MUTABLE, specbits); } } bad_specifiers (decl, "field", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); } } else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { tree original_name = declarator; int publicp = 0; if (! declarator) return NULL_TREE; if (RIDBIT_SETP (RID_AUTO, specbits)) error ("storage class `auto' invalid for function `%s'", name); else if (RIDBIT_SETP (RID_REGISTER, specbits)) error ("storage class `register' invalid for function `%s'", name); /* Function declaration not at top level. Storage classes other than `extern' are not allowed and `extern' makes no difference. */ if (! toplevel_bindings_p () && ! processing_template_decl && (RIDBIT_SETP (RID_STATIC, specbits) || RIDBIT_SETP (RID_INLINE, specbits)) && pedantic) { if (RIDBIT_SETP (RID_STATIC, specbits)) pedwarn ("storage class `static' invalid for function `%s' declared out of global scope", name); else pedwarn ("storage class `inline' invalid for function `%s' declared out of global scope", name); } if (ctype == NULL_TREE) { if (virtualp) { error ("virtual non-class function `%s'", name); virtualp = 0; } if (current_lang_name == lang_name_cplusplus && ! (IDENTIFIER_LENGTH (original_name) == 4 && IDENTIFIER_POINTER (original_name)[0] == 'm' && strcmp (IDENTIFIER_POINTER (original_name), "main") == 0) && ! (IDENTIFIER_LENGTH (original_name) > 10 && IDENTIFIER_POINTER (original_name)[0] == '_' && IDENTIFIER_POINTER (original_name)[1] == '_' && strncmp (IDENTIFIER_POINTER (original_name)+2, "builtin_", 8) == 0)) /* Plain overloading: will not be grok'd by grokclassfn. */ declarator = build_decl_overload (dname, TYPE_ARG_TYPES (type), 0); } else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2) type = build_cplus_method_type (build_type_variant (ctype, constp, volatilep), TREE_TYPE (type), TYPE_ARG_TYPES (type)); /* Record presence of `static'. In C++, `inline' implies `static'. */ publicp = (ctype != NULL_TREE || RIDBIT_SETP (RID_EXTERN, specbits) || (!RIDBIT_SETP (RID_STATIC, specbits) && !RIDBIT_SETP (RID_INLINE, specbits))); decl = grokfndecl (ctype, type, original_name, virtualp, flags, quals, raises, attrlist, processing_template_decl ? 0 : friendp ? 2 : 1, publicp, inlinep); if (decl == NULL_TREE) return NULL_TREE; if (ctype == NULL_TREE && DECL_LANGUAGE (decl) != lang_c) DECL_ASSEMBLER_NAME (decl) = current_namespace_id (declarator); if (staticp == 1) { int illegal_static = 0; /* Don't allow a static member function in a class, and forbid declaring main to be static. */ if (TREE_CODE (type) == METHOD_TYPE) { cp_pedwarn ("cannot declare member function `%D' to have static linkage", decl); illegal_static = 1; } else if (current_function_decl) { /* FIXME need arm citation */ error ("cannot declare static function inside another function"); illegal_static = 1; } if (illegal_static) { staticp = 0; RIDBIT_RESET (RID_STATIC, specbits); } } } else { /* It's a variable. */ if (decl_context == CATCHPARM) { if (ctype) { ctype = NULL_TREE; error ("cannot use `::' in parameter declaration"); } /* A parameter declared as an array of T is really a pointer to T. One declared as a function is really a pointer to a function. One declared as a member is really a pointer to member. */ if (TREE_CODE (type) == ARRAY_TYPE) { /* Transfer const-ness of array into that of type pointed to. */ type = build_pointer_type (cp_build_type_variant (TREE_TYPE (type), constp, volatilep)); volatilep = constp = 0; } else if (TREE_CODE (type) == FUNCTION_TYPE) type = build_pointer_type (type); else if (TREE_CODE (type) == OFFSET_TYPE) type = build_pointer_type (type); } /* An uninitialized decl with `extern' is a reference. */ decl = grokvardecl (type, declarator, specbits, initialized, constp); bad_specifiers (decl, "variable", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); if (ctype) { DECL_CONTEXT (decl) = ctype; if (staticp == 1) { cp_pedwarn ("static member `%D' re-declared as static", decl); staticp = 0; RIDBIT_RESET (RID_STATIC, specbits); } if (RIDBIT_SETP (RID_REGISTER, specbits) && TREE_STATIC (decl)) { cp_error ("static member `%D' declared `register'", decl); RIDBIT_RESET (RID_REGISTER, specbits); } if (RIDBIT_SETP (RID_EXTERN, specbits) && pedantic) { cp_pedwarn ("cannot explicitly declare member `%#D' to have extern linkage", decl); RIDBIT_RESET (RID_EXTERN, specbits); } } } if (RIDBIT_SETP (RID_MUTABLE, specbits)) { error ("`%s' cannot be declared mutable", name); } /* Record `register' declaration for warnings on & and in case doing stupid register allocation. */ if (RIDBIT_SETP (RID_REGISTER, specbits)) DECL_REGISTER (decl) = 1; if (RIDBIT_SETP (RID_EXTERN, specbits)) DECL_THIS_EXTERN (decl) = 1; if (RIDBIT_SETP (RID_STATIC, specbits)) DECL_THIS_STATIC (decl) = 1; /* Record constancy and volatility. */ if (constp) TREE_READONLY (decl) = TREE_CODE (type) != REFERENCE_TYPE; if (volatilep) { TREE_SIDE_EFFECTS (decl) = 1; TREE_THIS_VOLATILE (decl) = 1; } return decl; } } /* Tell if a parmlist/exprlist looks like an exprlist or a parmlist. An empty exprlist is a parmlist. An exprlist which contains only identifiers at the global level is a parmlist. Otherwise, it is an exprlist. */ int parmlist_is_exprlist (exprs) tree exprs; { if (exprs == NULL_TREE || TREE_PARMLIST (exprs)) return 0; if (toplevel_bindings_p ()) { /* At the global level, if these are all identifiers, then it is a parmlist. */ while (exprs) { if (TREE_CODE (TREE_VALUE (exprs)) != IDENTIFIER_NODE) return 1; exprs = TREE_CHAIN (exprs); } return 0; } return 1; } /* Subroutine of `grokparms'. In a fcn definition, arg types must be complete. C++: also subroutine of `start_function'. */ static void require_complete_types_for_parms (parms) tree parms; { while (parms) { tree type = TREE_TYPE (parms); if (TYPE_SIZE (type) == NULL_TREE) { if (DECL_NAME (parms)) error ("parameter `%s' has incomplete type", IDENTIFIER_POINTER (DECL_NAME (parms))); else error ("parameter has incomplete type"); TREE_TYPE (parms) = error_mark_node; } #if 0 /* If the arg types are incomplete in a declaration, they must include undefined tags. These tags can never be defined in the scope of the declaration, so the types can never be completed, and no call can be compiled successfully. */ /* This is not the right behavior for C++, but not having it is also probably wrong. */ else { /* Now warn if is a pointer to an incomplete type. */ while (TREE_CODE (type) == POINTER_TYPE || TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); type = TYPE_MAIN_VARIANT (type); if (TYPE_SIZE (type) == NULL_TREE) { if (DECL_NAME (parm) != NULL_TREE) warning ("parameter `%s' points to incomplete type", IDENTIFIER_POINTER (DECL_NAME (parm))); else warning ("parameter points to incomplete type"); } } #endif parms = TREE_CHAIN (parms); } } /* Decode the list of parameter types for a function type. Given the list of things declared inside the parens, return a list of types. The list we receive can have three kinds of elements: an IDENTIFIER_NODE for names given without types, a TREE_LIST node for arguments given as typespecs or names with typespecs, or void_type_node, to mark the end of an argument list when additional arguments are not permitted (... was not used). FUNCDEF_FLAG is nonzero for a function definition, 0 for a mere declaration. A nonempty identifier-list gets an error message when FUNCDEF_FLAG is zero. If FUNCDEF_FLAG is 1, then parameter types must be complete. If FUNCDEF_FLAG is -1, then parameter types may be incomplete. If all elements of the input list contain types, we return a list of the types. If all elements contain no type (except perhaps a void_type_node at the end), we return a null list. If some have types and some do not, it is an error, and we return a null list. Also set last_function_parms to either a list of names (IDENTIFIER_NODEs) or a chain of PARM_DECLs. A list of names is converted to a chain of PARM_DECLs by store_parm_decls so that ultimately it is always a chain of decls. Note that in C++, parameters can take default values. These default values are in the TREE_PURPOSE field of the TREE_LIST. It is an error to specify default values which are followed by parameters that have no default values, or an ELLIPSES. For simplicities sake, only parameters which are specified with their types can take on default values. */ static tree grokparms (first_parm, funcdef_flag) tree first_parm; int funcdef_flag; { tree result = NULL_TREE; tree decls = NULL_TREE; if (first_parm != NULL_TREE && TREE_CODE (TREE_VALUE (first_parm)) == IDENTIFIER_NODE) { if (! funcdef_flag) pedwarn ("parameter names (without types) in function declaration"); last_function_parms = first_parm; return NULL_TREE; } else if (first_parm != NULL_TREE && TREE_CODE (TREE_VALUE (first_parm)) != TREE_LIST && TREE_VALUE (first_parm) != void_type_node) my_friendly_abort (145); else { /* Types were specified. This is a list of declarators each represented as a TREE_LIST node. */ register tree parm, chain; int any_init = 0, any_error = 0, saw_void = 0; if (first_parm != NULL_TREE) { tree last_result = NULL_TREE; tree last_decl = NULL_TREE; for (parm = first_parm; parm != NULL_TREE; parm = chain) { tree type, list_node = parm; register tree decl = TREE_VALUE (parm); tree init = TREE_PURPOSE (parm); chain = TREE_CHAIN (parm); /* @@ weak defense against parse errors. */ if (decl != void_type_node && TREE_CODE (decl) != TREE_LIST) { /* Give various messages as the need arises. */ if (TREE_CODE (decl) == STRING_CST) error ("invalid string constant `%s'", TREE_STRING_POINTER (decl)); else if (TREE_CODE (decl) == INTEGER_CST) error ("invalid integer constant in parameter list, did you forget to give parameter name?"); continue; } if (decl != void_type_node) { /* @@ May need to fetch out a `raises' here. */ decl = grokdeclarator (TREE_VALUE (decl), TREE_PURPOSE (decl), PARM, init != NULL_TREE, NULL_TREE, NULL_TREE); if (! decl) continue; type = TREE_TYPE (decl); if (TYPE_MAIN_VARIANT (type) == void_type_node) decl = void_type_node; else if (TREE_CODE (type) == METHOD_TYPE) { if (DECL_NAME (decl)) /* Cannot use `error_with_decl' here because we don't have DECL_CONTEXT set up yet. */ error ("parameter `%s' invalidly declared method type", IDENTIFIER_POINTER (DECL_NAME (decl))); else error ("parameter invalidly declared method type"); type = build_pointer_type (type); TREE_TYPE (decl) = type; } else if (TREE_CODE (type) == OFFSET_TYPE) { if (DECL_NAME (decl)) error ("parameter `%s' invalidly declared offset type", IDENTIFIER_POINTER (DECL_NAME (decl))); else error ("parameter invalidly declared offset type"); type = build_pointer_type (type); TREE_TYPE (decl) = type; } else if (TREE_CODE (type) == RECORD_TYPE && TYPE_LANG_SPECIFIC (type) && CLASSTYPE_ABSTRACT_VIRTUALS (type)) { abstract_virtuals_error (decl, type); any_error = 1; /* seems like a good idea */ } else if (TREE_CODE (type) == RECORD_TYPE && TYPE_LANG_SPECIFIC (type) && IS_SIGNATURE (type)) { signature_error (decl, type); any_error = 1; /* seems like a good idea */ } } if (decl == void_type_node) { if (result == NULL_TREE) { result = void_list_node; last_result = result; } else { TREE_CHAIN (last_result) = void_list_node; last_result = void_list_node; } saw_void = 1; if (chain && (chain != void_list_node || TREE_CHAIN (chain))) error ("`void' in parameter list must be entire list"); break; } /* Since there is a prototype, args are passed in their own types. */ DECL_ARG_TYPE (decl) = TREE_TYPE (decl); #ifdef PROMOTE_PROTOTYPES if ((TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE) && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)) DECL_ARG_TYPE (decl) = integer_type_node; #endif if (!any_error) { if (init) { any_init++; if (TREE_CODE (init) == SAVE_EXPR) PARM_DECL_EXPR (init) = 1; else if (TREE_CODE (init) == VAR_DECL || TREE_CODE (init) == PARM_DECL) { if (IDENTIFIER_LOCAL_VALUE (DECL_NAME (init))) { /* ``Local variables may not be used in default argument expressions.'' dpANSI C++ 8.2.6 */ /* If extern int i; within a function is not considered a local variable, then this code is wrong. */ cp_error ("local variable `%D' may not be used as a default argument", init); any_error = 1; } else if (TREE_READONLY_DECL_P (init)) init = decl_constant_value (init); } else init = require_instantiated_type (type, init, integer_zero_node); } #if 0 /* This is too early to check; trailing parms might be merged in by duplicate_decls. */ else if (any_init) { error ("all trailing parameters must have default arguments"); any_error = 1; } #endif } else init = NULL_TREE; if (decls == NULL_TREE) { decls = decl; last_decl = decls; } else { TREE_CHAIN (last_decl) = decl; last_decl = decl; } if (TREE_PERMANENT (list_node)) { TREE_PURPOSE (list_node) = init; TREE_VALUE (list_node) = type; TREE_CHAIN (list_node) = NULL_TREE; } else list_node = saveable_tree_cons (init, type, NULL_TREE); if (result == NULL_TREE) { result = list_node; last_result = result; } else { TREE_CHAIN (last_result) = list_node; last_result = list_node; } } if (last_result) TREE_CHAIN (last_result) = NULL_TREE; /* If there are no parameters, and the function does not end with `...', then last_decl will be NULL_TREE. */ if (last_decl != NULL_TREE) TREE_CHAIN (last_decl) = NULL_TREE; } } last_function_parms = decls; /* In a fcn definition, arg types must be complete. */ if (funcdef_flag > 0) require_complete_types_for_parms (last_function_parms); return result; } /* These memoizing functions keep track of special properties which a class may have. `grok_ctor_properties' notices whether a class has a constructor of the form X(X&), and also complains if the class has a constructor of the form X(X). `grok_op_properties' takes notice of the various forms of operator= which are defined, as well as what sorts of type conversion may apply. Both functions take a FUNCTION_DECL as an argument. */ int grok_ctor_properties (ctype, decl) tree ctype, decl; { tree parmtypes = FUNCTION_ARG_CHAIN (decl); tree parmtype = parmtypes ? TREE_VALUE (parmtypes) : void_type_node; /* When a type has virtual baseclasses, a magical first int argument is added to any ctor so we can tell if the class has been initialized yet. This could screw things up in this function, so we deliberately ignore the leading int if we're in that situation. */ if (parmtypes && TREE_VALUE (parmtypes) == integer_type_node && TYPE_USES_VIRTUAL_BASECLASSES (ctype)) { parmtypes = TREE_CHAIN (parmtypes); parmtype = TREE_VALUE (parmtypes); } if (TREE_CODE (parmtype) == REFERENCE_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (parmtype)) == ctype) { if (TREE_CHAIN (parmtypes) == NULL_TREE || TREE_CHAIN (parmtypes) == void_list_node || TREE_PURPOSE (TREE_CHAIN (parmtypes))) { TYPE_HAS_INIT_REF (ctype) = 1; if (TYPE_READONLY (TREE_TYPE (parmtype))) TYPE_HAS_CONST_INIT_REF (ctype) = 1; } else TYPE_GETS_INIT_AGGR (ctype) = 1; } else if (TYPE_MAIN_VARIANT (parmtype) == ctype) { if (TREE_CHAIN (parmtypes) != NULL_TREE && TREE_CHAIN (parmtypes) == void_list_node) { cp_error ("invalid constructor; you probably meant `%T (%T&)'", ctype, ctype); SET_IDENTIFIER_ERROR_LOCUS (DECL_NAME (decl), ctype); return 0; } else TYPE_GETS_INIT_AGGR (ctype) = 1; } else if (TREE_CODE (parmtype) == VOID_TYPE || TREE_PURPOSE (parmtypes) != NULL_TREE) TYPE_HAS_DEFAULT_CONSTRUCTOR (ctype) = 1; return 1; } /* An operator with this name can be either unary or binary. */ static int ambi_op_p (name) tree name; { return (name == ansi_opname [(int) INDIRECT_REF] || name == ansi_opname [(int) ADDR_EXPR] || name == ansi_opname [(int) NEGATE_EXPR] || name == ansi_opname[(int) POSTINCREMENT_EXPR] || name == ansi_opname[(int) POSTDECREMENT_EXPR] || name == ansi_opname [(int) CONVERT_EXPR]); } /* An operator with this name can only be unary. */ static int unary_op_p (name) tree name; { return (name == ansi_opname [(int) TRUTH_NOT_EXPR] || name == ansi_opname [(int) BIT_NOT_EXPR] || name == ansi_opname [(int) COMPONENT_REF] || OPERATOR_TYPENAME_P (name)); } /* Do a little sanity-checking on how they declared their operator. */ static void grok_op_properties (decl, virtualp, friendp) tree decl; int virtualp, friendp; { tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE); tree name = DECL_NAME (decl); if (current_class_type == NULL_TREE) friendp = 1; if (! friendp) { if (name == ansi_opname[(int) MODIFY_EXPR]) TYPE_HAS_ASSIGNMENT (current_class_type) = 1; else if (name == ansi_opname[(int) CALL_EXPR]) TYPE_OVERLOADS_CALL_EXPR (current_class_type) = 1; else if (name == ansi_opname[(int) ARRAY_REF]) TYPE_OVERLOADS_ARRAY_REF (current_class_type) = 1; else if (name == ansi_opname[(int) COMPONENT_REF] || name == ansi_opname[(int) MEMBER_REF]) TYPE_OVERLOADS_ARROW (current_class_type) = 1; else if (name == ansi_opname[(int) NEW_EXPR]) TYPE_GETS_NEW (current_class_type) |= 1; else if (name == ansi_opname[(int) DELETE_EXPR]) TYPE_GETS_DELETE (current_class_type) |= 1; else if (name == ansi_opname[(int) VEC_NEW_EXPR]) TYPE_GETS_NEW (current_class_type) |= 2; else if (name == ansi_opname[(int) VEC_DELETE_EXPR]) TYPE_GETS_DELETE (current_class_type) |= 2; } if (name == ansi_opname[(int) NEW_EXPR] || name == ansi_opname[(int) VEC_NEW_EXPR]) { /* When the compiler encounters the definition of A::operator new, it doesn't look at the class declaration to find out if it's static. */ if (methodp) revert_static_member_fn (&decl, NULL, NULL); /* Take care of function decl if we had syntax errors. */ if (argtypes == NULL_TREE) TREE_TYPE (decl) = build_function_type (ptr_type_node, hash_tree_chain (integer_type_node, void_list_node)); else TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl)); } else if (name == ansi_opname[(int) DELETE_EXPR] || name == ansi_opname[(int) VEC_DELETE_EXPR]) { if (methodp) revert_static_member_fn (&decl, NULL, NULL); if (argtypes == NULL_TREE) TREE_TYPE (decl) = build_function_type (void_type_node, hash_tree_chain (ptr_type_node, void_list_node)); else { TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl)); if (! friendp && name == ansi_opname[(int) VEC_DELETE_EXPR] && (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (decl))) != void_list_node)) TYPE_VEC_DELETE_TAKES_SIZE (current_class_type) = 1; } } else { /* An operator function must either be a non-static member function or have at least one parameter of a class, a reference to a class, an enumeration, or a reference to an enumeration. 13.4.0.6 */ if (! methodp || DECL_STATIC_FUNCTION_P (decl)) { if (OPERATOR_TYPENAME_P (name) || name == ansi_opname[(int) CALL_EXPR] || name == ansi_opname[(int) MODIFY_EXPR] || name == ansi_opname[(int) COMPONENT_REF] || name == ansi_opname[(int) ARRAY_REF]) cp_error ("`%D' must be a nonstatic member function", decl); else { tree p = argtypes; if (DECL_STATIC_FUNCTION_P (decl)) cp_error ("`%D' must be either a non-static member function or a non-member function", decl); if (p) for (; TREE_VALUE (p) != void_type_node ; p = TREE_CHAIN (p)) { tree arg = TREE_VALUE (p); if (TREE_CODE (arg) == REFERENCE_TYPE) arg = TREE_TYPE (arg); /* This lets bad template code slip through. */ if (IS_AGGR_TYPE (arg) || TREE_CODE (arg) == ENUMERAL_TYPE || TREE_CODE (arg) == TEMPLATE_TYPE_PARM) goto foundaggr; } cp_error ("`%D' must have an argument of class or enumerated type", decl); foundaggr: ; } } if (name == ansi_opname[(int) CALL_EXPR] || name == ansi_opname[(int) METHOD_CALL_EXPR]) return; /* no restrictions on args */ if (IDENTIFIER_TYPENAME_P (name)) { tree t = TREE_TYPE (name); if (TREE_CODE (t) == VOID_TYPE) pedwarn ("void is not a valid type conversion operator"); else if (! friendp) { int ref = (TREE_CODE (t) == REFERENCE_TYPE); char *what = 0; if (ref) t = TYPE_MAIN_VARIANT (TREE_TYPE (t)); if (t == current_class_type) what = "the same type"; else if (IS_AGGR_TYPE (t) && DERIVED_FROM_P (t, current_class_type)) what = "a base class"; if (what) warning ("conversion to %s%s will never use a type conversion operator", ref ? "a reference to " : "", what); } } if (name == ansi_opname[(int) MODIFY_EXPR]) { tree parmtype; if (list_length (argtypes) != 3 && methodp) { cp_error ("`%D' must take exactly one argument", decl); return; } parmtype = TREE_VALUE (TREE_CHAIN (argtypes)); if (copy_assignment_arg_p (parmtype, virtualp) && ! friendp) { TYPE_HAS_ASSIGN_REF (current_class_type) = 1; if (TREE_CODE (parmtype) != REFERENCE_TYPE || TYPE_READONLY (TREE_TYPE (parmtype))) TYPE_HAS_CONST_ASSIGN_REF (current_class_type) = 1; #if 0 /* Too soon; done in grok_function_init */ if (DECL_ABSTRACT_VIRTUAL_P (decl)) TYPE_HAS_ABSTRACT_ASSIGN_REF (current_class_type) = 1; #endif } } else if (name == ansi_opname[(int) COND_EXPR]) { /* 13.4.0.3 */ pedwarn ("ANSI C++ prohibits overloading operator ?:"); if (list_length (argtypes) != 4) cp_error ("`%D' must take exactly three arguments", decl); } else if (ambi_op_p (name)) { if (list_length (argtypes) == 2) /* prefix */; else if (list_length (argtypes) == 3) { if ((name == ansi_opname[(int) POSTINCREMENT_EXPR] || name == ansi_opname[(int) POSTDECREMENT_EXPR]) && TREE_VALUE (TREE_CHAIN (argtypes)) != integer_type_node) { if (methodp) cp_error ("postfix `%D' must take `int' as its argument", decl); else cp_error ("postfix `%D' must take `int' as its second argument", decl); } } else { if (methodp) cp_error ("`%D' must take either zero or one argument", decl); else cp_error ("`%D' must take either one or two arguments", decl); } } else if (unary_op_p (name)) { if (list_length (argtypes) != 2) { if (methodp) cp_error ("`%D' must take `void'", decl); else cp_error ("`%D' must take exactly one argument", decl); } } else /* if (binary_op_p (name)) */ { if (list_length (argtypes) != 3) { if (methodp) cp_error ("`%D' must take exactly one argument", decl); else cp_error ("`%D' must take exactly two arguments", decl); } } /* 13.4.0.8 */ if (argtypes) for (; argtypes != void_list_node ; argtypes = TREE_CHAIN (argtypes)) if (TREE_PURPOSE (argtypes)) { TREE_PURPOSE (argtypes) = NULL_TREE; if (name == ansi_opname[(int) POSTINCREMENT_EXPR] || name == ansi_opname[(int) POSTDECREMENT_EXPR]) { if (pedantic) cp_pedwarn ("`%D' cannot have default arguments", decl); } else cp_error ("`%D' cannot have default arguments", decl); } } } /* Get the struct, enum or union (CODE says which) with tag NAME. Define the tag as a forward-reference if it is not defined. C++: If a class derivation is given, process it here, and report an error if multiple derivation declarations are not identical. If this is a definition, come in through xref_tag and only look in the current frame for the name (since C++ allows new names in any scope.) */ tree xref_tag (code_type_node, name, binfo, globalize) tree code_type_node; tree name, binfo; int globalize; { enum tag_types tag_code; enum tree_code code; int temp = 0; int i; register tree ref, t; struct binding_level *b = inner_binding_level; tag_code = (enum tag_types) TREE_INT_CST_LOW (code_type_node); switch (tag_code) { case record_type: case class_type: case signature_type: code = RECORD_TYPE; break; case union_type: code = UNION_TYPE; break; case enum_type: code = ENUMERAL_TYPE; break; default: my_friendly_abort (18); } /* If a cross reference is requested, look up the type already defined for this tag and return it. */ t = IDENTIFIER_TYPE_VALUE (name); if (t && TREE_CODE (t) != code) t = NULL_TREE; if (! globalize) { /* If we know we are defining this tag, only look it up in this scope * and don't try to find it as a type. */ if (t && TYPE_CONTEXT(t) && TREE_MANGLED (name)) ref = t; else ref = lookup_tag (code, name, b, 1); } else { if (t) ref = t; else ref = lookup_tag (code, name, b, 0); if (! ref) { /* Try finding it as a type declaration. If that wins, use it. */ ref = lookup_name (name, 1); if (ref && TREE_CODE (ref) == TYPE_DECL && TREE_CODE (TREE_TYPE (ref)) == code) ref = TREE_TYPE (ref); else ref = NULL_TREE; } } push_obstacks_nochange (); if (! ref) { /* If no such tag is yet defined, create a forward-reference node and record it as the "definition". When a real declaration of this type is found, the forward-reference will be altered into a real type. */ /* In C++, since these migrate into the global scope, we must build them on the permanent obstack. */ temp = allocation_temporary_p (); if (temp) end_temporary_allocation (); if (code == ENUMERAL_TYPE) { ref = make_node (ENUMERAL_TYPE); /* Give the type a default layout like unsigned int to avoid crashing if it does not get defined. */ TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node); TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node); TREE_UNSIGNED (ref) = 1; TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node); TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node); TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node); /* Enable us to recognize when a type is created in class context. To do nested classes correctly, this should probably be cleared out when we leave this classes scope. Currently this in only done in `start_enum'. */ pushtag (name, ref, globalize); if (flag_cadillac) cadillac_start_enum (ref); } else { struct binding_level *old_b = class_binding_level; ref = make_lang_type (code); if (tag_code == signature_type) { SET_SIGNATURE (ref); /* Since a signature type will be turned into the type of signature tables, it's not only an interface. */ CLASSTYPE_INTERFACE_ONLY (ref) = 0; SET_CLASSTYPE_INTERFACE_KNOWN (ref); /* A signature doesn't have a vtable. */ CLASSTYPE_VTABLE_NEEDS_WRITING (ref) = 0; } #ifdef NONNESTED_CLASSES /* Class types don't nest the way enums do. */ class_binding_level = (struct binding_level *)0; #endif pushtag (name, ref, globalize); class_binding_level = old_b; if (flag_cadillac) cadillac_start_struct (ref); } } else { /* If it no longer looks like a nested type, make sure it's in global scope. */ if (b == global_binding_level && !class_binding_level && IDENTIFIER_GLOBAL_VALUE (name) == NULL_TREE) IDENTIFIER_GLOBAL_VALUE (name) = TYPE_NAME (ref); #if 0 if (binfo) { tree tt1 = binfo; tree tt2 = TYPE_BINFO_BASETYPES (ref); if (TYPE_BINFO_BASETYPES (ref)) for (i = 0; tt1; i++, tt1 = TREE_CHAIN (tt1)) if (TREE_VALUE (tt1) != TYPE_IDENTIFIER (BINFO_TYPE (TREE_VEC_ELT (tt2, i)))) { cp_error ("redeclaration of derivation chain of type `%#T'", ref); break; } if (tt1 == NULL_TREE) /* The user told us something we already knew. */ goto just_return; /* In C++, since these migrate into the global scope, we must build them on the permanent obstack. */ end_temporary_allocation (); } #endif } if (binfo) xref_basetypes (code_type_node, name, ref, binfo); just_return: /* Until the type is defined, tentatively accept whatever structure tag the user hands us. */ if (TYPE_SIZE (ref) == NULL_TREE && ref != current_class_type /* Have to check this, in case we have contradictory tag info. */ && IS_AGGR_TYPE_CODE (TREE_CODE (ref))) { if (tag_code == class_type) CLASSTYPE_DECLARED_CLASS (ref) = 1; else if (tag_code == record_type || tag_code == signature_type) CLASSTYPE_DECLARED_CLASS (ref) = 0; } pop_obstacks (); return ref; } void xref_basetypes (code_type_node, name, ref, binfo) tree code_type_node; tree name, ref; tree binfo; { /* In the declaration `A : X, Y, ... Z' we mark all the types (A, X, Y, ..., Z) so we can check for duplicates. */ tree binfos; int i, len; enum tag_types tag_code = (enum tag_types) TREE_INT_CST_LOW (code_type_node); if (tag_code == union_type) { cp_error ("derived union `%T' invalid", ref); return; } len = list_length (binfo); push_obstacks (TYPE_OBSTACK (ref), TYPE_OBSTACK (ref)); SET_CLASSTYPE_MARKED (ref); BINFO_BASETYPES (TYPE_BINFO (ref)) = binfos = make_tree_vec (len); for (i = 0; binfo; binfo = TREE_CHAIN (binfo)) { /* The base of a derived struct is public by default. */ int via_public = (TREE_PURPOSE (binfo) == (tree)access_public || TREE_PURPOSE (binfo) == (tree)access_public_virtual || (tag_code != class_type && (TREE_PURPOSE (binfo) == (tree)access_default || TREE_PURPOSE (binfo) == (tree)access_default_virtual))); int via_protected = TREE_PURPOSE (binfo) == (tree)access_protected; int via_virtual = (TREE_PURPOSE (binfo) == (tree)access_private_virtual || TREE_PURPOSE (binfo) == (tree)access_public_virtual || TREE_PURPOSE (binfo) == (tree)access_default_virtual); tree basetype = TREE_TYPE (TREE_VALUE (binfo)); tree base_binfo; GNU_xref_hier (IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (TREE_VALUE (binfo)), via_public, via_virtual, 0); if (basetype && TREE_CODE (basetype) == TYPE_DECL) basetype = TREE_TYPE (basetype); if (!basetype || TREE_CODE (basetype) != RECORD_TYPE) { cp_error ("base type `%T' fails to be a struct or class type", TREE_VALUE (binfo)); continue; } #if 1 /* This code replaces similar code in layout_basetypes. */ else if (TYPE_INCOMPLETE (basetype)) { cp_error ("base class `%T' has incomplete type", basetype); continue; } #endif else { if (CLASSTYPE_MARKED (basetype)) { if (basetype == ref) cp_error ("recursive type `%T' undefined", basetype); else cp_error ("duplicate base type `%T' invalid", basetype); continue; } /* Note that the BINFO records which describe individual inheritances are *not* shared in the lattice! They cannot be shared because a given baseclass may be inherited with different `accessibility' by different derived classes. (Each BINFO record describing an individual inheritance contains flags which say what the `accessibility' of that particular inheritance is.) */ base_binfo = make_binfo (integer_zero_node, basetype, TYPE_BINFO_VTABLE (basetype), TYPE_BINFO_VIRTUALS (basetype), NULL_TREE); TREE_VEC_ELT (binfos, i) = base_binfo; TREE_VIA_PUBLIC (base_binfo) = via_public; TREE_VIA_PROTECTED (base_binfo) = via_protected; TREE_VIA_VIRTUAL (base_binfo) = via_virtual; BINFO_INHERITANCE_CHAIN (base_binfo) = TYPE_BINFO (ref); SET_CLASSTYPE_MARKED (basetype); #if 0 /* XYZZY TEST VIRTUAL BASECLASSES */ if (CLASSTYPE_N_BASECLASSES (basetype) == NULL_TREE && TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype) && via_virtual == 0) { warning ("making type `%s' a virtual baseclass", TYPE_NAME_STRING (basetype)); via_virtual = 1; } #endif /* We are free to modify these bits because they are meaningless at top level, and BASETYPE is a top-level type. */ if (via_virtual || TYPE_USES_VIRTUAL_BASECLASSES (basetype)) { TYPE_USES_VIRTUAL_BASECLASSES (ref) = 1; TYPE_USES_COMPLEX_INHERITANCE (ref) = 1; } TYPE_OVERLOADS_METHOD_CALL_EXPR (ref) |= TYPE_OVERLOADS_METHOD_CALL_EXPR (basetype); TYPE_GETS_NEW (ref) |= TYPE_GETS_NEW (basetype); TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype); CLASSTYPE_LOCAL_TYPEDECLS (ref) |= CLASSTYPE_LOCAL_TYPEDECLS (basetype); i += 1; } } if (i) TREE_VEC_LENGTH (binfos) = i; else BINFO_BASETYPES (TYPE_BINFO (ref)) = NULL_TREE; if (i > 1) TYPE_USES_MULTIPLE_INHERITANCE (ref) = 1; else if (i == 1) TYPE_USES_MULTIPLE_INHERITANCE (ref) = TYPE_USES_MULTIPLE_INHERITANCE (BINFO_TYPE (TREE_VEC_ELT (binfos, 0))); if (TYPE_USES_MULTIPLE_INHERITANCE (ref)) TYPE_USES_COMPLEX_INHERITANCE (ref) = 1; /* Unmark all the types. */ while (--i >= 0) CLEAR_CLASSTYPE_MARKED (BINFO_TYPE (TREE_VEC_ELT (binfos, i))); CLEAR_CLASSTYPE_MARKED (ref); pop_obstacks (); } static tree current_local_enum = NULL_TREE; /* Begin compiling the definition of an enumeration type. NAME is its name (or null if anonymous). Returns the type object, as yet incomplete. Also records info about it so that build_enumerator may be used to declare the individual values as they are read. */ tree start_enum (name) tree name; { register tree enumtype = NULL_TREE; struct binding_level *b = inner_binding_level; /* If this is the real definition for a previous forward reference, fill in the contents in the same object that used to be the forward reference. */ if (name != NULL_TREE) enumtype = lookup_tag (ENUMERAL_TYPE, name, b, 1); if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE) cp_error ("multiple definition of enum `%T'", enumtype); else { enumtype = make_node (ENUMERAL_TYPE); pushtag (name, enumtype, 0); } if (current_class_type) TREE_ADDRESSABLE (b->tags) = 1; current_local_enum = NULL_TREE; #if 0 /* This stuff gets cleared in finish_enum anyway. */ if (TYPE_VALUES (enumtype) != NULL_TREE) /* Completely replace its old definition. The old enumerators remain defined, however. */ TYPE_VALUES (enumtype) = NULL_TREE; /* Initially, set up this enum as like `int' so that we can create the enumerators' declarations and values. Later on, the precision of the type may be changed and it may be laid out again. */ TYPE_PRECISION (enumtype) = TYPE_PRECISION (integer_type_node); TYPE_SIZE (enumtype) = NULL_TREE; fixup_signed_type (enumtype); #endif /* We copy this value because enumerated type constants are really of the type of the enumerator, not integer_type_node. */ enum_next_value = copy_node (integer_zero_node); enum_overflow = 0; GNU_xref_decl (current_function_decl, enumtype); return enumtype; } /* After processing and defining all the values of an enumeration type, install their decls in the enumeration type and finish it off. ENUMTYPE is the type object and VALUES a list of name-value pairs. Returns ENUMTYPE. */ tree finish_enum (enumtype, values) register tree enumtype, values; { register tree minnode, maxnode; /* Calculate the maximum value of any enumerator in this type. */ if (values) { register tree pair; register tree value = DECL_INITIAL (TREE_VALUE (values)); /* Speed up the main loop by performing some precalculations */ TREE_TYPE (TREE_VALUE (values)) = enumtype; TREE_TYPE (value) = enumtype; TREE_VALUE (values) = value; minnode = maxnode = value; for (pair = TREE_CHAIN (values); pair; pair = TREE_CHAIN (pair)) { value = DECL_INITIAL (TREE_VALUE (pair)); TREE_TYPE (TREE_VALUE (pair)) = enumtype; TREE_TYPE (value) = enumtype; TREE_VALUE (pair) = value; if (tree_int_cst_lt (maxnode, value)) maxnode = value; else if (tree_int_cst_lt (value, minnode)) minnode = value; } } else maxnode = minnode = integer_zero_node; TYPE_VALUES (enumtype) = values; { int unsignedp = tree_int_cst_sgn (minnode) >= 0; int lowprec = min_precision (minnode, unsignedp); int highprec = min_precision (maxnode, unsignedp); int precision = MAX (lowprec, highprec); TYPE_SIZE (enumtype) = NULL_TREE; /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE according to `precision'. */ TYPE_PRECISION (enumtype) = precision; if (unsignedp) fixup_unsigned_type (enumtype); else fixup_signed_type (enumtype); if (flag_short_enums || precision > TYPE_PRECISION (integer_type_node)) /* Use the width of the narrowest normal C type which is wide enough. */ TYPE_PRECISION (enumtype) = TYPE_PRECISION (type_for_size (precision, 1)); else TYPE_PRECISION (enumtype) = TYPE_PRECISION (integer_type_node); TYPE_SIZE (enumtype) = 0; layout_type (enumtype); } if (flag_cadillac) cadillac_finish_enum (enumtype); { register tree tem; /* Fix up all variant types of this enum type. */ for (tem = TYPE_MAIN_VARIANT (enumtype); tem; tem = TYPE_NEXT_VARIANT (tem)) { TYPE_VALUES (tem) = TYPE_VALUES (enumtype); TYPE_MIN_VALUE (tem) = TYPE_MIN_VALUE (enumtype); TYPE_MAX_VALUE (tem) = TYPE_MAX_VALUE (enumtype); TYPE_SIZE (tem) = TYPE_SIZE (enumtype); TYPE_MODE (tem) = TYPE_MODE (enumtype); TYPE_PRECISION (tem) = TYPE_PRECISION (enumtype); TYPE_ALIGN (tem) = TYPE_ALIGN (enumtype); TREE_UNSIGNED (tem) = TREE_UNSIGNED (enumtype); } } /* Finish debugging output for this type. */ #if 0 /* @@ Do we ever generate generate ENUMERAL_TYPE nodes for which debugging information should *not* be generated? I think not. */ if (! DECL_IGNORED_P (TYPE_NAME (enumtype))) #endif rest_of_type_compilation (enumtype, global_bindings_p ()); return enumtype; } /* Build and install a CONST_DECL for one value of the current enumeration type (one that was begun with start_enum). Return a tree-list containing the name and its value. Assignment of sequential values by default is handled here. */ tree build_enumerator (name, value) tree name, value; { tree decl, result; /* Change this to zero if we find VALUE is not shareable. */ int shareable = 1; /* Remove no-op casts from the value. */ if (value) STRIP_TYPE_NOPS (value); /* Validate and default VALUE. */ if (value != NULL_TREE) { if (TREE_READONLY_DECL_P (value)) { value = decl_constant_value (value); shareable = 0; } if (TREE_CODE (value) == INTEGER_CST) { value = default_conversion (value); constant_expression_warning (value); } else { cp_error ("enumerator value for `%D' not integer constant", name); value = NULL_TREE; } } /* The order of things is reversed here so that we can check for possible sharing of enum values, to keep that from happening. */ /* Default based on previous value. */ if (value == NULL_TREE) { value = enum_next_value; if (enum_overflow) cp_error ("overflow in enumeration values at `%D'", name); } /* Remove no-op casts from the value. */ if (value) STRIP_TYPE_NOPS (value); /* Make up for hacks in lex.c. */ if (value == integer_zero_node) value = build_int_2 (0, 0); else if (value == integer_one_node) value = build_int_2 (1, 0); else if (TREE_CODE (value) == INTEGER_CST && (shareable == 0 || TREE_CODE (TREE_TYPE (value)) == ENUMERAL_TYPE)) { value = copy_node (value); TREE_TYPE (value) = integer_type_node; } /* C++ associates enums with global, function, or class declarations. */ decl = current_scope (); if (decl && decl == current_class_type) { /* This enum declaration is local to the class, so we must put it in that class's list of decls. */ decl = build_lang_field_decl (CONST_DECL, name, integer_type_node); DECL_INITIAL (decl) = value; TREE_READONLY (decl) = 1; pushdecl_class_level (decl); TREE_CHAIN (decl) = current_local_enum; current_local_enum = decl; } else { /* It's a global enum, or it's local to a function. (Note local to a function could mean local to a class method. */ decl = build_decl (CONST_DECL, name, integer_type_node); DECL_INITIAL (decl) = value; pushdecl (decl); GNU_xref_decl (current_function_decl, decl); } /* Set basis for default for next value. */ enum_next_value = build_binary_op_nodefault (PLUS_EXPR, value, integer_one_node, PLUS_EXPR); enum_overflow = tree_int_cst_lt (enum_next_value, value); if (enum_next_value == integer_one_node) enum_next_value = copy_node (enum_next_value); result = saveable_tree_cons (name, decl, NULL_TREE); return result; } tree grok_enum_decls (type, decl) tree type, decl; { tree d = current_local_enum; if (d == NULL_TREE) return decl; while (1) { TREE_TYPE (d) = type; if (TREE_CHAIN (d) == NULL_TREE) { TREE_CHAIN (d) = decl; break; } d = TREE_CHAIN (d); } decl = current_local_enum; current_local_enum = NULL_TREE; return decl; } /* Create the FUNCTION_DECL for a function definition. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the function's name and the type it returns, but twisted together in a fashion that parallels the syntax of C. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. Returns 1 on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. For C++, we must first check whether that datum makes any sense. For example, "class A local_a(1,2);" means that variable local_a is an aggregate of type A, which should have a constructor applied to it with the argument list [1, 2]. @@ There is currently no way to retrieve the storage @@ allocated to FUNCTION (or all of its parms) if we return @@ something we had previously. */ int start_function (declspecs, declarator, raises, attrs, pre_parsed_p) tree declspecs, declarator, raises, attrs; int pre_parsed_p; { tree decl1, olddecl; tree ctype = NULL_TREE; tree fntype; tree restype; extern int have_extern_spec; extern int used_extern_spec; int doing_friend = 0; /* Sanity check. */ my_friendly_assert (TREE_VALUE (void_list_node) == void_type_node, 160); my_friendly_assert (TREE_CHAIN (void_list_node) == NULL_TREE, 161); /* Assume, until we see it does. */ current_function_returns_value = 0; current_function_returns_null = 0; warn_about_return_type = 0; named_labels = 0; shadowed_labels = 0; current_function_assigns_this = 0; current_function_just_assigned_this = 0; current_function_parms_stored = 0; original_result_rtx = NULL_RTX; current_function_obstack_index = 0; current_function_obstack_usage = 0; base_init_expr = NULL_TREE; protect_list = NULL_TREE; current_base_init_list = NULL_TREE; current_member_init_list = NULL_TREE; ctor_label = dtor_label = NULL_TREE; clear_temp_name (); /* This should only be done once on the top most decl. */ if (have_extern_spec && !used_extern_spec) { declspecs = decl_tree_cons (NULL_TREE, get_identifier ("extern"), declspecs); used_extern_spec = 1; } if (pre_parsed_p) { decl1 = declarator; if (! DECL_ARGUMENTS (decl1) && !DECL_STATIC_FUNCTION_P (decl1) && DECL_CONTEXT (decl1) && DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl1))) && IDENTIFIER_TEMPLATE (DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl1))))) { cp_error ("redeclaration of `%#D'", decl1); if (IDENTIFIER_CLASS_VALUE (DECL_NAME (decl1))) cp_error_at ("previous declaration here", IDENTIFIER_CLASS_VALUE (DECL_NAME (decl1))); else if (IDENTIFIER_GLOBAL_VALUE (DECL_NAME (decl1))) cp_error_at ("previous declaration here", IDENTIFIER_GLOBAL_VALUE (DECL_NAME (decl1))); } /* This can happen if a template class is instantiated as part of the specialization of a member function which is defined in the class template. We should just use the specialization, but for now give an error. */ if (DECL_INITIAL (decl1) != NULL_TREE) { cp_error_at ("specialization of `%#D' not supported", decl1); cp_error ("when defined in the class template body", decl1); } last_function_parms = DECL_ARGUMENTS (decl1); last_function_parm_tags = NULL_TREE; fntype = TREE_TYPE (decl1); if (TREE_CODE (fntype) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (fntype); /* ANSI C++ June 5 1992 WP 11.4.5. A friend function defined in a class is in the (lexical) scope of the class in which it is defined. */ if (!ctype && DECL_FRIEND_P (decl1)) { ctype = DECL_CLASS_CONTEXT (decl1); /* CTYPE could be null here if we're dealing with a template; for example, `inline friend float foo()' inside a template will have no CTYPE set. */ if (ctype && TREE_CODE (ctype) != RECORD_TYPE) ctype = NULL_TREE; else doing_friend = 1; } raises = TYPE_RAISES_EXCEPTIONS (fntype); /* In a fcn definition, arg types must be complete. */ require_complete_types_for_parms (last_function_parms); /* In case some arg types were completed since the declaration was parsed, fix up the decls. */ { tree t = last_function_parms; for (; t; t = TREE_CHAIN (t)) layout_decl (t, 0); } } else { decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, raises, NULL_TREE); /* If the declarator is not suitable for a function definition, cause a syntax error. */ if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL) return 0; fntype = TREE_TYPE (decl1); restype = TREE_TYPE (fntype); if (IS_AGGR_TYPE (restype) && ! TYPE_PTRMEMFUNC_P (restype) && ! CLASSTYPE_GOT_SEMICOLON (restype)) { cp_error ("semicolon missing after declaration of `%#T'", restype); shadow_tag (build_tree_list (NULL_TREE, restype)); CLASSTYPE_GOT_SEMICOLON (restype) = 1; if (TREE_CODE (fntype) == FUNCTION_TYPE) fntype = build_function_type (integer_type_node, TYPE_ARG_TYPES (fntype)); else fntype = build_cplus_method_type (build_type_variant (TYPE_METHOD_BASETYPE (fntype), TREE_READONLY (decl1), TREE_SIDE_EFFECTS (decl1)), integer_type_node, TYPE_ARG_TYPES (fntype)); TREE_TYPE (decl1) = fntype; } if (TREE_CODE (fntype) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (fntype); else if (IDENTIFIER_LENGTH (DECL_NAME (decl1)) == 4 && ! strcmp (IDENTIFIER_POINTER (DECL_NAME (decl1)), "main") && DECL_CONTEXT (decl1) == NULL_TREE) { /* If this doesn't return integer_type, complain. */ if (TREE_TYPE (TREE_TYPE (decl1)) != integer_type_node) { if (pedantic || warn_return_type) pedwarn ("return type for `main' changed to integer type"); TREE_TYPE (decl1) = fntype = default_function_type; } warn_about_return_type = 0; } } /* Warn if function was previously implicitly declared (but not if we warned then). */ if (! warn_implicit && IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)) != NULL_TREE) cp_warning_at ("`%D' implicitly declared before its definition", IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1))); current_function_decl = decl1; if (flag_cadillac) cadillac_start_function (decl1); else announce_function (decl1); if (TYPE_SIZE (TREE_TYPE (fntype)) == NULL_TREE) { if (IS_AGGR_TYPE (TREE_TYPE (fntype))) error_with_aggr_type (TREE_TYPE (fntype), "return-type `%s' is an incomplete type"); else error ("return-type is an incomplete type"); /* Make it return void instead, but don't change the type of the DECL_RESULT, in case we have a named return value. */ if (ctype) TREE_TYPE (decl1) = build_cplus_method_type (build_type_variant (ctype, TREE_READONLY (decl1), TREE_SIDE_EFFECTS (decl1)), void_type_node, FUNCTION_ARG_CHAIN (decl1)); else TREE_TYPE (decl1) = build_function_type (void_type_node, TYPE_ARG_TYPES (TREE_TYPE (decl1))); DECL_RESULT (decl1) = build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (TREE_TYPE (fntype))); TREE_READONLY (DECL_RESULT (decl1)) = TYPE_READONLY (TREE_TYPE (fntype)); TREE_THIS_VOLATILE (DECL_RESULT (decl1)) = TYPE_VOLATILE (TREE_TYPE (fntype)); } if (TYPE_LANG_SPECIFIC (TREE_TYPE (fntype)) && CLASSTYPE_ABSTRACT_VIRTUALS (TREE_TYPE (fntype))) abstract_virtuals_error (decl1, TREE_TYPE (fntype)); if (warn_about_return_type) warning ("return-type defaults to `int'"); /* Make the init_value nonzero so pushdecl knows this is not tentative. error_mark_node is replaced below (in poplevel) with the BLOCK. */ DECL_INITIAL (decl1) = error_mark_node; /* Didn't get anything from C. */ olddecl = NULL_TREE; /* This function exists in static storage. (This does not mean `static' in the C sense!) */ TREE_STATIC (decl1) = 1; /* Record the decl so that the function name is defined. If we already have a decl for this name, and it is a FUNCTION_DECL, use the old decl. */ if (pre_parsed_p == 0) { current_function_decl = decl1 = pushdecl (decl1); DECL_MAIN_VARIANT (decl1) = decl1; fntype = TREE_TYPE (decl1); } else current_function_decl = decl1; if (DECL_INTERFACE_KNOWN (decl1)) { if (DECL_NOT_REALLY_EXTERN (decl1)) DECL_EXTERNAL (decl1) = 0; } /* If this function belongs to an interface, it is public. If it belongs to someone else's interface, it is also external. It doesn't matter whether it's inline or not. */ else if (interface_unknown == 0) { if (DECL_THIS_INLINE (decl1) || DECL_TEMPLATE_INSTANTIATION (decl1)) DECL_EXTERNAL (decl1) = (interface_only || (DECL_THIS_INLINE (decl1) && ! flag_implement_inlines)); else DECL_EXTERNAL (decl1) = 0; DECL_NOT_REALLY_EXTERN (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; } else { /* This is a definition, not a reference. So clear DECL_EXTERNAL. */ DECL_EXTERNAL (decl1) = 0; if (DECL_THIS_INLINE (decl1) && ! DECL_INTERFACE_KNOWN (decl1)) DECL_DEFER_OUTPUT (decl1) = 1; else { DECL_INTERFACE_KNOWN (decl1) = 1; if (DECL_C_STATIC (decl1)) TREE_PUBLIC (decl1) = 0; } } if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1)) { if (TREE_CODE (fntype) == METHOD_TYPE) TREE_TYPE (decl1) = fntype = build_function_type (TREE_TYPE (fntype), TREE_CHAIN (TYPE_ARG_TYPES (fntype))); last_function_parms = TREE_CHAIN (last_function_parms); DECL_ARGUMENTS (decl1) = last_function_parms; ctype = NULL_TREE; } restype = TREE_TYPE (fntype); if (ctype) { push_nested_class (ctype, 1); /* If we're compiling a friend function, neither of the variables current_class_decl nor current_class_type will have values. */ if (! doing_friend) { /* We know that this was set up by `grokclassfn'. We do not wait until `store_parm_decls', since evil parse errors may never get us to that point. Here we keep the consistency between `current_class_type' and `current_class_decl'. */ tree t = last_function_parms; my_friendly_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL, 162); if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE) { int i = suspend_momentary (); /* Fool build_indirect_ref. */ current_class_decl = NULL_TREE; C_C_D = build_indirect_ref (t, NULL_PTR); current_class_decl = t; resume_momentary (i); } else /* We're having a signature pointer here. */ C_C_D = current_class_decl = t; } } else { if (DECL_STATIC_FUNCTION_P (decl1)) push_nested_class (DECL_CONTEXT (decl1), 2); else push_memoized_context (0, 1); current_class_decl = C_C_D = NULL_TREE; } pushlevel (0); current_binding_level->parm_flag = 1; /* Save the parm names or decls from this function's declarator where store_parm_decls will find them. */ current_function_parms = last_function_parms; current_function_parm_tags = last_function_parm_tags; GNU_xref_function (decl1, current_function_parms); if (attrs) cplus_decl_attributes (decl1, NULL_TREE, attrs); make_function_rtl (decl1); /* Allocate further tree nodes temporarily during compilation of this function only. Tiemann moved up here from bottom of fn. */ temporary_allocation (); /* Promote the value to int before returning it. */ if (C_PROMOTING_INTEGER_TYPE_P (restype)) { /* It retains unsignedness if traditional or if it isn't really getting wider. */ if (TREE_UNSIGNED (restype) && (flag_traditional || TYPE_PRECISION (restype) == TYPE_PRECISION (integer_type_node))) restype = unsigned_type_node; else restype = integer_type_node; } if (DECL_RESULT (decl1) == NULL_TREE) { DECL_RESULT (decl1) = build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype)); TREE_READONLY (DECL_RESULT (decl1)) = TYPE_READONLY (restype); TREE_THIS_VOLATILE (DECL_RESULT (decl1)) = TYPE_VOLATILE (restype); } if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (decl1)) && DECL_LANGUAGE (decl1) == lang_cplusplus) { dtor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); ctor_label = NULL_TREE; } else { dtor_label = NULL_TREE; if (DECL_CONSTRUCTOR_P (decl1)) ctor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); } /* If this fcn was already referenced via a block-scope `extern' decl (or an implicit decl), propagate certain information about the usage. */ if (TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (decl1))) TREE_ADDRESSABLE (decl1) = 1; return 1; } void expand_start_early_try_stmts () { rtx insns; start_sequence (); expand_start_try_stmts (); insns = get_insns (); end_sequence (); store_in_parms (insns); } void store_in_parms (insns) rtx insns; { rtx last_parm_insn; last_parm_insn = get_first_nonparm_insn (); if (last_parm_insn == NULL_RTX) emit_insns (insns); else emit_insns_before (insns, previous_insn (last_parm_insn)); } /* Store the parameter declarations into the current function declaration. This is called after parsing the parameter declarations, before digesting the body of the function. Also install to binding contour return value identifier, if any. */ void store_parm_decls () { register tree fndecl = current_function_decl; register tree parm; int parms_have_cleanups = 0; /* This is either a chain of PARM_DECLs (when a prototype is used). */ tree specparms = current_function_parms; /* This is a list of types declared among parms in a prototype. */ tree parmtags = current_function_parm_tags; /* This is a chain of any other decls that came in among the parm declarations. If a parm is declared with enum {foo, bar} x; then CONST_DECLs for foo and bar are put here. */ tree nonparms = NULL_TREE; if (toplevel_bindings_p ()) fatal ("parse errors have confused me too much"); /* Initialize RTL machinery. */ init_function_start (fndecl, input_filename, lineno); /* Declare __FUNCTION__ and __PRETTY_FUNCTION__ for this function. */ declare_function_name (); /* Create a binding level for the parms. */ expand_start_bindings (0); if (specparms != NULL_TREE) { /* This case is when the function was defined with an ANSI prototype. The parms already have decls, so we need not do anything here except record them as in effect and complain if any redundant old-style parm decls were written. */ register tree next; /* Must clear this because it might contain TYPE_DECLs declared at class level. */ storedecls (NULL_TREE); for (parm = nreverse (specparms); parm; parm = next) { next = TREE_CHAIN (parm); if (TREE_CODE (parm) == PARM_DECL) { tree cleanup = maybe_build_cleanup (parm); if (DECL_NAME (parm) == NULL_TREE) { #if 0 cp_error_at ("parameter name omitted", parm); #else /* for C++, this is not an error. */ pushdecl (parm); #endif } else if (TYPE_MAIN_VARIANT (TREE_TYPE (parm)) == void_type_node) cp_error ("parameter `%D' declared void", parm); else { /* Now fill in DECL_REFERENCE_SLOT for any of the parm decls. A parameter is assumed not to have any side effects. If this should change for any reason, then this will have to wrap the bashed reference type in a save_expr. Also, if the parameter type is declared to be an X and there is an X(X&) constructor, we cannot lay it into the stack (any more), so we make this parameter look like it is really of reference type. Functions which pass parameters to this function will know to create a temporary in their frame, and pass a reference to that. */ if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE && TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm)))) SET_DECL_REFERENCE_SLOT (parm, convert_from_reference (parm)); pushdecl (parm); } if (cleanup) { expand_decl (parm); if (! cp_expand_decl_cleanup (parm, cleanup)) cp_error ("parser lost in parsing declaration of `%D'", parm); parms_have_cleanups = 1; } } else { /* If we find an enum constant or a type tag, put it aside for the moment. */ TREE_CHAIN (parm) = NULL_TREE; nonparms = chainon (nonparms, parm); } } /* Get the decls in their original chain order and record in the function. This is all and only the PARM_DECLs that were pushed into scope by the loop above. */ DECL_ARGUMENTS (fndecl) = getdecls (); storetags (chainon (parmtags, gettags ())); } else DECL_ARGUMENTS (fndecl) = NULL_TREE; /* Now store the final chain of decls for the arguments as the decl-chain of the current lexical scope. Put the enumerators in as well, at the front so that DECL_ARGUMENTS is not modified. */ storedecls (chainon (nonparms, DECL_ARGUMENTS (fndecl))); /* Initialize the RTL code for the function. */ DECL_SAVED_INSNS (fndecl) = NULL_RTX; expand_function_start (fndecl, parms_have_cleanups); /* Create a binding contour which can be used to catch cleanup-generated temporaries. Also, if the return value needs or has initialization, deal with that now. */ if (parms_have_cleanups) { pushlevel (0); expand_start_bindings (0); } current_function_parms_stored = 1; if (flag_gc) { maybe_gc_cleanup = build_tree_list (NULL_TREE, error_mark_node); if (! cp_expand_decl_cleanup (NULL_TREE, maybe_gc_cleanup)) cp_error ("parser lost in parsing declaration of `%D'", fndecl); } /* If this function is `main', emit a call to `__main' to run global initializers, etc. */ if (DECL_NAME (fndecl) && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 4 && strcmp (IDENTIFIER_POINTER (DECL_NAME (fndecl)), "main") == 0 && DECL_CONTEXT (fndecl) == NULL_TREE) { expand_main_function (); if (flag_gc) expand_expr (build_function_call (lookup_name (get_identifier ("__gc_main"), 0), NULL_TREE), 0, VOIDmode, 0); #if 0 /* done at a different time */ if (flag_rtti) output_builtin_tdesc_entries (); #endif } /* Take care of exception handling things. */ if (flag_handle_exceptions) { rtx insns; start_sequence (); /* Mark the start of a stack unwinder if we need one. */ start_eh_unwinder (); /* Do the starting of the exception specifications, if we have any. */ if (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl))) expand_start_eh_spec (); insns = get_insns (); end_sequence (); if (insns) store_in_parms (insns); } } /* Bind a name and initialization to the return value of the current function. */ void store_return_init (return_id, init) tree return_id, init; { tree decl = DECL_RESULT (current_function_decl); if (pedantic) /* Give this error as many times as there are occurrences, so that users can use Emacs compilation buffers to find and fix all such places. */ pedwarn ("ANSI C++ does not permit named return values"); if (return_id != NULL_TREE) { if (DECL_NAME (decl) == NULL_TREE) { DECL_NAME (decl) = return_id; DECL_ASSEMBLER_NAME (decl) = return_id; } else error ("return identifier `%s' already in place", IDENTIFIER_POINTER (DECL_NAME (decl))); } /* Can't let this happen for constructors. */ if (DECL_CONSTRUCTOR_P (current_function_decl)) { error ("can't redefine default return value for constructors"); return; } /* If we have a named return value, put that in our scope as well. */ if (DECL_NAME (decl) != NULL_TREE) { /* If this named return value comes in a register, put it in a pseudo-register. */ if (DECL_REGISTER (decl)) { original_result_rtx = DECL_RTL (decl); DECL_RTL (decl) = gen_reg_rtx (DECL_MODE (decl)); } /* Let `cp_finish_decl' know that this initializer is ok. */ DECL_INITIAL (decl) = init; pushdecl (decl); cp_finish_decl (decl, init, NULL_TREE, 0, LOOKUP_ONLYCONVERTING); } } /* Finish up a function declaration and compile that function all the way to assembler language output. The free the storage for the function definition. This is called after parsing the body of the function definition. LINENO is the current line number. C++: CALL_POPLEVEL is non-zero if an extra call to poplevel (and expand_end_bindings) must be made to take care of the binding contour for the base initializers. This is only relevant for constructors. */ void finish_function (lineno, call_poplevel, nested) int lineno; int call_poplevel; int nested; { register tree fndecl = current_function_decl; tree fntype, ctype = NULL_TREE; rtx last_parm_insn, insns; /* Label to use if this function is supposed to return a value. */ tree no_return_label = NULL_TREE; tree decls = NULL_TREE; /* When we get some parse errors, we can end up without a current_function_decl, so cope. */ if (fndecl == NULL_TREE) return; fntype = TREE_TYPE (fndecl); /* TREE_READONLY (fndecl) = 1; This caused &foo to be of type ptr-to-const-function which then got a warning when stored in a ptr-to-function variable. */ /* This happens on strange parse errors. */ if (! current_function_parms_stored) { call_poplevel = 0; store_parm_decls (); } if (write_symbols != NO_DEBUG /*&& TREE_CODE (fntype) != METHOD_TYPE*/) { tree ttype = target_type (fntype); tree parmdecl; if (IS_AGGR_TYPE (ttype)) /* Let debugger know it should output info for this type. */ note_debug_info_needed (ttype); for (parmdecl = DECL_ARGUMENTS (fndecl); parmdecl; parmdecl = TREE_CHAIN (parmdecl)) { ttype = target_type (TREE_TYPE (parmdecl)); if (IS_AGGR_TYPE (ttype)) /* Let debugger know it should output info for this type. */ note_debug_info_needed (ttype); } } /* Clean house because we will need to reorder insns here. */ do_pending_stack_adjust (); if (dtor_label) { tree binfo = TYPE_BINFO (current_class_type); tree cond = integer_one_node; tree exprstmt, vfields; tree in_charge_node = lookup_name (in_charge_identifier, 0); tree virtual_size; int ok_to_optimize_dtor = 0; if (current_function_assigns_this) cond = build (NE_EXPR, boolean_type_node, current_class_decl, integer_zero_node); else { int n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type); /* If this destructor is empty, then we don't need to check whether `this' is NULL in some cases. */ if ((flag_this_is_variable & 1) == 0) ok_to_optimize_dtor = 1; else if (get_last_insn () == get_first_nonparm_insn ()) ok_to_optimize_dtor = (n_baseclasses == 0 || (n_baseclasses == 1 && TYPE_HAS_DESTRUCTOR (TYPE_BINFO_BASETYPE (current_class_type, 0)))); } /* These initializations might go inline. Protect the binding level of the parms. */ pushlevel (0); expand_start_bindings (0); if (current_function_assigns_this) { current_function_assigns_this = 0; current_function_just_assigned_this = 0; } /* Generate the code to call destructor on base class. If this destructor belongs to a class with virtual functions, then set the virtual function table pointer to represent the type of our base class. */ /* This side-effect makes call to `build_delete' generate the code we have to have at the end of this destructor. */ TYPE_HAS_DESTRUCTOR (current_class_type) = 0; /* These are two cases where we cannot delegate deletion. */ if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type) || TYPE_GETS_REG_DELETE (current_class_type)) exprstmt = build_delete (current_class_type, C_C_D, integer_zero_node, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); else exprstmt = build_delete (current_class_type, C_C_D, in_charge_node, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); /* If we did not assign to this, then `this' is non-zero at the end of a destructor. As a special optimization, don't emit test if this is an empty destructor. If it does nothing, it does nothing. If it calls a base destructor, the base destructor will perform the test. */ if (exprstmt != error_mark_node && (TREE_CODE (exprstmt) != NOP_EXPR || TREE_OPERAND (exprstmt, 0) != integer_zero_node || TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))) { expand_label (dtor_label); if (cond != integer_one_node) expand_start_cond (cond, 0); if (exprstmt != void_zero_node) /* Don't call `expand_expr_stmt' if we're not going to do anything, since -Wall will give a diagnostic. */ expand_expr_stmt (exprstmt); /* Run destructor on all virtual baseclasses. */ if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) { tree vbases = nreverse (copy_list (CLASSTYPE_VBASECLASSES (current_class_type))); expand_start_cond (build (BIT_AND_EXPR, integer_type_node, in_charge_node, integer_two_node), 0); while (vbases) { if (TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (vbases))) { tree ptr = convert_pointer_to_vbase (BINFO_TYPE (vbases), current_class_decl); expand_expr_stmt (build_delete (build_pointer_type (BINFO_TYPE (vbases)), ptr, integer_zero_node, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_HAS_IN_CHARGE, 0)); } vbases = TREE_CHAIN (vbases); } expand_end_cond (); } do_pending_stack_adjust (); if (cond != integer_one_node) expand_end_cond (); } TYPE_HAS_DESTRUCTOR (current_class_type) = 1; virtual_size = c_sizeof (current_class_type); /* At the end, call delete if that's what's requested. */ if (TYPE_GETS_REG_DELETE (current_class_type)) /* This NOP_EXPR means we are in a static call context. */ exprstmt = build_method_call (build_indirect_ref (build1 (NOP_EXPR, build_pointer_type (current_class_type), error_mark_node), NULL_PTR), ansi_opname[(int) DELETE_EXPR], tree_cons (NULL_TREE, current_class_decl, build_tree_list (NULL_TREE, virtual_size)), NULL_TREE, LOOKUP_NORMAL); else if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) exprstmt = build_x_delete (ptr_type_node, current_class_decl, 0, virtual_size); else exprstmt = NULL_TREE; if (exprstmt) { cond = build (BIT_AND_EXPR, integer_type_node, in_charge_node, integer_one_node); expand_start_cond (cond, 0); expand_expr_stmt (exprstmt); expand_end_cond (); } /* End of destructor. */ expand_end_bindings (NULL_TREE, getdecls() != NULL_TREE, 0); poplevel (2, 0, 0); /* XXX change to 1 */ /* Back to the top of destructor. */ /* Dont execute destructor code if `this' is NULL. */ start_sequence (); /* Make all virtual function table pointers in non-virtual base classes point to CURRENT_CLASS_TYPE's virtual function tables. */ expand_direct_vtbls_init (binfo, binfo, 1, 0, current_class_decl); if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) expand_indirect_vtbls_init (binfo, C_C_D, current_class_decl, 0); if (! ok_to_optimize_dtor) { cond = build_binary_op (NE_EXPR, current_class_decl, integer_zero_node, 1); expand_start_cond (cond, 0); } insns = get_insns (); end_sequence (); last_parm_insn = get_first_nonparm_insn (); if (last_parm_insn == NULL_RTX) last_parm_insn = get_last_insn (); else last_parm_insn = previous_insn (last_parm_insn); emit_insns_after (insns, last_parm_insn); if (! ok_to_optimize_dtor) expand_end_cond (); } else if (current_function_assigns_this) { /* Does not need to call emit_base_init, because that is done (if needed) just after assignment to this is seen. */ if (DECL_CONSTRUCTOR_P (current_function_decl)) { end_protect_partials (); expand_label (ctor_label); ctor_label = NULL_TREE; if (call_poplevel) { decls = getdecls (); expand_end_bindings (decls, decls != NULL_TREE, 0); poplevel (decls != NULL_TREE, 0, 0); } c_expand_return (current_class_decl); } else if (TYPE_MAIN_VARIANT (TREE_TYPE ( DECL_RESULT (current_function_decl))) != void_type_node && return_label != NULL_RTX) no_return_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); current_function_assigns_this = 0; current_function_just_assigned_this = 0; base_init_expr = NULL_TREE; } else if (DECL_CONSTRUCTOR_P (fndecl)) { tree allocated_this; tree cond, thenclause; /* Allow constructor for a type to get a new instance of the object using `build_new'. */ tree abstract_virtuals = CLASSTYPE_ABSTRACT_VIRTUALS (current_class_type); CLASSTYPE_ABSTRACT_VIRTUALS (current_class_type) = NULL_TREE; DECL_RETURNS_FIRST_ARG (fndecl) = 1; if (flag_this_is_variable > 0) { cond = build_binary_op (EQ_EXPR, current_class_decl, integer_zero_node, 1); thenclause = build_modify_expr (current_class_decl, NOP_EXPR, build_new (NULL_TREE, current_class_type, void_type_node, 0)); } CLASSTYPE_ABSTRACT_VIRTUALS (current_class_type) = abstract_virtuals; start_sequence (); if (flag_this_is_variable > 0) { expand_start_cond (cond, 0); expand_expr_stmt (thenclause); expand_end_cond (); } #if 0 if (DECL_NAME (fndecl) == NULL_TREE && TREE_CHAIN (DECL_ARGUMENTS (fndecl)) != NULL_TREE) build_default_constructor (fndecl); #endif /* Emit insns from `emit_base_init' which sets up virtual function table pointer(s). */ if (base_init_expr) { expand_expr_stmt (base_init_expr); base_init_expr = NULL_TREE; } insns = get_insns (); end_sequence (); /* This is where the body of the constructor begins. If there were no insns in this function body, then the last_parm_insn is also the last insn. If optimization is enabled, last_parm_insn may move, so we don't hold on to it (across emit_base_init). */ last_parm_insn = get_first_nonparm_insn (); if (last_parm_insn == NULL_RTX) last_parm_insn = get_last_insn (); else last_parm_insn = previous_insn (last_parm_insn); emit_insns_after (insns, last_parm_insn); end_protect_partials (); /* This is where the body of the constructor ends. */ expand_label (ctor_label); ctor_label = NULL_TREE; if (call_poplevel) { decls = getdecls (); expand_end_bindings (decls, decls != NULL_TREE, 0); poplevel (decls != NULL_TREE, 1, 0); } c_expand_return (current_class_decl); current_function_assigns_this = 0; current_function_just_assigned_this = 0; } else if (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 4 && ! strcmp (IDENTIFIER_POINTER (DECL_NAME (fndecl)), "main") && DECL_CONTEXT (fndecl) == NULL_TREE) { /* Make it so that `main' always returns 0 by default. */ #ifdef VMS c_expand_return (integer_one_node); #else c_expand_return (integer_zero_node); #endif } else if (return_label != NULL_RTX && current_function_return_value == NULL_TREE && ! DECL_NAME (DECL_RESULT (current_function_decl))) no_return_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); if (flag_gc) expand_gc_prologue_and_epilogue (); /* If this function is supposed to return a value, ensure that we do not fall into the cleanups by mistake. The end of our function will look like this: user code (may have return stmt somewhere) goto no_return_label cleanup_label: cleanups goto return_label no_return_label: NOTE_INSN_FUNCTION_END return_label: things for return If the user omits a return stmt in the USER CODE section, we will have a control path which reaches NOTE_INSN_FUNCTION_END. Otherwise, we won't. */ if (no_return_label) { DECL_CONTEXT (no_return_label) = fndecl; DECL_INITIAL (no_return_label) = error_mark_node; DECL_SOURCE_FILE (no_return_label) = input_filename; DECL_SOURCE_LINE (no_return_label) = lineno; expand_goto (no_return_label); } if (cleanup_label) { /* remove the binding contour which is used to catch cleanup-generated temporaries. */ expand_end_bindings (0, 0, 0); poplevel (0, 0, 0); } if (cleanup_label) /* Emit label at beginning of cleanup code for parameters. */ emit_label (cleanup_label); /* Get return value into register if that's where it's supposed to be. */ if (original_result_rtx) fixup_result_decl (DECL_RESULT (fndecl), original_result_rtx); /* Finish building code that will trigger warnings if users forget to make their functions return values. */ if (no_return_label || cleanup_label) emit_jump (return_label); if (no_return_label) { /* We don't need to call `expand_*_return' here because we don't need any cleanups here--this path of code is only for error checking purposes. */ expand_label (no_return_label); } /* Generate rtl for function exit. */ expand_function_end (input_filename, lineno, 1); if (flag_handle_exceptions) expand_exception_blocks (); /* This must come after expand_function_end because cleanups might have declarations (from inline functions) that need to go into this function's blocks. */ if (current_binding_level->parm_flag != 1) my_friendly_abort (122); poplevel (1, 0, 1); /* reset scope for C++: if we were in the scope of a class, then when we finish this function, we are not longer so. This cannot be done until we know for sure that no more class members will ever be referenced in this function (i.e., calls to destructors). */ if (current_class_name) { ctype = current_class_type; pop_nested_class (1); } else pop_memoized_context (1); /* Must mark the RESULT_DECL as being in this function. */ DECL_CONTEXT (DECL_RESULT (fndecl)) = DECL_INITIAL (fndecl); /* Obey `register' declarations if `setjmp' is called in this fn. */ if (flag_traditional && current_function_calls_setjmp) setjmp_protect (DECL_INITIAL (fndecl)); /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point to the FUNCTION_DECL node itself. */ BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; /* So we can tell if jump_optimize sets it to 1. */ can_reach_end = 0; /* Run the optimizers and output the assembler code for this function. */ rest_of_compilation (fndecl); if (DECL_SAVED_INSNS (fndecl) && ! TREE_ASM_WRITTEN (fndecl)) { /* Set DECL_EXTERNAL so that assemble_external will be called as necessary. We'll clear it again in finish_file. */ if (! DECL_EXTERNAL (fndecl)) DECL_NOT_REALLY_EXTERN (fndecl) = 1; DECL_EXTERNAL (fndecl) = 1; mark_inline_for_output (fndecl); } if (ctype && TREE_ASM_WRITTEN (fndecl)) note_debug_info_needed (ctype); current_function_returns_null |= can_reach_end; /* Since we don't normally go through c_expand_return for constructors, this normally gets the wrong value. Also, named return values have their return codes emitted after NOTE_INSN_FUNCTION_END, confusing jump.c. */ if (DECL_CONSTRUCTOR_P (fndecl) || DECL_NAME (DECL_RESULT (fndecl)) != NULL_TREE) current_function_returns_null = 0; if (TREE_THIS_VOLATILE (fndecl) && current_function_returns_null) cp_warning ("`noreturn' function `%D' does return", fndecl); else if ((warn_return_type || pedantic) && current_function_returns_null && TYPE_MAIN_VARIANT (TREE_TYPE (fntype)) != void_type_node) { /* If this function returns non-void and control can drop through, complain. */ cp_pedwarn ("control reaches end of non-void function `%D'", fndecl); } /* With just -W, complain only if function returns both with and without a value. */ else if (extra_warnings && current_function_returns_value && current_function_returns_null) warning ("this function may return with or without a value"); /* Free all the tree nodes making up this function. */ /* Switch back to allocating nodes permanently until we start another function. */ if (! nested) permanent_allocation (1); if (flag_cadillac) cadillac_finish_function (fndecl); if (DECL_SAVED_INSNS (fndecl) == NULL_RTX) { /* Stop pointing to the local nodes about to be freed. */ /* But DECL_INITIAL must remain nonzero so we know this was an actual function definition. */ DECL_INITIAL (fndecl) = error_mark_node; if (! DECL_CONSTRUCTOR_P (fndecl) || !TYPE_USES_VIRTUAL_BASECLASSES (TYPE_METHOD_BASETYPE (fntype))) DECL_ARGUMENTS (fndecl) = NULL_TREE; } if (DECL_STATIC_CONSTRUCTOR (fndecl)) static_ctors = perm_tree_cons (NULL_TREE, fndecl, static_ctors); if (DECL_STATIC_DESTRUCTOR (fndecl)) static_dtors = perm_tree_cons (NULL_TREE, fndecl, static_dtors); if (! nested) { /* Let the error reporting routines know that we're outside a function. For a nested function, this value is used in pop_cp_function_context and then reset via pop_function_context. */ current_function_decl = NULL_TREE; } named_label_uses = NULL_TREE; current_class_decl = NULL_TREE; } /* Create the FUNCTION_DECL for a function definition. LINE1 is the line number that the definition absolutely begins on. LINE2 is the line number that the name of the function appears on. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the return type and the name of the function, but twisted together in a fashion that parallels the syntax of C. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. Returns a FUNCTION_DECL on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. May return void_type_node indicating that this method is actually a friend. See grokfield for more details. Came here with a `.pushlevel' . DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `grokfield'. */ tree start_method (declspecs, declarator, raises) tree declarator, declspecs, raises; { tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0, raises, NULL_TREE); /* Something too ugly to handle. */ if (fndecl == NULL_TREE) return NULL_TREE; /* Pass friends other than inline friend functions back. */ if (TYPE_MAIN_VARIANT (fndecl) == void_type_node) return fndecl; if (TREE_CODE (fndecl) != FUNCTION_DECL) /* Not a function, tell parser to report parse error. */ return NULL_TREE; if (IS_SIGNATURE (current_class_type)) { IS_DEFAULT_IMPLEMENTATION (fndecl) = 1; /* In case we need this info later. */ HAS_DEFAULT_IMPLEMENTATION (current_class_type) = 1; } if (DECL_IN_AGGR_P (fndecl)) { if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (fndecl)) != current_class_type) { if (DECL_CONTEXT (fndecl)) cp_error ("`%D' is already defined in class %s", fndecl, TYPE_NAME_STRING (DECL_CONTEXT (fndecl))); } return void_type_node; } DECL_THIS_INLINE (fndecl) = 1; if (flag_default_inline) DECL_INLINE (fndecl) = 1; if (processing_template_defn) { SET_DECL_IMPLICIT_INSTANTIATION (fndecl); repo_template_used (fndecl); } /* We read in the parameters on the maybepermanent_obstack, but we won't be getting back to them until after we may have clobbered them. So the call to preserve_data will keep them safe. */ preserve_data (); if (! DECL_FRIEND_P (fndecl)) { if (DECL_CHAIN (fndecl) != NULL_TREE) { /* Need a fresh node here so that we don't get circularity when we link these together. If FNDECL was a friend, then `pushdecl' does the right thing, which is nothing wrt its current value of DECL_CHAIN. */ fndecl = copy_node (fndecl); } if (TREE_CHAIN (fndecl)) { fndecl = copy_node (fndecl); TREE_CHAIN (fndecl) = NULL_TREE; } if (DECL_CONSTRUCTOR_P (fndecl)) { if (! grok_ctor_properties (current_class_type, fndecl)) return void_type_node; } else if (IDENTIFIER_OPNAME_P (DECL_NAME (fndecl))) grok_op_properties (fndecl, DECL_VIRTUAL_P (fndecl), 0); } cp_finish_decl (fndecl, NULL_TREE, NULL_TREE, 0, 0); /* Make a place for the parms */ pushlevel (0); current_binding_level->parm_flag = 1; DECL_IN_AGGR_P (fndecl) = 1; return fndecl; } /* Go through the motions of finishing a function definition. We don't compile this method until after the whole class has been processed. FINISH_METHOD must return something that looks as though it came from GROKFIELD (since we are defining a method, after all). This is called after parsing the body of the function definition. STMTS is the chain of statements that makes up the function body. DECL is the ..._DECL that `start_method' provided. */ tree finish_method (decl) tree decl; { register tree fndecl = decl; tree old_initial; register tree link; if (TYPE_MAIN_VARIANT (decl) == void_type_node) return decl; old_initial = DECL_INITIAL (fndecl); /* Undo the level for the parms (from start_method). This is like poplevel, but it causes nothing to be saved. Saving information here confuses symbol-table output routines. Besides, this information will be correctly output when this method is actually compiled. */ /* Clear out the meanings of the local variables of this level; also record in each decl which block it belongs to. */ for (link = current_binding_level->names; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) IDENTIFIER_LOCAL_VALUE (DECL_NAME (link)) = 0; my_friendly_assert (TREE_CODE (link) != FUNCTION_DECL, 163); DECL_CONTEXT (link) = NULL_TREE; } /* Restore all name-meanings of the outer levels that were shadowed by this level. */ for (link = current_binding_level->shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_LOCAL_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); for (link = current_binding_level->class_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); for (link = current_binding_level->type_shadowed; link; link = TREE_CHAIN (link)) IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link); GNU_xref_end_scope ((HOST_WIDE_INT) current_binding_level, (HOST_WIDE_INT) current_binding_level->level_chain, current_binding_level->parm_flag, current_binding_level->keep, current_binding_level->tag_transparent); poplevel (0, 0, 0); DECL_INITIAL (fndecl) = old_initial; /* We used to check if the context of FNDECL was different from current_class_type as another way to get inside here. This didn't work for String.cc in libg++. */ if (DECL_FRIEND_P (fndecl)) { CLASSTYPE_INLINE_FRIENDS (current_class_type) = tree_cons (NULL_TREE, fndecl, CLASSTYPE_INLINE_FRIENDS (current_class_type)); decl = void_type_node; } return decl; } /* Called when a new struct TYPE is defined. If this structure or union completes the type of any previous variable declaration, lay it out and output its rtl. */ void hack_incomplete_structures (type) tree type; { tree *list; if (current_binding_level->incomplete == NULL_TREE) return; if (!type) /* Don't do this for class templates. */ return; for (list = ¤t_binding_level->incomplete; *list; ) { tree decl = TREE_VALUE (*list); if (decl && TREE_TYPE (decl) == type || (TREE_TYPE (decl) && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE && TREE_TYPE (TREE_TYPE (decl)) == type)) { int toplevel = toplevel_bindings_p (); if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE && TREE_TYPE (TREE_TYPE (decl)) == type) layout_type (TREE_TYPE (decl)); layout_decl (decl, 0); rest_of_decl_compilation (decl, NULL_PTR, toplevel, 0); if (! toplevel) { tree cleanup; expand_decl (decl); cleanup = maybe_build_cleanup (decl); expand_decl_init (decl); if (! cp_expand_decl_cleanup (decl, cleanup)) cp_error ("parser lost in parsing declaration of `%D'", decl); } *list = TREE_CHAIN (*list); } else list = &TREE_CHAIN (*list); } } /* Nonzero if presently building a cleanup. Needed because SAVE_EXPRs are not the right things to use inside of cleanups. They are only ever evaluated once, where the cleanup might be evaluated several times. In this case, a later evaluation of the cleanup might fill in the SAVE_EXPR_RTL, and it will not be valid for an earlier cleanup. */ int building_cleanup; /* If DECL is of a type which needs a cleanup, build that cleanup here. We don't build cleanups if just going for syntax checking, since fixup_cleanups does not know how to not handle them. Don't build these on the momentary obstack; they must live the life of the binding contour. */ tree maybe_build_cleanup (decl) tree decl; { tree type = TREE_TYPE (decl); if (TYPE_NEEDS_DESTRUCTOR (type)) { int temp = 0, flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR; tree rval; int old_building_cleanup = building_cleanup; building_cleanup = 1; if (TREE_CODE (decl) != PARM_DECL) temp = suspend_momentary (); if (TREE_CODE (type) == ARRAY_TYPE) rval = decl; else { mark_addressable (decl); rval = build_unary_op (ADDR_EXPR, decl, 0); } /* Optimize for space over speed here. */ if (! TYPE_USES_VIRTUAL_BASECLASSES (type) || flag_expensive_optimizations) flags |= LOOKUP_NONVIRTUAL; rval = build_delete (TREE_TYPE (rval), rval, integer_two_node, flags, 0); if (TYPE_USES_VIRTUAL_BASECLASSES (type) && ! TYPE_HAS_DESTRUCTOR (type)) rval = build_compound_expr (tree_cons (NULL_TREE, rval, build_tree_list (NULL_TREE, build_vbase_delete (type, decl)))); if (TREE_CODE (decl) != PARM_DECL) resume_momentary (temp); building_cleanup = old_building_cleanup; return rval; } return 0; } /* Expand a C++ expression at the statement level. This is needed to ferret out nodes which have UNKNOWN_TYPE. The C++ type checker should get all of these out when expressions are combined with other, type-providing, expressions, leaving only orphan expressions, such as: &class::bar; / / takes its address, but does nothing with it. */ void cplus_expand_expr_stmt (exp) tree exp; { if (TREE_TYPE (exp) == unknown_type_node) { if (TREE_CODE (exp) == ADDR_EXPR || TREE_CODE (exp) == TREE_LIST) error ("address of overloaded function with no contextual type information"); else if (TREE_CODE (exp) == COMPONENT_REF) warning ("useless reference to a member function name, did you forget the ()?"); } else { int remove_implicit_immediately = 0; if (TREE_CODE (exp) == FUNCTION_DECL) { cp_warning ("reference, not call, to function `%D'", exp); warning ("at this point in file"); } #if 0 /* We should do this eventually, but right now this causes regex.o from libg++ to miscompile, and tString to core dump. */ exp = build1 (CLEANUP_POINT_EXPR, TREE_TYPE (exp), exp); #endif expand_expr_stmt (break_out_cleanups (exp)); } /* Clean up any pending cleanups. This happens when a function call returns a cleanup-needing value that nobody uses. */ expand_cleanups_to (NULL_TREE); } /* When a stmt has been parsed, this function is called. Currently, this function only does something within a constructor's scope: if a stmt has just assigned to this, and we are in a derived class, we call `emit_base_init'. */ void finish_stmt () { extern struct nesting *cond_stack, *loop_stack, *case_stack; if (current_function_assigns_this || ! current_function_just_assigned_this) return; if (DECL_CONSTRUCTOR_P (current_function_decl)) { /* Constructors must wait until we are out of control zones before calling base constructors. */ if (cond_stack || loop_stack || case_stack) return; expand_expr_stmt (base_init_expr); check_base_init (current_class_type); } current_function_assigns_this = 1; if (flag_cadillac) cadillac_finish_stmt (); } /* Change a static member function definition into a FUNCTION_TYPE, instead of the METHOD_TYPE that we create when it's originally parsed. WARNING: DO NOT pass &TREE_TYPE (decl) to FN or &TYPE_ARG_TYPES (TREE_TYPE (decl)) to ARGTYPES, as doing so will corrupt the types of other decls. Either pass the addresses of local variables or NULL. */ void revert_static_member_fn (decl, fn, argtypes) tree *decl, *fn, *argtypes; { tree tmp; tree function = fn ? *fn : TREE_TYPE (*decl); tree args = argtypes ? *argtypes : TYPE_ARG_TYPES (function); if (TYPE_READONLY (TREE_TYPE (TREE_VALUE (args)))) cp_error ("static member function `%#D' declared const", *decl); if (TYPE_VOLATILE (TREE_TYPE (TREE_VALUE (args)))) cp_error ("static member function `%#D' declared volatile", *decl); args = TREE_CHAIN (args); tmp = build_function_type (TREE_TYPE (function), args); tmp = build_type_variant (tmp, TYPE_READONLY (function), TYPE_VOLATILE (function)); tmp = build_exception_variant (tmp, TYPE_RAISES_EXCEPTIONS (function)); TREE_TYPE (*decl) = tmp; if (DECL_ARGUMENTS (*decl)) DECL_ARGUMENTS (*decl) = TREE_CHAIN (DECL_ARGUMENTS (*decl)); DECL_STATIC_FUNCTION_P (*decl) = 1; if (fn) *fn = tmp; if (argtypes) *argtypes = args; } int id_in_current_class (id) tree id; { return !!purpose_member (id, class_binding_level->class_shadowed); } struct cp_function { int returns_value; int returns_null; int warn_about_return_type; int assigns_this; int just_assigned_this; int parms_stored; int temp_name_counter; tree named_labels; tree shadowed_labels; tree ctor_label; tree dtor_label; tree protect_list; tree base_init_list; tree member_init_list; tree base_init_expr; tree class_decl; tree C_C_D; rtx result_rtx; struct cp_function *next; struct binding_level *binding_level; }; struct cp_function *cp_function_chain; extern int temp_name_counter; /* Save and reinitialize the variables used during compilation of a C++ function. */ void push_cp_function_context (context) tree context; { struct cp_function *p = (struct cp_function *) xmalloc (sizeof (struct cp_function)); push_function_context_to (context); p->next = cp_function_chain; cp_function_chain = p; p->named_labels = named_labels; p->shadowed_labels = shadowed_labels; p->returns_value = current_function_returns_value; p->returns_null = current_function_returns_null; p->warn_about_return_type = warn_about_return_type; p->binding_level = current_binding_level; p->ctor_label = ctor_label; p->dtor_label = dtor_label; p->assigns_this = current_function_assigns_this; p->just_assigned_this = current_function_just_assigned_this; p->parms_stored = current_function_parms_stored; p->result_rtx = original_result_rtx; p->base_init_expr = base_init_expr; p->protect_list = protect_list; p->temp_name_counter = temp_name_counter; p->base_init_list = current_base_init_list; p->member_init_list = current_member_init_list; p->class_decl = current_class_decl; p->C_C_D = C_C_D; } /* Restore the variables used during compilation of a C++ function. */ void pop_cp_function_context (context) tree context; { struct cp_function *p = cp_function_chain; tree link; /* Bring back all the labels that were shadowed. */ for (link = shadowed_labels; link; link = TREE_CHAIN (link)) if (DECL_NAME (TREE_VALUE (link)) != 0) SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link)); #if 0 if (DECL_SAVED_INSNS (current_function_decl) == 0) { /* Stop pointing to the local nodes about to be freed. */ /* But DECL_INITIAL must remain nonzero so we know this was an actual function definition. */ DECL_INITIAL (current_function_decl) = error_mark_node; DECL_ARGUMENTS (current_function_decl) = 0; } #endif pop_function_context_from (context); cp_function_chain = p->next; named_labels = p->named_labels; shadowed_labels = p->shadowed_labels; current_function_returns_value = p->returns_value; current_function_returns_null = p->returns_null; warn_about_return_type = p->warn_about_return_type; current_binding_level = p->binding_level; ctor_label = p->ctor_label; dtor_label = p->dtor_label; protect_list = p->protect_list; current_function_assigns_this = p->assigns_this; current_function_just_assigned_this = p->just_assigned_this; current_function_parms_stored = p->parms_stored; original_result_rtx = p->result_rtx; base_init_expr = p->base_init_expr; temp_name_counter = p->temp_name_counter; current_base_init_list = p->base_init_list; current_member_init_list = p->member_init_list; current_class_decl = p->class_decl; C_C_D = p->C_C_D; free (p); } /* FSF LOCAL dje prefix attributes */ /* Split SPECS_ATTRS, a list of declspecs and prefix attributes, into two lists. SPECS_ATTRS may also be just a typespec (eg: RECORD_TYPE). The head of the declspec list is stored in DECLSPECS. The head of the attribute list is stored in PREFIX_ATTRIBUTES. Note that attributes in SPECS_ATTRS are stored in the TREE_PURPOSE of the list elements. We drop the containing TREE_LIST nodes and link the resulting attributes together the way decl_attributes expects them. */ void split_specs_attrs (specs_attrs, declspecs, prefix_attributes) tree specs_attrs; tree *declspecs, *prefix_attributes; { tree t, s, a, next, specs, attrs; /* This can happen in c++ (eg: decl: typespec initdecls ';'). */ if (specs_attrs != NULL_TREE && TREE_CODE (specs_attrs) != TREE_LIST) { *declspecs = specs_attrs; *prefix_attributes = NULL_TREE; return; } /* Remember to keep the lists in the same order, element-wise. */ specs = s = NULL_TREE; attrs = a = NULL_TREE; for (t = specs_attrs; t; t = next) { next = TREE_CHAIN (t); /* Declspecs have a non-NULL TREE_VALUE. */ if (TREE_VALUE (t) != NULL_TREE) { if (specs == NULL_TREE) specs = s = t; else { TREE_CHAIN (s) = t; s = t; } } else { if (attrs == NULL_TREE) attrs = a = TREE_PURPOSE (t); else { TREE_CHAIN (a) = TREE_PURPOSE (t); a = TREE_PURPOSE (t); } } } /* Terminate the lists. */ if (s != NULL_TREE) TREE_CHAIN (s) = NULL_TREE; if (a != NULL_TREE) TREE_CHAIN (a) = NULL_TREE; /* All done. */ *declspecs = specs; *prefix_attributes = attrs; } /* Strip attributes from SPECS_ATTRS, a list of declspecs and attributes. This function is used by the parser when a rule will accept attributes in a particular position, but we don't want to support that just yet. A warning is issued for every ignored attribute. */ tree strip_attrs (specs_attrs) tree specs_attrs; { tree specs, attrs; split_specs_attrs (specs_attrs, &specs, &attrs); while (attrs) { warning ("`%s' attribute ignored", IDENTIFIER_POINTER (TREE_PURPOSE (attrs))); attrs = TREE_CHAIN (attrs); } return specs; } /* END FSF LOCAL */