/* This is an assembly language implementation of libgcc1.c for the sparc processor. These routines are derived from the Sparc Architecture Manual, version 8, slightly edited to match the desired calling convention, and also to optimize them for our purposes. */ #ifdef L_mulsi3 .text .align 4 .global .umul .proc 4 .umul: or %o0, %o1, %o4 ! logical or of multiplier and multiplicand mov %o0, %y ! multiplier to Y register andncc %o4, 0xfff, %o5 ! mask out lower 12 bits be mul_shortway ! can do it the short way andcc %g0, %g0, %o4 ! zero the partial product and clear NV cc ! ! long multiply ! mulscc %o4, %o1, %o4 ! first iteration of 33 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 ! 32nd iteration mulscc %o4, %g0, %o4 ! last iteration only shifts ! the upper 32 bits of product are wrong, but we do not care retl rd %y, %o0 ! ! short multiply ! mul_shortway: mulscc %o4, %o1, %o4 ! first iteration of 13 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 ! 12th iteration mulscc %o4, %g0, %o4 ! last iteration only shifts rd %y, %o5 sll %o4, 12, %o4 ! left shift partial product by 12 bits srl %o5, 20, %o5 ! right shift partial product by 20 bits retl or %o5, %o4, %o0 ! merge for true product #endif #ifdef L_divsi3 .text .align 4 .global .udiv .proc 4 .udiv: save %sp, -64, %sp b divide mov 0, %i2 ! result always positive .global .div .proc 4 .div: save %sp, -64, %sp orcc %i1, %i0, %g0 ! is either operand negative bge divide ! if not, skip this junk xor %i1, %i0, %i2 ! record sign of result in sign of %i2 tst %i1 bge 2f tst %i0 ! %i1 < 0 bge divide neg %i1 2: ! %i0 < 0 neg %i0 ! FALL THROUGH divide: ! Compute size of quotient, scale comparand. orcc %i1, %g0, %l1 ! movcc %i1, %l1 te 2 ! if %i1 = 0 mov %i0, %i3 mov 0, %i2 sethi %hi(1<<(32-2-1)), %l3 cmp %i3, %l3 blu not_really_big mov 0, %l0 ! ! Here, the %i0 is >= 2^(31-3) or so. We must be careful here, ! as our usual 3-at-a-shot divide step will cause overflow and havoc. ! The total number of bits in the result here is 3*%l0+%l4, where ! %l4 <= 3. ! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into ! the top decade: so do not even bother to compare to %i3. 1: cmp %l1, %l3 bgeu 3f mov 1, %l4 sll %l1, 3, %l1 b 1b inc %l0 ! ! Now compute %l4 ! 2: addcc %l1, %l1, %l1 bcc not_too_big add %l4, 1, %l4 ! ! We are here if the %i1 overflowed when Shifting. ! This means that %i3 has the high-order bit set. ! Restore %l1 and subtract from %i3. sll %l3, 2, %l3 srl %l1, 1, %l1 add %l1, %l3, %l1 b do_single_div dec %l4 not_too_big: 3: cmp %l1, %i3 blu 2b nop be do_single_div nop ! %l1 > %i3: went too far: back up 1 step ! srl %l1, 1, %l1 ! dec %l4 ! do single-bit divide steps ! ! We have to be careful here. We know that %i3 >= %l1, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if %i3 >= 0. Because both %i3 and %l1 may have the ! high-order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: deccc %l4 bl end_regular_divide nop sub %i3, %l1, %i3 mov 1, %i2 b end_single_divloop nop single_divloop: sll %i2, 1, %i2 bl 1f srl %l1, 1, %l1 ! %i3 >= 0 sub %i3, %l1, %i3 b 2f inc %i2 1: ! %i3 < 0 add %i3, %l1, %i3 dec %i2 end_single_divloop: 2: deccc %l4 bge single_divloop tst %i3 b end_regular_divide nop not_really_big: 1: sll %l1, 3, %l1 cmp %l1, %i3 bleu 1b inccc %l0 be got_result dec %l0 do_regular_divide: ! Do the main division iteration tst %i3 ! Fall through into divide loop divloop: sll %i2, 3, %i2 ! depth 1, accumulated bits 0 bl L.1.8 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 2, accumulated bits 1 bl L.2.9 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 3, accumulated bits 3 bl L.3.11 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (3*2+1), %i2 L.3.11: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (3*2-1), %i2 L.2.9: ! remainder is negative addcc %i3,%l1,%i3 ! depth 3, accumulated bits 1 bl L.3.9 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (1*2+1), %i2 L.3.9: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (1*2-1), %i2 L.1.8: ! remainder is negative addcc %i3,%l1,%i3 ! depth 2, accumulated bits -1 bl L.2.7 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 3, accumulated bits -1 bl L.3.7 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (-1*2+1), %i2 L.3.7: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (-1*2-1), %i2 L.2.7: ! remainder is negative addcc %i3,%l1,%i3 ! depth 3, accumulated bits -3 bl L.3.5 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (-3*2+1), %i2 L.3.5: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (-3*2-1), %i2 end_regular_divide: 9: deccc %l0 bge divloop tst %i3 bge got_result nop ! non-restoring fixup here dec %i2 got_result: tst %i2 bge 1f restore ! answer < 0 retl ! leaf-routine return neg %o2, %o0 ! quotient <- -%i2 1: retl ! leaf-routine return mov %o2, %o0 ! quotient <- %i2 #endif #ifdef L_modsi3 .text .align 4 .global .urem .proc 4 .urem: save %sp, -64, %sp b divide mov 0, %i2 ! result always positive .global .rem .proc 4 .rem: save %sp, -64, %sp orcc %i1, %i0, %g0 ! is either operand negative bge divide ! if not, skip this junk mov %i0, %i2 ! record sign of result in sign of %i2 tst %i1 bge 2f tst %i0 ! %i1 < 0 bge divide neg %i1 2: ! %i0 < 0 neg %i0 ! FALL THROUGH divide: ! Compute size of quotient, scale comparand. orcc %i1, %g0, %l1 ! movcc %i1, %l1 te 2 ! if %i1 = 0 mov %i0, %i3 mov 0, %i2 sethi %hi(1<<(32-2-1)), %l3 cmp %i3, %l3 blu not_really_big mov 0, %l0 ! ! Here, the %i0 is >= 2^(31-3) or so. We must be careful here, ! as our usual 3-at-a-shot divide step will cause overflow and havoc. ! The total number of bits in the result here is 3*%l0+%l4, where ! %l4 <= 3. ! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into ! the top decade: so do not even bother to compare to %i3. 1: cmp %l1, %l3 bgeu 3f mov 1, %l4 sll %l1, 3, %l1 b 1b inc %l0 ! ! Now compute %l4 ! 2: addcc %l1, %l1, %l1 bcc not_too_big add %l4, 1, %l4 ! ! We are here if the %i1 overflowed when Shifting. ! This means that %i3 has the high-order bit set. ! Restore %l1 and subtract from %i3. sll %l3, 2, %l3 srl %l1, 1, %l1 add %l1, %l3, %l1 b do_single_div dec %l4 not_too_big: 3: cmp %l1, %i3 blu 2b nop be do_single_div nop ! %l1 > %i3: went too far: back up 1 step ! srl %l1, 1, %l1 ! dec %l4 ! do single-bit divide steps ! ! We have to be careful here. We know that %i3 >= %l1, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if %i3 >= 0. Because both %i3 and %l1 may have the ! high-order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: deccc %l4 bl end_regular_divide nop sub %i3, %l1, %i3 mov 1, %i2 b end_single_divloop nop single_divloop: sll %i2, 1, %i2 bl 1f srl %l1, 1, %l1 ! %i3 >= 0 sub %i3, %l1, %i3 b 2f inc %i2 1: ! %i3 < 0 add %i3, %l1, %i3 dec %i2 end_single_divloop: 2: deccc %l4 bge single_divloop tst %i3 b end_regular_divide nop not_really_big: 1: sll %l1, 3, %l1 cmp %l1, %i3 bleu 1b inccc %l0 be got_result dec %l0 do_regular_divide: ! Do the main division iteration tst %i3 ! Fall through into divide loop divloop: sll %i2, 3, %i2 ! depth 1, accumulated bits 0 bl L.1.8 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 2, accumulated bits 1 bl L.2.9 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 3, accumulated bits 3 bl L.3.11 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (3*2+1), %i2 L.3.11: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (3*2-1), %i2 L.2.9: ! remainder is negative addcc %i3,%l1,%i3 ! depth 3, accumulated bits 1 bl L.3.9 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (1*2+1), %i2 L.3.9: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (1*2-1), %i2 L.1.8: ! remainder is negative addcc %i3,%l1,%i3 ! depth 2, accumulated bits -1 bl L.2.7 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 ! depth 3, accumulated bits -1 bl L.3.7 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (-1*2+1), %i2 L.3.7: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (-1*2-1), %i2 L.2.7: ! remainder is negative addcc %i3,%l1,%i3 ! depth 3, accumulated bits -3 bl L.3.5 srl %l1,1,%l1 ! remainder is positive subcc %i3,%l1,%i3 b 9f add %i2, (-3*2+1), %i2 L.3.5: ! remainder is negative addcc %i3,%l1,%i3 b 9f add %i2, (-3*2-1), %i2 end_regular_divide: 9: deccc %l0 bge divloop tst %i3 bge got_result nop ! non-restoring fixup here add %i3, %i1, %i3 got_result: tst %i2 bge 1f restore ! answer < 0 retl ! leaf-routine return neg %o3, %o0 ! remainder <- -%i3 1: retl ! leaf-routine return mov %o3, %o0 ! remainder <- %i3 #endif