;; Machine description for IBM RISC System 6000 (POWER) for GNU C compiler ;; Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc. ;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) ;; This file is part of GNU CC. ;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. ;; Define an insn type attribute. This is used in function unit delay ;; computations. (define_attr "type" "integer,load,fpload,imul,idiv,branch,compare,delayed_compare,fpcompare,mtjmpr,fp,dmul,sdiv,ddiv,ssqrt,dsqrt,jmpreg" (const_string "integer")) ;; Length (in bytes). (define_attr "length" "" (if_then_else (eq_attr "type" "branch") (if_then_else (and (ge (minus (pc) (match_dup 0)) (const_int -32768)) (lt (minus (pc) (match_dup 0)) (const_int 32767))) (const_int 8) (const_int 12)) (const_int 4))) ;; Processor type -- this attribute must exactly match the processor_type ;; enumeration in rs6000.h. (define_attr "cpu" "rios1,rios2,ppc403,ppc601,ppc603,ppc604,ppc620" (const (symbol_ref "rs6000_cpu_attr"))) ; (define_function_unit NAME MULTIPLICITY SIMULTANEITY ; TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST]) ; Load/Store Unit -- POWER/2 and pure PowerPC only ; (POWER and 601 use Integer Unit) (define_function_unit "lsu" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "rios2,ppc603,ppc604,ppc620")) 2 0) (define_function_unit "lsu" 1 0 (and (eq_attr "type" "fpload") (eq_attr "cpu" "rios2,ppc603,ppc604,ppc620")) 2 0) (define_function_unit "iu" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "rios1,ppc403,ppc601")) 2 0) (define_function_unit "iu" 1 0 (and (eq_attr "type" "fpload") (eq_attr "cpu" "rios1,ppc601")) 3 0) ; Integer Unit (RIOS1, PPC601, PPC603) ; Trivial operations take one cycle which need not be listed here. (define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "rios1")) 3 3) (define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc403")) 4 4) (define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc601,ppc603")) 5 5) (define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "rios1")) 19 19) (define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc403")) 33 33) (define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc601")) 36 36) (define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc603")) 37 36) ; RIOS2 has two integer units: a primary one which can perform all ; operations and a secondary one which is fed in lock step with the first ; and can perform "simple" integer operations. (define_function_unit "iu2" 2 0 (and (eq_attr "type" "integer") (eq_attr "cpu" "rios2")) 1 0 [(eq_attr "type" "imul,idiv")]) (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "rios2")) 2 2 [(eq_attr "type" "integer")]) (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "rios2")) 13 13 [(eq_attr "type" "integer")]) ; PPC604 has three integer units: one primary and two secondary. (define_function_unit "iu3" 3 0 (and (eq_attr "type" "integer") (eq_attr "cpu" "ppc604,ppc620")) 1 0 [(eq_attr "type" "imul,idiv")]) (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc604,ppc620")) 4 2 [(eq_attr "type" "integer")]) (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc604,ppc620")) 20 19 [(eq_attr "type" "integer")]) ; Branch Processing Unit (define_function_unit "bpu" 1 0 (eq_attr "type" "compare") 4 0) (define_function_unit "bpu" 1 0 (eq_attr "type" "delayed_compare") 5 0) (define_function_unit "bpu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "rios1,rios2")) 8 0) (define_function_unit "bpu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "ppc601,ppc603,ppc604,ppc620")) 4 0) (define_function_unit "bpu" 1 0 (and (eq_attr "type" "mtjmpr") (eq_attr "cpu" "rios1,rios2")) 5 0) (define_function_unit "bpu" 1 0 (and (eq_attr "type" "mtjmpr") (eq_attr "cpu" "ppc403,ppc601,ppc603,ppc604,ppc620")) 4 0) ; Floating Point Unit (RIOS1, PPC601, PPC603, PPC604). (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp,dmul") (eq_attr "cpu" "rios1")) 2 0) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "ppc601")) 4 0) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "ppc603,ppc604,ppc620")) 3 0) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc601")) 5 5) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc603")) 4 2) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc604,ppc620")) 3 0) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv,ddiv") (eq_attr "cpu" "rios1")) 19 19) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv") (eq_attr "cpu" "ppc601")) 17 17) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv") (eq_attr "cpu" "ppc603,ppc604,ppc620")) 18 18) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "ddiv") (eq_attr "cpu" "ppc601,ppc604,ppc620")) 31 31) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "ddiv") (eq_attr "cpu" "ppc603")) 33 33) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "ssqrt") (eq_attr "cpu" "ppc620")) 31 31) (define_function_unit "fpu" 1 0 (and (eq_attr "type" "dsqrt") (eq_attr "cpu" "ppc620")) 31 31) ; RIOS2 has two symmetric FPUs. (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "rios2")) 2 0) (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "rios2")) 2 0) (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "sdiv,ddiv") (eq_attr "cpu" "rios2")) 17 17) (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "ssqrt,dsqrt") (eq_attr "cpu" "rios2")) 26 26) ;; Start with fixed-point load and store insns. Here we put only the more ;; complex forms. Basic data transfer is done later. (define_expand "zero_extendqidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lbz%U1%X1 %0,%1 rldicl %0,%1,0,56" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,56" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,56" [(set_attr "type" "compare")]) (define_insn "extendqidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "extsb %0,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsb. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsb. %0,%1" [(set_attr "type" "compare")]) (define_expand "zero_extendhidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lhz%U1%X1 %0,%1 rldicl %0,%1,0,48" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,48" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,48" [(set_attr "type" "compare")]) (define_expand "extendhidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (sign_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lha%U1%X1 %0,%1 extsh %0,%1" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsh. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsh. %0,%1" [(set_attr "type" "compare")]) (define_expand "zero_extendsidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:SI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lwz%U1%X1 %0,%1 rldicl %0,%1,0,32" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,32" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,32" [(set_attr "type" "compare")]) (define_expand "extendsidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (sign_extend:DI (match_operand:SI 1 "lwa_operand" "m,r")))] "TARGET_POWERPC64" "@ lwa%U1%X1 %0,%1 extsw %0,%1" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsw. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsw. %0,%1" [(set_attr "type" "compare")]) (define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "")))] "" "") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (zero_extend:SI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "" "@ lbz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xff" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xff" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xff" [(set_attr "type" "compare")]) (define_expand "extendqisi2" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:QI 1 "gpc_reg_operand" ""))] "" " { if (TARGET_POWERPC) emit_insn (gen_extendqisi2_ppc (operands[0], operands[1])); else if (TARGET_POWER) emit_insn (gen_extendqisi2_power (operands[0], operands[1])); else emit_insn (gen_extendqisi2_no_power (operands[0], operands[1])); DONE; }") (define_insn "extendqisi2_ppc" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "extsb %0,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "TARGET_POWERPC" "extsb. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_dup 1)))] "TARGET_POWERPC" "extsb. %0,%1" [(set_attr "type" "compare")]) (define_expand "extendqisi2_power" [(parallel [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (clobber (scratch:SI))]) (parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24))) (clobber (scratch:SI))])] "TARGET_POWER" " { operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }") (define_expand "extendqisi2_no_power" [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24)))] "! TARGET_POWER && ! TARGET_POWERPC" " { operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }") (define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "gpc_reg_operand" "") (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "")))] "" "") (define_insn "" [(set (match_operand:HI 0 "gpc_reg_operand" "=r,r") (zero_extend:HI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "" "@ lbz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xff" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:HI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xff" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:HI 0 "gpc_reg_operand" "=r") (zero_extend:HI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xff" [(set_attr "type" "compare")]) (define_expand "extendqihi2" [(use (match_operand:HI 0 "gpc_reg_operand" "")) (use (match_operand:QI 1 "gpc_reg_operand" ""))] "" " { if (TARGET_POWERPC) emit_insn (gen_extendqihi2_ppc (operands[0], operands[1])); else if (TARGET_POWER) emit_insn (gen_extendqihi2_power (operands[0], operands[1])); else emit_insn (gen_extendqihi2_no_power (operands[0], operands[1])); DONE; }") (define_insn "extendqihi2_ppc" [(set (match_operand:HI 0 "gpc_reg_operand" "=r") (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "extsb %0,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:HI 2 "=r"))] "TARGET_POWERPC" "extsb. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:HI 0 "gpc_reg_operand" "=r") (sign_extend:HI (match_dup 1)))] "TARGET_POWERPC" "extsb. %0,%1" [(set_attr "type" "compare")]) (define_expand "extendqihi2_power" [(parallel [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (clobber (scratch:SI))]) (parallel [(set (match_operand:HI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24))) (clobber (scratch:SI))])] "TARGET_POWER" " { operands[0] = gen_lowpart (SImode, operands[0]); operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }") (define_expand "extendqihi2_no_power" [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (set (match_operand:HI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24)))] "! TARGET_POWER && ! TARGET_POWERPC" " { operands[0] = gen_lowpart (SImode, operands[0]); operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }") (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))] "" "") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (zero_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "" "@ lhz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xffff" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xffff" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xffff" [(set_attr "type" "compare")]) (define_expand "extendhisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))] "" "") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (sign_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "" "@ lha%U1%X1 %0,%1 {exts|extsh} %0,%1" [(set_attr "type" "load,*")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{exts.|extsh.} %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_dup 1)))] "" "{exts.|extsh.} %0,%1" [(set_attr "type" "compare")]) ;; Fixed-point arithmetic insns. ;; Discourage ai/addic because of carry but provide it in an alternative ;; allowing register zero as source. (define_insn "addsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,?r,r") (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,b,r,b") (match_operand:SI 2 "add_operand" "r,I,I,J")))] "" "@ {cax|add} %0,%1,%2 {cal %0,%2(%1)|addi %0,%1,%2} {ai|addic} %0,%1,%2 {cau|addis} %0,%1,%u2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r"))] "" "@ {cax.|add.} %3,%1,%2 {ai.|addic.} %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {cax.|add.} %0,%1,%2 {ai.|addic.} %0,%1,%2" [(set_attr "type" "compare")]) ;; Split an add that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine. Note that the low-order ;; add should be last in case the result gets used in an address. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_add_cint_operand" "")))] "" [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))] " { int low = INTVAL (operands[2]) & 0xffff; int high = (unsigned) INTVAL (operands[2]) >> 16; if (low & 0x8000) high++, low |= 0xffff0000; operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16); operands[4] = gen_rtx (CONST_INT, VOIDmode, low); }") (define_insn "one_cmplsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "nor %0,%1,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "nor. %2,%1,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (match_dup 1)))] "" "nor. %0,%1,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "rI") (match_operand:SI 2 "gpc_reg_operand" "r")))] "! TARGET_POWERPC" "{sf%I1|subf%I1c} %0,%2,%1") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "r,I") (match_operand:SI 2 "gpc_reg_operand" "r,r")))] "TARGET_POWERPC" "@ subf %0,%2,%1 subfic %0,%2,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWERPC" "{sf.|subfc.} %3,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWERPC" "subf. %3,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWERPC" "{sf.|subfc.} %0,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC" "subf. %0,%2,%1" [(set_attr "type" "compare")]) (define_expand "subsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT) { emit_insn (gen_addsi3 (operands[0], operands[1], negate_rtx (SImode, operands[2]))); DONE; } }") ;; For SMIN, SMAX, UMIN, and UMAX, we use DEFINE_EXPAND's that involve a doz[i] ;; instruction and some auxiliary computations. Then we just have a single ;; DEFINE_INSN for doz[i] and the define_splits to make them if made by ;; combine. (define_expand "sminsi3" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" "")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_dup 2) (match_dup 3)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); }") (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (smin:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "TARGET_POWER" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_dup 0) (minus:SI (match_dup 2) (match_dup 3)))] "") (define_expand "smaxsi3" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" "")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 3) (match_dup 1)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); }") (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (smax:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "TARGET_POWER" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_dup 0) (plus:SI (match_dup 3) (match_dup 1)))] "") (define_expand "uminsi3" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4)) (const_int 0) (minus:SI (match_dup 4) (match_dup 3)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_dup 2) (match_dup 3)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); operands[5] = GEN_INT (-2147483647 - 1); }") (define_expand "umaxsi3" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4)) (const_int 0) (minus:SI (match_dup 4) (match_dup 3)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 3) (match_dup 1)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); operands[5] = GEN_INT (-2147483647 - 1); }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))))] "TARGET_POWER" "doz%I2 %0,%1,%2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2. %3,%1,%2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (if_then_else:SI (gt (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))))] "TARGET_POWER" "doz%I2. %0,%1,%2" [(set_attr "type" "delayed_compare")]) ;; We don't need abs with condition code because such comparisons should ;; never be done. (define_expand "abssi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "")))] "" " { if (!TARGET_POWER) { emit_insn (gen_abssi2_nopower (operands[0], operands[1])); DONE; } }") (define_insn "abssi2_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "TARGET_POWER" "abs %0,%1") (define_insn "abssi2_nopower" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER" "* { return (TARGET_POWERPC) ? \"{srai|srawi} %2,%1,31\;xor %0,%2,%1\;subf %0,%2,%0\" : \"{srai|srawi} %2,%1,31\;xor %0,%2,%1\;{sf|subfc} %0,%2,%0\"; }" [(set_attr "length" "12")]) (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER && reload_completed" [(set (match_dup 2) (ashiftrt:SI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:SI (match_dup 2) (match_dup 0)))] "") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))))] "TARGET_POWER" "nabs %0,%1") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER" "* { return (TARGET_POWERPC) ? \"{srai|srawi} %2,%1,31\;xor %0,%2,%1\;subf %0,%0,%2\" : \"{srai|srawi} %2,%1,31\;xor %0,%2,%1\;{sf|subfc} %0,%0,%2\"; }" [(set_attr "length" "12")]) (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER && reload_completed" [(set (match_dup 2) (ashiftrt:SI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:SI (match_dup 0) (match_dup 2)))] "") (define_insn "negsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "neg %0,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "neg. %2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (match_dup 1)))] "" "neg. %0,%1" [(set_attr "type" "compare")]) (define_insn "ffssi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r") (ffs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "neg %0,%1\;and %0,%0,%1\;{cntlz|cntlzw} %0,%0\;{sfi|subfic} %0,%0,32" [(set_attr "length" "16")]) (define_expand "mulsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_short_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_mulsi3_mq (operands[0], operands[1], operands[2])); else emit_insn (gen_mulsi3_no_mq (operands[0], operands[1], operands[2])); DONE; }") (define_insn "mulsi3_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (clobber (match_scratch:SI 3 "=q,q"))] "TARGET_POWER" "@ {muls|mullw} %0,%1,%2 {muli|mulli} %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "mulsi3_no_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")))] "! TARGET_POWER" "@ {muls|mullw} %0,%1,%2 {muli|mulli} %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r")) (clobber (match_scratch:SI 4 "=q"))] "TARGET_POWER" "{muls.|mullw.} %3,%1,%2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{muls.|mullw.} %3,%1,%2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (mult:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q"))] "TARGET_POWER" "{muls.|mullw.} %0,%1,%2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (mult:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{muls.|mullw.} %0,%1,%2" [(set_attr "type" "delayed_compare")]) ;; Operand 1 is divided by operand 2; quotient goes to operand ;; 0 and remainder to operand 3. ;; ??? At some point, see what, if anything, we can do about if (x % y == 0). (define_expand "divmodsi4" [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (div:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" ""))) (set (match_operand:SI 3 "gpc_reg_operand" "") (mod:SI (match_dup 1) (match_dup 2)))])] "TARGET_POWER || (! TARGET_POWER && ! TARGET_POWERPC)" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_divss_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); emit_move_insn (operands[3], gen_rtx (REG, SImode, 4)); DONE; } }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (set (match_operand:SI 3 "gpc_reg_operand" "=q") (mod:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "divs %0,%1,%2" [(set_attr "type" "idiv")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "divw %0,%1,%2" [(set_attr "type" "idiv")]) (define_expand "udivsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "")))] "TARGET_POWERPC || (! TARGET_POWER && ! TARGET_POWERPC)" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_quous_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "divwu %0,%1,%2" [(set_attr "type" "idiv")]) ;; For powers of two we can do srai/aze for divide and then adjust for ;; modulus. If it isn't a power of two, FAIL on POWER so divmodsi4 will be ;; used; for PowerPC, force operands into register and do a normal divide; ;; for AIX common-mode, use quoss call on register operands. (define_expand "divsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (div:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT && exact_log2 (INTVAL (operands[2])) >= 0) ; else if (TARGET_POWER && ! TARGET_POWERPC) FAIL; else operands[2] = force_reg (SImode, operands[2]); if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_quoss_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } }") (define_expand "modsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { int i = exact_log2 (INTVAL (operands[2])); rtx temp1; rtx temp2; if (GET_CODE (operands[2]) != CONST_INT || i < 0) FAIL; temp1 = gen_reg_rtx (SImode); temp2 = gen_reg_rtx (SImode); emit_insn (gen_divsi3 (temp1, operands[1], operands[2])); emit_insn (gen_ashlsi3 (temp2, temp1, GEN_INT (i))); emit_insn (gen_subsi3 (operands[0], operands[1], temp2)); DONE; }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %0,%1,%p2\;{aze|addze} %0,%0" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %3,%1,%p2\;{aze.|addze.} %3,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_dup 1) (match_dup 2)))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %0,%1,%p2\;{aze.|addze.} %0,%0" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (udiv:SI (plus:DI (ashift:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 32)) (zero_extend:DI (match_operand:SI 4 "register_operand" "2"))) (match_operand:SI 3 "gpc_reg_operand" "r"))) (set (match_operand:SI 2 "register_operand" "=*q") (umod:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 1)) (const_int 32)) (zero_extend:DI (match_dup 4))) (match_dup 3)))] "TARGET_POWER" "div %0,%1,%3" [(set_attr "type" "idiv")]) ;; To do unsigned divide we handle the cases of the divisor looking like a ;; negative number. If it is a constant that is less than 2**31, we don't ;; have to worry about the branches. So make a few subroutines here. ;; ;; First comes the normal case. (define_expand "udivmodsi4_normal" [(set (match_dup 4) (const_int 0)) (parallel [(set (match_operand:SI 0 "" "") (udiv:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4)) (const_int 32)) (zero_extend:DI (match_operand:SI 1 "" ""))) (match_operand:SI 2 "" ""))) (set (match_operand:SI 3 "" "") (umod:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4)) (const_int 32)) (zero_extend:DI (match_dup 1))) (match_dup 2)))])] "TARGET_POWER" " { operands[4] = gen_reg_rtx (SImode); }") ;; This handles the branches. (define_expand "udivmodsi4_tests" [(set (match_operand:SI 0 "" "") (const_int 0)) (set (match_operand:SI 3 "" "") (match_operand:SI 1 "" "")) (set (match_dup 5) (compare:CCUNS (match_dup 1) (match_operand:SI 2 "" ""))) (set (pc) (if_then_else (ltu (match_dup 5) (const_int 0)) (label_ref (match_operand:SI 4 "" "")) (pc))) (set (match_dup 0) (const_int 1)) (set (match_dup 3) (minus:SI (match_dup 1) (match_dup 2))) (set (match_dup 6) (compare:CC (match_dup 2) (const_int 0))) (set (pc) (if_then_else (lt (match_dup 6) (const_int 0)) (label_ref (match_dup 4)) (pc)))] "TARGET_POWER" " { operands[5] = gen_reg_rtx (CCUNSmode); operands[6] = gen_reg_rtx (CCmode); }") (define_expand "udivmodsi4" [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" ""))) (set (match_operand:SI 3 "gpc_reg_operand" "") (umod:SI (match_dup 1) (match_dup 2)))])] "" " { rtx label = 0; if (! TARGET_POWER) if (! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_divus_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); emit_move_insn (operands[3], gen_rtx (REG, SImode, 4)); DONE; } else FAIL; if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) < 0) { operands[2] = force_reg (SImode, operands[2]); label = gen_label_rtx (); emit (gen_udivmodsi4_tests (operands[0], operands[1], operands[2], operands[3], label)); } else operands[2] = force_reg (SImode, operands[2]); emit (gen_udivmodsi4_normal (operands[0], operands[1], operands[2], operands[3])); if (label) emit_label (label); DONE; }") ;; AIX architecture-independent common-mode multiply (DImode), ;; divide/modulus, and quotient subroutine calls. Input operands in R3 and ;; R4; results in R3 and sometimes R4; link register always clobbered by bla ;; instruction; R0 sometimes clobbered; also, MQ sometimes clobbered but ;; assumed unused if generating common-mode, so ignore. (define_insn "mulh_call" [(set (reg:SI 3) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (reg:SI 3)) (sign_extend:DI (reg:SI 4))) (const_int 32)))) (clobber (match_scratch:SI 0 "=l"))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __mulh") (define_insn "mull_call" [(set (reg:DI 3) (mult:DI (sign_extend:DI (reg:SI 3)) (sign_extend:DI (reg:SI 4)))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __mull") (define_insn "divss_call" [(set (reg:SI 3) (div:SI (reg:SI 3) (reg:SI 4))) (set (reg:SI 4) (mod:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __divss") (define_insn "divus_call" [(set (reg:SI 3) (udiv:SI (reg:SI 3) (reg:SI 4))) (set (reg:SI 4) (umod:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0)) (clobber (match_scratch:CC 1 "=x")) (clobber (reg:CC 69))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __divus") (define_insn "quoss_call" [(set (reg:SI 3) (div:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l"))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __quoss") (define_insn "quous_call" [(set (reg:SI 3) (udiv:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0)) (clobber (match_scratch:CC 1 "=x")) (clobber (reg:CC 69))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __quous") (define_insn "andsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "?r,L,K,J"))) (clobber (match_scratch:CC 3 "=X,X,x,x"))] "" "@ and %0,%1,%2 {rlinm|rlwinm} %0,%1,0,%m2,%M2 {andil.|andi.} %0,%1,%b2 {andiu.|andis.} %0,%1,%u2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x") (compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "r,K,J,L")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r,r,r"))] "" "@ and. %3,%1,%2 {andil.|andi.} %3,%1,%b2 {andiu.|andis.} %3,%1,%u2 {rlinm.|rlwinm.} %3,%1,0,%m2,%M2" [(set_attr "type" "compare,compare,compare,delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x,x,x") (compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "r,K,J,L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (and:SI (match_dup 1) (match_dup 2)))] "" "@ and. %0,%1,%2 {andil.|andi.} %0,%1,%b2 {andiu.|andis.} %0,%1,%u2 {rlinm.|rlwinm.} %0,%1,0,%m2,%M2" [(set_attr "type" "compare,compare,compare,delayed_compare")]) ;; Take a AND with a constant that cannot be done in a single insn and try to ;; split it into two insns. This does not verify that the insns are valid ;; since this need not be done as combine will do it. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (and:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_and_cint_operand" "")))] "" [(set (match_dup 0) (and:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (and:SI (match_dup 0) (match_dup 4)))] " { int maskval = INTVAL (operands[2]); int i, transitions, last_bit_value; int orig = maskval, first_c = maskval, second_c; /* We know that MASKVAL must have more than 2 bit-transitions. Start at the low-order bit and count for the third transition. When we get there, make a first mask that has everything to the left of that position a one. Then make the second mask to turn off whatever else is needed. */ for (i = 1, transitions = 0, last_bit_value = maskval & 1; i < 32; i++) { if (((maskval >>= 1) & 1) != last_bit_value) last_bit_value ^= 1, transitions++; if (transitions > 2) { first_c |= (~0) << i; break; } } second_c = orig | ~ first_c; operands[3] = gen_rtx (CONST_INT, VOIDmode, first_c); operands[4] = gen_rtx (CONST_INT, VOIDmode, second_c); }") (define_insn "iorsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r") (match_operand:SI 2 "logical_operand" "r,K,J")))] "" "@ or %0,%1,%2 {oril|ori} %0,%1,%b2 {oriu|oris} %0,%1,%u2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "or. %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (match_dup 1) (match_dup 2)))] "" "or. %0,%1,%2" [(set_attr "type" "compare")]) ;; Split an IOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (ior:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_logical_cint_operand" "")))] "" [(set (match_dup 0) (ior:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff0000); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }") (define_insn "xorsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r") (match_operand:SI 2 "logical_operand" "r,K,J")))] "" "@ xor %0,%1,%2 {xoril|xori} %0,%1,%b2 {xoriu|xoris} %0,%1,%u2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "xor. %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (xor:SI (match_dup 1) (match_dup 2)))] "" "xor. %0,%1,%2" [(set_attr "type" "compare")]) ;; Split an XOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_logical_cint_operand" "")))] "" [(set (match_dup 0) (xor:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (xor:SI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff0000); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "eqv %0,%1,%2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "eqv. %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (xor:SI (match_dup 1) (match_dup 2))))] "" "eqv. %0,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")))] "" "andc %0,%2,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "andc. %3,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_dup 1)) (match_dup 2)))] "" "andc. %0,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")))] "" "orc %0,%2,%1") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "orc. %3,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_dup 1)) (match_dup 2)))] "" "orc. %0,%2,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "nand %0,%1,%2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "nand. %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))] "" "nand. %0,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "nor %0,%1,%2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "nor. %3,%1,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))] "" "nor. %0,%1,%2" [(set_attr "type" "compare")]) ;; maskir insn. We need four forms because things might be in arbitrary ;; orders. Don't define forms that only set CR fields because these ;; would modify an input register. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_dup 2) (match_operand:SI 3 "gpc_reg_operand" "r"))))] "TARGET_POWER" "maskir %0,%3,%2") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_dup 2))))] "TARGET_POWER" "maskir %0,%3,%2") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))))] "TARGET_POWER" "maskir %0,%3,%2") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))))] "TARGET_POWER" "maskir %0,%3,%2") (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_dup 2) (match_operand:SI 3 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1)) (and:SI (match_dup 2) (match_dup 3))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_dup 2))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1)) (and:SI (match_dup 3) (match_dup 2))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_dup 2) (match_dup 3)) (and:SI (not:SI (match_dup 2)) (match_dup 1))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_dup 3) (match_dup 2)) (and:SI (not:SI (match_dup 2)) (match_dup 1))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")]) ;; Rotate and shift insns, in all their variants. These support shifts, ;; field inserts and extracts, and various combinations thereof. (define_expand "insv" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "gpc_reg_operand" "r"))] "" " { /* Do not handle 16/8 bit structures that fit in HI/QI modes directly, since the (SUBREG:SI (REG:HI xxx)) that is otherwise generated can confuse the compiler if the address of the structure is taken later. */ if (GET_CODE (operands[0]) == SUBREG && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (operands[0]))) < UNITS_PER_WORD)) FAIL; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "gpc_reg_operand" "r"))] "" "* { int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31; operands[4] = gen_rtx (CONST_INT, VOIDmode, 32 - start - size); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return \"{rlimi|rlwimi} %0,%3,%4,%h2,%h1\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (ashift:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31; operands[4] = gen_rtx (CONST_INT, VOIDmode, (shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return \"{rlimi|rlwimi} %0,%3,%4,%h2,%h1\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (ashiftrt:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31; operands[4] = gen_rtx (CONST_INT, VOIDmode, (32 - shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return \"{rlimi|rlwimi} %0,%3,%4,%h2,%h1\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (lshiftrt:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31; operands[4] = gen_rtx (CONST_INT, VOIDmode, (32 - shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return \"{rlimi|rlwimi} %0,%3,%4,%h2,%h1\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (zero_extract:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i") (match_operand:SI 5 "const_int_operand" "i")))] "INTVAL (operands[4]) >= INTVAL (operands[1])" "* { int extract_start = INTVAL (operands[5]) & 31; int extract_size = INTVAL (operands[4]) & 31; int insert_start = INTVAL (operands[2]) & 31; int insert_size = INTVAL (operands[1]) & 31; /* Align extract field with insert field */ operands[5] = gen_rtx (CONST_INT, VOIDmode, (extract_start + extract_size - insert_start - insert_size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, insert_start + insert_size - 1); return \"{rlimi|rlwimi} %0,%3,%5,%h2,%h1\"; }") (define_expand "extzv" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "" " { /* Do not handle 16/8 bit structures that fit in HI/QI modes directly, since the (SUBREG:SI (REG:HI xxx)) that is otherwise generated can confuse the compiler if the address of the structure is taken later. */ if (GET_CODE (operands[0]) == SUBREG && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (operands[0]))) < UNITS_PER_WORD)) FAIL; }") (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31; if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return \"{rlinm|rlwinm} %0,%1,%3,%s2,31\"; }") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31; /* If the bitfield being tested fits in the upper or lower half of a word, it is possible to use andiu. or andil. to test it. This is useful because the condition register set-use delay is smaller for andi[ul]. than for rlinm. This doesn't work when the starting bit position is 0 because the LT and GT bits may be set wrong. */ if ((start > 0 && start + size <= 16) || start >= 16) { operands[3] = gen_rtx (CONST_INT, VOIDmode, ((1 << (16 - (start & 15))) - (1 << (16 - (start & 15) - size)))); if (start < 16) return \"{andiu.|andis.} %4,%1,%3\"; else return \"{andil.|andi.} %4,%1,%3\"; } if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return \"{rlinm.|rlwinm.} %4,%1,%3,%s2,31\"; }" [(set_attr "type" "compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_dup 1) (match_dup 2) (match_dup 3)))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31; if (start >= 16 && start + size == 32) { operands[3] = gen_rtx (CONST_INT, VOIDmode, (1 << (32 - start)) - 1); return \"{andil.|andi.} %0,%1,%3\"; } if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return \"{rlinm.|rlwinm.} %0,%1,%3,%s2,31\"; }" [(set_attr "type" "delayed_compare")]) (define_insn "rotlsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffffffff") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffffffff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (rotate:SI (match_dup 1) (match_dup 2)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffffffff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,%m3,%M3") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %4,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (rotate:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xff") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (rotate:SI (match_dup 1) (match_dup 2)) 0)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffff") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (rotate:SI (match_dup 1) (match_dup 2)) 0)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffff" [(set_attr "type" "delayed_compare")]) ;; Note that we use "sle." instead of "sl." so that we can set ;; SHIFT_COUNT_TRUNCATED. (define_expand "ashlsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_ashlsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_ashlsi3_no_power (operands[0], operands[1], operands[2])); DONE; }") (define_insn "ashlsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ sle %0,%1,%2 {sli|slwi} %0,%1,%h2" [(set_attr "length" "8")]) (define_insn "ashlsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sl|slw}%I2 %0,%1,%h2" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sle. %3,%1,%2 {sli.|slwi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sl|slw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashift:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sle. %0,%1,%2 {sli.|slwi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sl|slw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")))] "includes_lshift_p (operands[2], operands[3])" "{rlinm|rlwinm} %0,%1,%h2,%m3,%M3") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "includes_lshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %4,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (ashift:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "includes_lshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %0,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")]) ;; The AIX assembler mis-handles "sri x,x,0", so write that case as ;; "sli x,x,0". (define_expand "lshrsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_lshrsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_lshrsi3_no_power (operands[0], operands[1], operands[2])); DONE; }") (define_insn "lshrsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ sre %0,%1,%2 {s%A2i|s%A2wi} %0,%1,%h2") (define_insn "lshrsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sr|srw}%I2 %0,%1,%h2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sre. %3,%1,%2 {s%A2i.|s%A2wi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sr|srw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (lshiftrt:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sre. %0,%1,%2 {s%A2i.|s%A2wi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sr|srw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")))] "includes_rshift_p (operands[2], operands[3])" "{rlinm|rlwinm} %0,%1,%s2,%m3,%M3") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "includes_rshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %4,%1,%s2,%m3,%M3" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (lshiftrt:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "includes_rshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %0,%1,%s2,%m3,%M3" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm|rlwinm} %0,%1,%s2,0xff") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm.|rlwinm.} %3,%1,%s2,0xff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm.|rlwinm.} %0,%1,%s2,0xff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm|rlwinm} %0,%1,%s2,0xffff") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm.|rlwinm.} %3,%1,%s2,0xffff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm.|rlwinm.} %0,%1,%s2,0xffff" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (ashiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 31)))] "TARGET_POWER" "rrib %0,%1,%2") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (lshiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 31)))] "TARGET_POWER" "rrib %0,%1,%2") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 1) (const_int 0)))] "TARGET_POWER" "rrib %0,%1,%2") (define_expand "ashrsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (TARGET_POWER) emit_insn (gen_ashrsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_ashrsi3_no_power (operands[0], operands[1], operands[2])); DONE; }") (define_insn "ashrsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ srea %0,%1,%2 {srai|srawi} %0,%1,%h2") (define_insn "ashrsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sra|sraw}%I2 %0,%1,%h2") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ srea. %3,%1,%2 {srai.|srawi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sra|sraw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashiftrt:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ srea. %0,%1,%2 {srai.|srawi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashiftrt:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sra|sraw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")]) ;; Floating-point insns, excluding normal data motion. ;; ;; PowerPC has a full set of single-precision floating point instructions. ;; ;; For the POWER architecture, we pretend that we have both SFmode and ;; DFmode insns, while, in fact, all fp insns are actually done in double. ;; The only conversions we will do will be when storing to memory. In that ;; case, we will use the "frsp" instruction before storing. ;; ;; Note that when we store into a single-precision memory location, we need to ;; use the frsp insn first. If the register being stored isn't dead, we ;; need a scratch register for the frsp. But this is difficult when the store ;; is done by reload. It is not incorrect to do the frsp on the register in ;; this case, we just lose precision that we would have otherwise gotten but ;; is not guaranteed. Perhaps this should be tightened up at some point. (define_insn "extendsfdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (float_extend:DF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "* { if (REGNO (operands[0]) == REGNO (operands[1])) return \"\"; else return \"fmr %0,%1\"; }" [(set_attr "type" "fp")]) (define_insn "truncdfsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (float_truncate:SF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "frsp %0,%1" [(set_attr "type" "fp")]) (define_insn "aux_truncdfsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (unspec:SF [(match_operand:SF 1 "gpc_reg_operand" "f")] 0))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "frsp %0,%1" [(set_attr "type" "fp")]) (define_insn "negsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fneg %0,%1" [(set_attr "type" "fp")]) (define_insn "abssf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (abs:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fabs %0,%1" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (abs:SF (match_operand:SF 1 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "fnabs %0,%1" [(set_attr "type" "fp")]) (define_expand "addsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "") (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fadds %0,%1,%2" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fa|fadd} %0,%1,%2" [(set_attr "type" "fp")]) (define_expand "subsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "") (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fsubs %0,%1,%2" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fs|fsub} %0,%1,%2" [(set_attr "type" "fp")]) (define_expand "mulsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "") (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmuls %0,%1,%2" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fm|fmul} %0,%1,%2" [(set_attr "type" "fp")]) (define_expand "divsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (div:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "") (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (div:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fdivs %0,%1,%2" [(set_attr "type" "sdiv")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (div:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fd|fdiv} %0,%1,%2" [(set_attr "type" "sdiv")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmadds %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fma|fmadd} %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmsubs %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fms|fmsub} %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fnmadds %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fnma|fnmadd} %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fnmsubs %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fnms|fnmsub} %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_expand "sqrtsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "")))] "(TARGET_PPC_GPOPT || TARGET_POWER2) && TARGET_HARD_FLOAT" "") (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_PPC_GPOPT && TARGET_HARD_FLOAT" "fsqrts %0,%1" [(set_attr "type" "ssqrt")]) (define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_POWER2 && TARGET_HARD_FLOAT" "fsqrt %0,%1" [(set_attr "type" "dsqrt")]) ;; For MIN, MAX, and conditional move, we use DEFINE_EXPAND's that involve a ;; fsel instruction and some auxiliary computations. Then we just have a ;; single DEFINE_INSN for fsel and the define_splits to make them if made by ;; combine. (define_expand "maxsf3" [(set (match_dup 3) (minus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (set (match_operand:SF 0 "gpc_reg_operand" "") (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (SFmode); }") (define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (smax:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (clobber (match_operand:SF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:SF (match_dup 1) (match_dup 2))) (set (match_dup 0) (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "") (define_expand "minsf3" [(set (match_dup 3) (minus:SF (match_operand:SF 2 "gpc_reg_operand" "") (match_operand:SF 1 "gpc_reg_operand" ""))) (set (match_operand:SF 0 "gpc_reg_operand" "") (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (SFmode); }") (define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (smin:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (clobber (match_operand:SF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:SF (match_dup 2) (match_dup 1))) (set (match_dup 0) (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "") (define_expand "movsfcc" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (match_operand 1 "comparison_operator" "") (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { rtx temp, op0, op1; enum rtx_code code = GET_CODE (operands[1]); if (! rs6000_compare_fp_p) FAIL; switch (code) { case GE: case EQ: case NE: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; break; case GT: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; case LE: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; break; case LT: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; default: FAIL; } if (GET_MODE (rs6000_compare_op0) == DFmode) { temp = gen_reg_rtx (DFmode); emit_insn (gen_subdf3 (temp, op0, op1)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[3], operands[0])); } } else { temp = gen_reg_rtx (SFmode); emit_insn (gen_subsf3 (temp, op0, op1)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[3], operands[0])); } } DONE; }") (define_insn "fselsfsf4" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (ge (match_operand:SF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "fseldfsf4" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (ge (match_operand:DF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "negdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fneg %0,%1" [(set_attr "type" "fp")]) (define_insn "absdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (abs:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fabs %0,%1" [(set_attr "type" "fp")]) (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (abs:DF (match_operand:DF 1 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "fnabs %0,%1" [(set_attr "type" "fp")]) (define_insn "adddf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (plus:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fa|fadd} %0,%1,%2" [(set_attr "type" "fp")]) (define_insn "subdf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (minus:DF (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fs|fsub} %0,%1,%2" [(set_attr "type" "fp")]) (define_insn "muldf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fm|fmul} %0,%1,%2" [(set_attr "type" "dmul")]) (define_insn "divdf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (div:DF (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fd|fdiv} %0,%1,%2" [(set_attr "type" "ddiv")]) (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fma|fmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")]) (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fms|fmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")]) (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "{fnma|fnmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")]) (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "{fnms|fnmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")]) (define_insn "sqrtdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (sqrt:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "(TARGET_PPC_GPOPT || TARGET_POWER2) && TARGET_HARD_FLOAT" "fsqrt %0,%1" [(set_attr "type" "dsqrt")]) ;; For MIN, MAX, and conditional move, we use DEFINE_EXPAND's that involve a ;; fsel instruction and some auxiliary computations. Then we just have a ;; single DEFINE_INSN for fsel and the define_splits to make them if made by ;; combine. (define_expand "maxdf3" [(set (match_dup 3) (minus:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (set (match_operand:DF 0 "gpc_reg_operand" "") (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (DFmode); }") (define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (smax:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (clobber (match_operand:DF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:DF (match_dup 1) (match_dup 2))) (set (match_dup 0) (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "") (define_expand "mindf3" [(set (match_dup 3) (minus:DF (match_operand:DF 2 "gpc_reg_operand" "") (match_operand:DF 1 "gpc_reg_operand" ""))) (set (match_operand:DF 0 "gpc_reg_operand" "") (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (DFmode); }") (define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (smin:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (clobber (match_operand:DF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:DF (match_dup 2) (match_dup 1))) (set (match_dup 0) (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "") (define_expand "movdfcc" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (match_operand 1 "comparison_operator" "") (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { rtx temp, op0, op1; enum rtx_code code = GET_CODE (operands[1]); if (! rs6000_compare_fp_p) FAIL; switch (code) { case GE: case EQ: case NE: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; break; case GT: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; case LE: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; break; case LT: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; default: FAIL; } if (GET_MODE (rs6000_compare_op0) == DFmode) { temp = gen_reg_rtx (DFmode); emit_insn (gen_subdf3 (temp, op0, op1)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[3], operands[0])); } } else { temp = gen_reg_rtx (SFmode); emit_insn (gen_subsf3 (temp, op0, op1)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[3], operands[0])); } } DONE; }") (define_insn "fseldfdf4" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (ge (match_operand:DF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")]) (define_insn "fselsfdf4" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (ge (match_operand:SF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")]) ;; Conversions to and from floating-point. (define_expand "floatsidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "") (float:DF (match_operand:SI 1 "gpc_reg_operand" "")))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { if (operands[0]) { /* prevent unused warning messages */ rtx high = force_reg (SImode, GEN_INT (0x43300000)); rtx low = gen_reg_rtx (SImode); rtx df = gen_reg_rtx (DFmode); rtx adjust = force_reg (DFmode, rs6000_float_const (\"4503601774854144\", DFmode)); emit_insn (gen_xorsi3 (low, operands[1], GEN_INT (0x80000000))); emit_insn (gen_move_to_float (df, low, high)); emit_insn (gen_subdf3 (operands[0], df, adjust)); DONE; } }") (define_expand "floatunssidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "") (unsigned_float:DF (match_operand:SI 1 "gpc_reg_operand" "")))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { if (operands[0]) { /* prevent unused warning messages */ rtx high = force_reg (SImode, GEN_INT (0x43300000)); rtx df = gen_reg_rtx (DFmode); rtx adjust = force_reg (DFmode, rs6000_float_const (\"4503599627370496\", DFmode)); emit_insn (gen_move_to_float (df, operands[1], high)); emit_insn (gen_subdf3 (operands[0], df, adjust)); DONE; } }") (define_expand "move_to_float" [(set (match_operand:DF 0 "gpc_reg_operand" "") (unspec [(match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 3)] 2))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { operands[3] = XEXP (rs6000_stack_temp (DFmode, 8, 1), 0); }") (define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (unspec [(match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "") (match_operand:SI 3 "offsettable_addr_operand" "")] 2))] "reload_completed" [(set (match_dup 4) (match_dup 1)) (set (match_dup 5) (match_dup 2)) (set (match_dup 0) (mem:DF (match_dup 3)))] " { rtx word1 = gen_rtx (MEM, SImode, operands[3]); rtx word2 = gen_rtx (MEM, SImode, plus_constant (operands[3], 4)); MEM_IN_STRUCT_P (word1) = 1; MEM_IN_STRUCT_P (word2) = 1; if (WORDS_BIG_ENDIAN) { operands[4] = word2; operands[5] = word1; } else { operands[4] = word1; operands[5] = word2; } }") (define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (unspec [(match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "offsettable_addr_operand" "p")] 2))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" "#" [(set_attr "length" "12")]) (define_expand "fix_truncdfsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { if (TARGET_POWER2 || TARGET_POWERPC) { int endian = (WORDS_BIG_ENDIAN == 0); rtx stack_slot = rs6000_stack_temp (DImode, 8, 1); rtx temp = gen_reg_rtx (DImode); emit_insn (gen_fpcvtsi (temp, operands[1])); emit_move_insn (stack_slot, temp); emit_move_insn (operands[0], operand_subword (stack_slot, 1 - endian, 0, DImode)); DONE; } else { emit_insn (gen_trunc_call (operands[0], operands[1], gen_rtx (SYMBOL_REF, Pmode, RS6000_ITRUNC))); DONE; } }") (define_insn "fpcvtsi" [(set (match_operand:DI 0 "gpc_reg_operand" "=f") (sign_extend:DI (fix:SI (match_operand:DF 1 "gpc_reg_operand" "f"))))] "(TARGET_POWER2 || TARGET_POWERPC) && TARGET_HARD_FLOAT" "{fcirz|fctiwz} %0,%1" [(set_attr "type" "fp")]) (define_expand "fixuns_truncdfsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (unsigned_fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))] "! TARGET_POWER2 && ! TARGET_POWERPC && TARGET_HARD_FLOAT" " { emit_insn (gen_trunc_call (operands[0], operands[1], gen_rtx (SYMBOL_REF, Pmode, RS6000_UITRUNC))); DONE; }") (define_expand "trunc_call" [(parallel [(set (match_operand:SI 0 "" "") (fix:SI (match_operand:DF 1 "" ""))) (use (match_operand:SI 2 "" ""))])] "TARGET_HARD_FLOAT" " { rtx insns = gen_trunc_call_rtl (operands[0], operands[1], operands[2]); rtx first = XVECEXP (insns, 0, 0); rtx last = XVECEXP (insns, 0, XVECLEN (insns, 0) - 1); REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, REG_NOTES (first)); REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); emit_insn (insns); DONE; }") (define_expand "trunc_call_rtl" [(set (reg:DF 33) (match_operand:DF 1 "gpc_reg_operand" "")) (use (reg:DF 33)) (parallel [(set (reg:SI 3) (call (mem:SI (match_operand 2 "" "")) (const_int 0))) (use (const_int 0)) (clobber (scratch:SI))]) (set (match_operand:SI 0 "gpc_reg_operand" "") (reg:SI 3))] "TARGET_HARD_FLOAT" " { rs6000_trunc_used = 1; }") (define_insn "floatdidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (float:DF (match_operand:DI 1 "gpc_reg_operand" "f")))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT" "fcfid %0,%1" [(set_attr "type" "fp")]) (define_insn "fix_truncdfdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=f") (fix:DI (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT" "fctidz %0,%1" [(set_attr "type" "fp")]) ;; Define the DImode operations that can be done in a small number ;; of instructions. The & constraints are to prevent the register ;; allocator from allocating registers that overlap with the inputs ;; (for example, having an input in 7,8 and an output in 6,7). We ;; also allow for the the output being the same as one of the inputs. (define_expand "adddi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "reg_or_short_operand" "")))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC64 && short_cint_operand (operands[2], DImode)) FAIL; }") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r,r,r") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I,r,I")))] "TARGET_POWER && ! TARGET_POWERPC64" "@ {a|addc} %L0,%L1,%L2\;{ae|adde} %0,%1,%2 {ai|addic} %L0,%L1,%2\;{a%G2e|add%G2e} %0,%1 {a|addc} %L0,%L1,%L2\;{ae|adde} %0,%1,%2 {ai|addic} %L0,%L1,%2\;{a%G2e|add%G2e} %0,%1" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,0") (match_operand:DI 2 "gpc_reg_operand" "r,r")))] "! TARGET_POWER && ! TARGET_POWERPC64" "* { return (WORDS_BIG_ENDIAN) ? \"addc %L0,%L1,%L2\;adde %0,%1,%2\" : \"addc %0,%1,%2\;adde %L0,%L1,%L2\"; }" [(set_attr "length" "8")]) (define_expand "subdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (minus:DI (match_operand:DI 1 "reg_or_short_operand" "") (match_operand:DI 2 "gpc_reg_operand" "")))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC64 && short_cint_operand (operands[1], DImode)) FAIL; }") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r,r,r,r") (minus:DI (match_operand:DI 1 "reg_or_short_operand" "r,I,0,r,I") (match_operand:DI 2 "gpc_reg_operand" "r,r,r,0,0")))] "TARGET_POWER && ! TARGET_POWERPC64" "@ {sf|subfc} %L0,%L2,%L1\;{sfe|subfe} %0,%2,%1 {sfi|subfic} %L0,%L2,%1\;{sf%G1e|subf%G1e} %0,%2 {sf|subfc} %L0,%L2,%L1\;{sfe|subfe} %0,%2,%1 {sf|subfc} %L0,%L2,%L1\;{sfe|subfe} %0,%2,%1 {sfi|subfic} %L0,%L2,%1\;{sf%G1e|subf%G1e} %0,%2" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r,r") (minus:DI (match_operand:DI 1 "gpc_reg_operand" "r,0,r") (match_operand:DI 2 "gpc_reg_operand" "r,r,0")))] "! TARGET_POWER && ! TARGET_POWERPC64" "* { return (WORDS_BIG_ENDIAN) ? \"{sf|subfc} %L0,%L2,%L1\;{sfe|subfe} %0,%2,%1\" : \"{sf|subfc} %0,%2,%1\;{sfe|subfe} %L0,%L2,%L1\"; }" [(set_attr "length" "8")]) (define_expand "negdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] "" "") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r,0")))] "! TARGET_POWERPC64" "* { return (WORDS_BIG_ENDIAN) ? \"{sfi|subfic} %L0,%L1,0\;{sfze|subfze} %0,%1\" : \"{sfi|subfic} %0,%1,0\;{sfze|subfze} %L0,%L1\"; }" [(set_attr "length" "8")]) (define_expand "mulsidi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC) { int endian = (WORDS_BIG_ENDIAN == 0); emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_mull_call ()); emit_move_insn (operand_subword (operands[0], endian, 0, DImode), gen_rtx (REG, SImode, 3)); emit_move_insn (operand_subword (operands[0], 1 - endian, 0, DImode), gen_rtx (REG, SImode, 4)); DONE; } else if (TARGET_POWER) { emit_insn (gen_mulsidi3_mq (operands[0], operands[1], operands[2])); DONE; } }") (define_insn "mulsidi3_mq" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r")))) (clobber (match_scratch:SI 3 "=q"))] "TARGET_POWER" "mul %0,%1,%2\;mfmq %L0" [(set_attr "type" "imul") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC && ! TARGET_POWERPC64" "* { return (WORDS_BIG_ENDIAN) ? \"mulhw %0,%1,%2\;mullw %L0,%1,%2\" : \"mulhw %L0,%1,%2\;mullw %0,%1,%2\"; }" [(set_attr "type" "imul") (set_attr "length" "8")]) (define_expand "smulsi3_highpart" [(set (match_operand:SI 0 "gpc_reg_operand" "") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_mulh_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } else if (TARGET_POWER) { emit_insn (gen_smulsi3_highpart_mq (operands[0], operands[1], operands[2])); DONE; } }") (define_insn "smulsi3_highpart_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=q"))] "TARGET_POWER" "mul %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "TARGET_POWERPC" "mulhw %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "umulsi3_highpart" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "TARGET_POWERPC" "mulhwu %0,%1,%2" [(set_attr "type" "imul")]) ;; If operands 0 and 2 are in the same register, we have a problem. But ;; operands 0 and 1 (the usual case) can be in the same register. That's ;; why we have the strange constraints below. (define_insn "ashldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r,&r") (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r") (match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r"))) (clobber (match_scratch:SI 3 "=X,q,q,q"))] "TARGET_POWER" "@ {sli|slwi} %0,%L1,%h2\;{cal %L0,0(0)|li %L0,0} sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2 sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2 sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2" [(set_attr "length" "8")]) (define_insn "lshrdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r,r,&r") (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r") (match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r"))) (clobber (match_scratch:SI 3 "=X,q,q,q"))] "TARGET_POWER" "@ {cal %0,0(0)|li %0,0}\;{s%A2i|s%A2wi} %L0,%1,%h2 sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2 sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2 sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2" [(set_attr "length" "8")]) ;; Shift by a variable amount is too complex to be worth open-coding. We ;; just handle shifts by constants. (define_expand "ashrdi3" [(parallel [(set (match_operand:DI 0 "gpc_reg_operand" "") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "general_operand" ""))) (clobber (match_scratch:SI 3 ""))])] "TARGET_POWER" " { if (GET_CODE (operands[2]) != CONST_INT) FAIL; }") (define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "const_int_operand" "M,i"))) (clobber (match_scratch:SI 3 "=X,q"))] "TARGET_POWER" "@ {srai|srawi} %0,%1,31\;{srai|srawi} %L0,%1,%h2 sraiq %0,%1,%h2\;srliq %L0,%L1,%h2" [(set_attr "length" "8")]) ;; PowerPC64 DImode operations. (define_insn "ffsdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r") (ffs:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "neg %0,%1\;and %0,%0,%1\;cntlzd %0,%0\;subfic %0,%0,64" [(set_attr "length" "16")]) (define_insn "muldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (mult:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "mulld %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "smuldi3_highpart" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (truncate:DI (lshiftrt:TI (mult:TI (sign_extend:TI (match_operand:DI 1 "gpc_reg_operand" "%r")) (sign_extend:TI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 64))))] "TARGET_POWERPC64" "mulhd %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "umuldi3_highpart" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (truncate:DI (lshiftrt:TI (mult:TI (zero_extend:TI (match_operand:DI 1 "gpc_reg_operand" "%r")) (zero_extend:TI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 64))))] "TARGET_POWERPC64" "mulhdu %0,%1,%2" [(set_attr "type" "imul")]) (define_insn "divdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (div:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "divd %0,%1,%2" [(set_attr "type" "idiv")]) (define_insn "udivdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (udiv:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "divdu %0,%1,%2" [(set_attr "type" "idiv")]) (define_insn "rotldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")))] "TARGET_POWERPC64" "rld%I2cl %0,%1,%h2,0") (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "rld%I2cl. %3,%1,%h2,0" [(set_attr "type" "delayed_compare")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (rotate:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "rld%I2cl. %0,%1,%h2,0" [(set_attr "type" "delayed_compare")]) ;; Now define ways of moving data around. ;; Elf specific ways of loading addresses for non-PIC code. ;; The output of this could be r0, but we limit it to base ;; registers, since almost all uses of this will need it ;; in a base register shortly. (define_insn "elf_high" [(set (match_operand:SI 0 "register_operand" "=b") (high:SI (match_operand 1 "" "")))] "TARGET_ELF && !TARGET_64BIT" "{cau|addis} %0,0,%1@ha") (define_insn "elf_low" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "b") (match_operand 2 "" "")))] "TARGET_ELF && !TARGET_64BIT" "{cal %0,%a2@l(%1)|addi %0,%1,%2@l}") ;; For SI, we special-case integers that can't be loaded in one insn. We ;; do the load 16-bits at a time. We could do this by loading from memory, ;; and this is even supposed to be faster, but it is simpler not to get ;; integers in the TOC. (define_expand "movsi" [(set (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (SImode, operands[1]); /* Convert a move of a CONST_DOUBLE into a CONST_INT */ if (GET_CODE (operands[1]) == CONST_DOUBLE) operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1])); if (TARGET_ELF && TARGET_NO_TOC && !TARGET_64BIT && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != CONST_INT) { rtx target = (reload_completed || reload_in_progress) ? operands[0] : gen_reg_rtx (SImode); emit_insn (gen_elf_high (target, operands[1])); emit_insn (gen_elf_low (operands[0], target, operands[1])); DONE; } if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT && GET_CODE (operands[1]) != HIGH && ! LEGITIMATE_CONSTANT_POOL_ADDRESS_P (operands[1])) { /* If we are to limit the number of things we put in the TOC and this is a symbol plus a constant we can add in one insn, just put the symbol in the TOC and add the constant. Don't do this if reload is in progress. */ if (GET_CODE (operands[1]) == CONST && TARGET_NO_SUM_IN_TOC && ! reload_in_progress && GET_CODE (XEXP (operands[1], 0)) == PLUS && add_operand (XEXP (XEXP (operands[1], 0), 1), SImode) && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF) && ! side_effects_p (operands[0])) { rtx sym = force_const_mem (SImode, XEXP (XEXP (operands[1], 0), 0)); rtx other = XEXP (XEXP (operands[1], 0), 1); emit_insn (gen_addsi3 (operands[0], force_reg (SImode, sym), other)); DONE; } operands[1] = force_const_mem (SImode, operands[1]); if (! memory_address_p (SImode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], SImode, XEXP (operands[1], 0)); } if (GET_CODE (operands[1]) == CONST_INT && (unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000 && (INTVAL (operands[1]) & 0xffff) != 0) { emit_move_insn (operands[0], gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff0000)); emit_insn (gen_iorsi3 (operands[0], operands[0], gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff))); DONE; } }") (define_insn "" [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,m,r,r,r,r,*q,*c*l,*h") (match_operand:SI 1 "input_operand" "r,m,r,I,J,R,*h,r,r,0"))] "gpc_reg_operand (operands[0], SImode) || gpc_reg_operand (operands[1], SImode)" "@ mr %0,%1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%X0|stw%U0%X0} %1,%0 {lil|li} %0,%1 {liu|lis} %0,%u1 {cal|la} %0,%1(%*) mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" "*,load,*,*,*,*,*,*,mtjmpr,*")]) ;; Split a load of a large constant into the appropriate two-insn ;; sequence. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (match_operand:SI 1 "const_int_operand" ""))] "(unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000 && (INTVAL (operands[1]) & 0xffff) != 0" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff0000); operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff); }") (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_dup 1))] "" "mr. %0,%1" [(set_attr "type" "compare")]) (define_expand "movhi" [(set (match_operand:HI 0 "general_operand" "") (match_operand:HI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (HImode, operands[1]); if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT) { operands[1] = force_const_mem (HImode, operands[1]); if (! memory_address_p (HImode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], HImode, XEXP (operands[1], 0)); } }") (define_insn "" [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r,r,*q,*c*l,*h") (match_operand:HI 1 "input_operand" "r,m,r,i,*h,r,r,0"))] "gpc_reg_operand (operands[0], HImode) || gpc_reg_operand (operands[1], HImode)" "@ mr %0,%1 lhz%U1%X1 %0,%1 sth%U0%X0 %1,%0 {lil|li} %0,%w1 mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" "*,load,*,*,*,*,mtjmpr,*")]) (define_expand "movqi" [(set (match_operand:QI 0 "general_operand" "") (match_operand:QI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (QImode, operands[1]); if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT) { operands[1] = force_const_mem (QImode, operands[1]); if (! memory_address_p (QImode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], QImode, XEXP (operands[1], 0)); } }") (define_insn "" [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r,r,*q,*c*l,*h") (match_operand:QI 1 "input_operand" "r,m,r,i,*h,r,r,0"))] "gpc_reg_operand (operands[0], QImode) || gpc_reg_operand (operands[1], QImode)" "@ mr %0,%1 lbz%U1%X1 %0,%1 stb%U0%X0 %1,%0 {lil|li} %0,%1 mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" "*,load,*,*,*,*,mtjmpr,*")]) ;; Here is how to move condition codes around. When we store CC data in ;; an integer register or memory, we store just the high-order 4 bits. ;; This lets us not shift in the most common case of CR0. (define_expand "movcc" [(set (match_operand:CC 0 "nonimmediate_operand" "") (match_operand:CC 1 "nonimmediate_operand" ""))] "" "") (define_insn "" [(set (match_operand:CC 0 "nonimmediate_operand" "=y,x,y,r,r,r,r,m") (match_operand:CC 1 "nonimmediate_operand" "y,r,r,x,y,r,m,r"))] "register_operand (operands[0], CCmode) || register_operand (operands[1], CCmode)" "@ mcrf %0,%1 mtcrf 128,%1 {rlinm|rlwinm} %1,%1,%F0,0xffffffff\;mtcrf %R0,%1\;{rlinm|rlwinm} %1,%1,%f0,0xffffffff mfcr %0 mfcr %0\;{rlinm|rlwinm} %0,%0,%f1,0xf0000000 mr %0,%1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%U1|stw%U0%U1} %1,%0" [(set_attr "type" "*,*,*,compare,*,*,load,*") (set_attr "length" "*,*,12,*,8,*,*,*")]) ;; For floating-point, we normally deal with the floating-point registers ;; unless -msoft-float is used. The sole exception is that parameter passing ;; can produce floating-point values in fixed-point registers. Unless the ;; value is a simple constant or already in memory, we deal with this by ;; allocating memory and copying the value explicitly via that memory location. (define_expand "movsf" [(set (match_operand:SF 0 "nonimmediate_operand" "") (match_operand:SF 1 "any_operand" ""))] "" " { /* If we are called from reload, we might be getting a SUBREG of a hard reg. So expand it. */ if (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < FIRST_PSEUDO_REGISTER) operands[0] = alter_subreg (operands[0]); if (GET_CODE (operands[1]) == SUBREG && GET_CODE (SUBREG_REG (operands[1])) == REG && REGNO (SUBREG_REG (operands[1])) < FIRST_PSEUDO_REGISTER) operands[1] = alter_subreg (operands[1]); if (TARGET_SOFT_FLOAT && GET_CODE (operands[0]) == MEM) operands[1] = force_reg (SFmode, operands[1]); else if (TARGET_HARD_FLOAT) { if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 32) { /* If this is a store to memory or another integer register do the move directly. Otherwise store to a temporary stack slot and load from there into a floating point register. */ if (GET_CODE (operands[0]) == MEM || (GET_CODE (operands[0]) == REG && (REGNO (operands[0]) < 32 || (reload_in_progress && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)))) { emit_move_insn (operand_subword (operands[0], 0, 0, SFmode), operand_subword (operands[1], 0, 0, SFmode)); DONE; } else { rtx stack_slot = assign_stack_temp (SFmode, 4, 0); emit_move_insn (stack_slot, operands[1]); emit_move_insn (operands[0], stack_slot); DONE; } } if (GET_CODE (operands[0]) == MEM) { /* If operands[1] is a register, it may have double-precision data in it, so truncate it to single precision. We need not do this for POWERPC. */ if (! TARGET_POWERPC && TARGET_HARD_FLOAT && GET_CODE (operands[1]) == REG) { rtx newreg = reload_in_progress ? operands[1] : gen_reg_rtx (SFmode); emit_insn (gen_aux_truncdfsf2 (newreg, operands[1])); operands[1] = newreg; } operands[1] = force_reg (SFmode, operands[1]); } if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) { if (GET_CODE (operands[1]) == MEM #if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT && ! defined(REAL_IS_NOT_DOUBLE) || GET_CODE (operands[1]) == CONST_DOUBLE #endif || (GET_CODE (operands[1]) == REG && (REGNO (operands[1]) < 32 || (reload_in_progress && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)))) { emit_move_insn (operand_subword (operands[0], 0, 0, SFmode), operand_subword (operands[1], 0, 0, SFmode)); DONE; } else { rtx stack_slot = assign_stack_temp (SFmode, 4, 0); emit_move_insn (stack_slot, operands[1]); emit_move_insn (operands[0], stack_slot); DONE; } } } if (CONSTANT_P (operands[1])) { operands[1] = force_const_mem (SFmode, operands[1]); if (! memory_address_p (SFmode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], SFmode, XEXP (operands[1], 0)); } }") (define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (match_operand:SF 1 "easy_fp_constant" ""))] "reload_completed && REGNO (operands[0]) <= 31" [(set (match_dup 2) (match_dup 3))] " { operands[2] = operand_subword (operands[0], 0, 0, SFmode); operands[3] = operand_subword (operands[1], 0, 0, SFmode); }") (define_insn "" [(set (match_operand:SF 0 "fp_reg_or_mem_operand" "=f,f,m") (match_operand:SF 1 "input_operand" "f,m,f"))] "(gpc_reg_operand (operands[0], SFmode) || gpc_reg_operand (operands[1], SFmode)) && TARGET_HARD_FLOAT" "@ fmr %0,%1 lfs%U1%X1 %0,%1 stfs%U0%X0 %1,%0" [(set_attr "type" "fp,fpload,*")]) (define_insn "" [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,m,r,r,r") (match_operand:SF 1 "input_operand" "r,m,r,I,J,R"))] "(gpc_reg_operand (operands[0], SFmode) || gpc_reg_operand (operands[1], SFmode)) && TARGET_SOFT_FLOAT" "@ mr %0,%1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%X0|stw%U0%X0} %1,%0 {lil|li} %0,%1 {liu|lis} %0,%u1 {cal|la} %0,%1(%*)" [(set_attr "type" "*,load,*,*,*,*")]) (define_expand "movdf" [(set (match_operand:DF 0 "nonimmediate_operand" "") (match_operand:DF 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { emit_move_insn (operand_subword (operands[0], 1, 1, DFmode), operand_subword_force (operands[1], 1, DFmode)); emit_move_insn (operand_subword (operands[0], 0, 1, DFmode), operand_subword_force (operands[1], 0, DFmode)); DONE; } if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (DFmode, operands[1]); if (CONSTANT_P (operands[1]) && ! easy_fp_constant (operands[1], DFmode)) { operands[1] = force_const_mem (DFmode, operands[1]); if (! memory_address_p (DFmode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], DFmode, XEXP (operands[1], 0)); } }") (define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (match_operand:DF 1 "easy_fp_constant" ""))] "reload_completed && REGNO (operands[0]) <= 31" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { operands[2] = operand_subword (operands[0], 0, 0, DFmode); operands[3] = operand_subword (operands[1], 0, 0, DFmode); operands[4] = operand_subword (operands[0], 1, 0, DFmode); operands[5] = operand_subword (operands[1], 1, 0, DFmode); }") ;; Don't have reload use general registers to load a constant. First, ;; it might not work if the output operand has is the equivalent of ;; a non-offsettable memref, but also it is less efficient than loading ;; the constant into an FP register, since it will probably be used there. ;; The "??" is a kludge until we can figure out a more reasonable way ;; of handling these non-offsettable values. (define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m") (match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return \"mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\"; case 1: /* If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return \"{l|lwz} %L0,%L1\;{l|lwz} %0,%1\"; else return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\"; case 2: return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\"; case 3: return \"#\"; case 4: return \"fmr %0,%1\"; case 5: return \"lfd%U1%X1 %0,%1\"; case 6: return \"stfd%U0%X0 %1,%0\"; } }" [(set_attr "type" "*,load,*,*,fp,fpload,*") (set_attr "length" "8,8,8,8,*,*,*")]) (define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,o,r") (match_operand:DF 1 "input_operand" "r,o,r,G"))] "! TARGET_POWERPC64 && TARGET_SOFT_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return \"mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\"; case 1: /* If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return \"{l|lwz} %L0,%L1\;{l|lwz} %0,%1\"; else return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\"; case 2: return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\"; case 3: return \"#\"; } }" [(set_attr "type" "*,load,*,*") (set_attr "length" "8,8,8,8")]) (define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m") (match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "@ mr %0,%1 ld%U1%X1 %0,%1 sd%U0%X0 %1,%0 # fmr %0,%1 lfd%U1%X1 %0,%1 stfd%U0%X0 %1,%0" [(set_attr "type" "*,load,*,*,fp,fpload,*")]) (define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,o,r") (match_operand:DF 1 "input_operand" "r,o,r,G"))] "TARGET_POWERPC64 && TARGET_SOFT_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "@ mr %0,%1 ld%U1%X1 %0,%1 sd%U0%X0 %1,%0 #" [(set_attr "type" "*,load,*,*")]) ;; Next come the multi-word integer load and store and the load and store ;; multiple insns. (define_expand "movdi" [(set (match_operand:DI 0 "general_operand" "") (match_operand:DI 1 "general_operand" ""))] "" " { if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (DImode, operands[1]); if (GET_CODE (operands[1]) == CONST_DOUBLE || GET_CODE (operands[1]) == CONST_INT) { HOST_WIDE_INT low; HOST_WIDE_INT high; if (GET_CODE (operands[1]) == CONST_DOUBLE) { low = CONST_DOUBLE_LOW (operands[1]); high = CONST_DOUBLE_HIGH (operands[1]); } else { low = INTVAL (operands[1]); high = (low < 0) ? ~0 : 0; } emit_move_insn (gen_rtx (SUBREG, SImode, operands[0], WORDS_BIG_ENDIAN), GEN_INT (low)); emit_move_insn (gen_rtx (SUBREG, SImode, operands[0], !WORDS_BIG_ENDIAN), GEN_INT (high)); DONE; } /* Stores between FPR and any non-FPR registers must go through a temporary stack slot. */ if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG && ((FP_REGNO_P (REGNO (operands[0])) && ! FP_REGNO_P (REGNO (operands[1]))) || (FP_REGNO_P (REGNO (operands[1])) && ! FP_REGNO_P (REGNO (operands[0]))))) { rtx stack_slot = assign_stack_temp (DImode, 8, 0); emit_move_insn (stack_slot, operands[1]); emit_move_insn (operands[0], stack_slot); DONE; } }") (define_insn "" [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,f,f,m") (match_operand:DI 1 "input_operand" "r,m,r,f,m,f"))] "! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode) || gpc_reg_operand (operands[1], DImode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return \"mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\"; case 1: /* If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return \"{l|lwz} %L0,%L1\;{l|lwz} %0,%1\"; else return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\"; case 2: return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\"; case 3: return \"fmr %0,%1\"; case 4: return \"lfd%U1%X1 %0,%1\"; case 5: return \"stfd%U0%X0 %1,%0\"; } }" [(set_attr "type" "*,load,*,fp,fpload,*") (set_attr "length" "8,8,8,*,*,*")]) (define_insn "" [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,r,r,r,f,f,m,r,*h") (match_operand:DI 1 "input_operand" "r,m,r,I,J,R,f,m,f,*h,r"))] "TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode) || gpc_reg_operand (operands[1], DImode))" "@ mr %0,%1 ld%U1%X1 %0,%1 sd%U0%X0 %1,%0 li %0,%1 lis %0,%u1 {cal|la} %0,%1(%*) fmr %0,%1 lfd%U1%X1 %0,%1 stfd%U0%X0 %1,%0 mf%1 %0 mt%0 %1" [(set_attr "type" "*,load,*,*,*,*,fp,fpload,*,*,mtjmpr")]) ;; TImode is similar, except that we usually want to compute the address into ;; a register and use lsi/stsi (the exception is during reload). MQ is also ;; clobbered in stsi for POWER, so we need a SCRATCH for it. (define_expand "movti" [(parallel [(set (match_operand:TI 0 "general_operand" "") (match_operand:TI 1 "general_operand" "")) (clobber (scratch:SI))])] "TARGET_STRING || TARGET_POWERPC64" " { if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (TImode, operands[1]); if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) != REG && ! reload_in_progress) operands[0] = change_address (operands[0], TImode, copy_addr_to_reg (XEXP (operands[0], 0))); if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) != REG && ! reload_in_progress) operands[1] = change_address (operands[1], TImode, copy_addr_to_reg (XEXP (operands[1], 0))); }") ;; We say that MQ is clobbered in the last alternative because the first ;; alternative would never get used otherwise since it would need a reload ;; while the 2nd alternative would not. We put memory cases first so they ;; are preferred. Otherwise, we'd try to reload the output instead of ;; giving the SCRATCH mq. (define_insn "" [(set (match_operand:TI 0 "reg_or_mem_operand" "=Q,m,????r,????r,????r") (match_operand:TI 1 "reg_or_mem_operand" "r,r,r,Q,m")) (clobber (match_scratch:SI 2 "=q,q#X,X,X,X"))] "TARGET_STRING && TARGET_POWER && ! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { default: abort (); case 0: return \"{stsi|stswi} %1,%P0,16\"; case 1: return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\;{st|stw} %Y1,%Y0\;{st|stw} %Z1,%Z0\"; case 2: /* Normally copy registers with lowest numbered register copied first. But copy in the other order if the first register of the output is the second, third, or fourth register in the input. */ if (REGNO (operands[0]) >= REGNO (operands[1]) + 1 && REGNO (operands[0]) <= REGNO (operands[1]) + 3) return \"mr %Z0,%Z1\;mr %Y0,%Y1\;mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\;mr %Y0,%Y1\;mr %Z0,%Z1\"; case 3: /* If the address is not used in the output, we can use lsi. Otherwise, fall through to generating four loads. */ if (! reg_overlap_mentioned_p (operands[0], operands[1])) return \"{lsi|lswi} %0,%P1,16\"; /* ... fall through ... */ case 4: /* If the address register is the same as the register for the lowest- addressed word, load it last. Similarly for the next two words. Otherwise load lowest address to highest. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands[1], 0)) return \"{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %0,%1\"; else if (refers_to_regno_p (REGNO (operands[0]) + 1, REGNO (operands[0]) + 2, operands[1], 0)) return \"{l|lwz} %0,%1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %L0,%L1\"; else if (refers_to_regno_p (REGNO (operands[0]) + 2, REGNO (operands[0]) + 3, operands[1], 0)) return \"{l|lwz} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Z0,%Z1\;{l|lwz} %Y0,%Y1\"; else return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\"; } }" [(set_attr "type" "*,load,load,*,*") (set_attr "length" "*,16,16,*,16")]) (define_insn "" [(set (match_operand:TI 0 "reg_or_mem_operand" "=m,????r,????r") (match_operand:TI 1 "reg_or_mem_operand" "r,r,m")) (clobber (match_scratch:SI 2 "=X,X,X"))] "TARGET_STRING && !TARGET_POWER && ! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { default: abort (); case 0: return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\;{st|stw} %Y1,%Y0\;{st|stw} %Z1,%Z0\"; case 1: /* Normally copy registers with lowest numbered register copied first. But copy in the other order if the first register of the output is the second, third, or fourth register in the input. */ if (REGNO (operands[0]) >= REGNO (operands[1]) + 1 && REGNO (operands[0]) <= REGNO (operands[1]) + 3) return \"mr %Z0,%Z1\;mr %Y0,%Y1\;mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\;mr %Y0,%Y1\;mr %Z0,%Z1\"; case 2: /* If the address register is the same as the register for the lowest- addressed word, load it last. Similarly for the next two words. Otherwise load lowest address to highest. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands[1], 0)) return \"{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %0,%1\"; else if (refers_to_regno_p (REGNO (operands[0]) + 1, REGNO (operands[0]) + 2, operands[1], 0)) return \"{l|lwz} %0,%1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %L0,%L1\"; else if (refers_to_regno_p (REGNO (operands[0]) + 2, REGNO (operands[0]) + 3, operands[1], 0)) return \"{l|lwz} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Z0,%Z1\;{l|lwz} %Y0,%Y1\"; else return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\"; } }" [(set_attr "type" "load,*,*") (set_attr "length" "16,16,16")]) (define_insn "" [(set (match_operand:TI 0 "nonimmediate_operand" "=r,r,m") (match_operand:TI 1 "input_operand" "r,m,r"))] "TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return \"mr %L0,%L1\;mr %0,%1\"; else return \"mr %0,%1\;mr %L0,%L1\"; case 1: /* If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. */ if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return \"ld %L0,%L1\;ld %0,%1\"; else return \"ld%U1 %0,%1\;ld %L0,%L1\"; case 2: return \"std%U0 %1,%0\;std %L1,%L0\"; } }" [(set_attr "type" "*,load,*") (set_attr "length" "8,8,8")]) (define_expand "load_multiple" [(match_par_dup 3 [(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" "")) (use (match_operand:SI 2 "" ""))])] "TARGET_STRING" " { int regno; int count; rtx from; int i; /* Support only loading a constant number of fixed-point registers from memory and only bother with this if more than two; the machine doesn't support more than eight. */ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) <= 2 || INTVAL (operands[2]) > 8 || GET_CODE (operands[1]) != MEM || GET_CODE (operands[0]) != REG || REGNO (operands[0]) >= 32) FAIL; count = INTVAL (operands[2]); regno = REGNO (operands[0]); operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count)); from = force_reg (SImode, XEXP (operands[1], 0)); for (i = 0; i < count; i++) XVECEXP (operands[3], 0, i) = gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i), gen_rtx (MEM, SImode, plus_constant (from, i * 4))); }") (define_insn "" [(match_parallel 0 "load_multiple_operation" [(set (match_operand:SI 1 "gpc_reg_operand" "=r") (mem:SI (match_operand:SI 2 "register_operand" "b")))])] "TARGET_STRING" "* { /* We have to handle the case where the pseudo used to contain the address is assigned to one of the output registers. */ int i, j; int words = XVECLEN (operands[0], 0); rtx xop[10]; if (XVECLEN (operands[0], 0) == 1) return \"{l|lwz} %1,0(%2)\"; for (i = 0; i < words; i++) if (refers_to_regno_p (REGNO (operands[1]) + i, REGNO (operands[1]) + i + 1, operands[2], 0)) { if (i == words-1) { xop[0] = operands[1]; xop[1] = operands[2]; xop[2] = GEN_INT (4 * (words-1)); output_asm_insn (\"{lsi|lswi} %0,%1,%2\;{l|lwz} %1,%2(%1)\", xop); return \"\"; } else if (i == 0) { xop[0] = operands[1]; xop[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); xop[2] = GEN_INT (4 * (words-1)); output_asm_insn (\"{cal %0,4(%0)|addi %0,%0,4}\;{lsi|lswi} %1,%0,%2\;{l|lwz} %0,-4(%0)\", xop); return \"\"; } else { for (j = 0; j < words; j++) if (j != i) { xop[0] = gen_rtx (REG, SImode, REGNO (operands[1]) + j); xop[1] = operands[2]; xop[2] = GEN_INT (j * 4); output_asm_insn (\"{l|lwz} %0,%2(%1)\", xop); } xop[0] = operands[2]; xop[1] = GEN_INT (i * 4); output_asm_insn (\"{l|lwz} %0,%1(%0)\", xop); return \"\"; } } return \"{lsi|lswi} %1,%2,%N0\"; }" [(set_attr "type" "load") (set_attr "length" "32")]) (define_expand "store_multiple" [(match_par_dup 3 [(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" "")) (clobber (scratch:SI)) (use (match_operand:SI 2 "" ""))])] "TARGET_STRING" " { int regno; int count; rtx to; int i; /* Support only storing a constant number of fixed-point registers to memory and only bother with this if more than two; the machine doesn't support more than eight. */ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) <= 2 || INTVAL (operands[2]) > 8 || GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != REG || REGNO (operands[1]) >= 32) FAIL; count = INTVAL (operands[2]); regno = REGNO (operands[1]); operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1)); to = force_reg (SImode, XEXP (operands[0], 0)); XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode, gen_rtx (MEM, SImode, to), operands[1]); XVECEXP (operands[3], 0, 1) = gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode)); for (i = 1; i < count; i++) XVECEXP (operands[3], 0, i + 1) = gen_rtx (SET, VOIDmode, gen_rtx (MEM, SImode, plus_constant (to, i * 4)), gen_rtx (REG, SImode, regno + i)); }") (define_insn "" [(match_parallel 0 "store_multiple_operation" [(set (match_operand:SI 1 "indirect_operand" "=Q") (match_operand:SI 2 "gpc_reg_operand" "r")) (clobber (match_scratch:SI 3 "=q"))])] "TARGET_STRING && TARGET_POWER" "{stsi|stswi} %2,%P1,%O0") (define_insn "" [(match_parallel 0 "store_multiple_operation" [(set (mem:SI (match_operand:SI 1 "register_operand" "b")) (match_operand:SI 2 "gpc_reg_operand" "r")) (clobber (match_scratch:SI 3 "X"))])] "TARGET_STRING && !TARGET_POWER" "{stsi|stswi} %2,%1,%O0") ;; String/block move insn. ;; Argument 0 is the destination ;; Argument 1 is the source ;; Argument 2 is the length ;; Argument 3 is the alignment (define_expand "movstrsi" [(parallel [(set (match_operand:BLK 0 "" "") (match_operand:BLK 1 "" "")) (use (match_operand:SI 2 "" "")) (use (match_operand:SI 3 "" ""))])] "" " { if (expand_block_move (operands)) DONE; else FAIL; }") ;; Move up to 32 bytes at a time. The fixed registers are needed because the ;; register allocator doesn't have a clue about allocating 8 word registers (define_expand "movstrsi_8reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 5)) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "") (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && ((INTVAL (operands[2]) > 24 && INTVAL (operands[2]) < 32) || INTVAL (operands[2]) == 0) && (REGNO (operands[0]) < 5 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 5 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 5" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && ((INTVAL (operands[2]) > 24 && INTVAL (operands[2]) < 32) || INTVAL (operands[2]) == 0) && (REGNO (operands[0]) < 5 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 5 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 5" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) ;; Move up to 24 bytes at a time. The fixed registers are needed because the ;; register allocator doesn't have a clue about allocating 6 word registers (define_expand "movstrsi_6reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "") (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 16 && INTVAL (operands[2]) <= 24 && (REGNO (operands[0]) < 7 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 7 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 7" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 16 && INTVAL (operands[2]) <= 32 && (REGNO (operands[0]) < 7 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 7 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 7" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) ;; Move up to 16 bytes at a time, using 4 fixed registers to avoid spill problems ;; with TImode (define_expand "movstrsi_4reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "") (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 8 && INTVAL (operands[2]) <= 16 && (REGNO (operands[0]) < 9 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 9 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 9" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 8 && INTVAL (operands[2]) <= 16 && (REGNO (operands[0]) < 9 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 9 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 9" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) ;; Move up to 8 bytes at a time. (define_expand "movstrsi_2reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (match_scratch:DI 4 "")) (clobber (match_scratch:SI 5 ""))])] "TARGET_STRING && !TARGET_64BIT" "") (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:DI 4 "=&r")) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && !TARGET_64BIT && INTVAL (operands[2]) > 4 && INTVAL (operands[2]) <= 8" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:DI 4 "=&r")) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && !TARGET_64BIT && INTVAL (operands[2]) > 4 && INTVAL (operands[2]) <= 8" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) ;; Move up to 4 bytes at a time. (define_expand "movstrsi_1reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (match_scratch:SI 4 "")) (clobber (match_scratch:SI 5 ""))])] "TARGET_STRING" "") (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:SI 4 "=&r")) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 4" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) (define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:SI 4 "=&r")) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 4" "{lsi|lswi} %4,%1,%2\;{stsi|stswi} %4,%0,%2" [(set_attr "type" "load") (set_attr "length" "8")]) ;; Define insns that do load or store with update. Some of these we can ;; get by using pre-decrement or pre-increment, but the hardware can also ;; do cases where the increment is not the size of the object. ;; ;; In all these cases, we use operands 0 and 1 for the register being ;; incremented because those are the operands that local-alloc will ;; tie and these are the pair most likely to be tieable (and the ones ;; that will benefit the most). (define_insn "" [(set (match_operand:DI 3 "gpc_reg_operand" "=r,r") (mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:DI 0 "gpc_reg_operand" "=b,b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ ldux %3,%0,%2 ldu %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (match_operand:DI 3 "gpc_reg_operand" "=r") (sign_extend:DI (mem:SI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0") (match_operand:DI 2 "gpc_reg_operand" "r"))))) (set (match_operand:DI 0 "gpc_reg_operand" "=b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "lwaux %3,%0,%2" [(set_attr "type" "load")]) (define_insn "movdi_update" [(set (mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I"))) (match_operand:DI 3 "gpc_reg_operand" "r,r")) (set (match_operand:DI 0 "gpc_reg_operand" "=b,b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ stdux %3,%0,%2 stdu %3,%2(%0)") (define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {lux|lwzux} %3,%0,%2 {lu|lwzu} %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "movsi_update" [(set (mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {stux|stwux} %3,%0,%2 {stu|stwu} %3,%2(%0)") (define_insn "" [(set (match_operand:HI 3 "gpc_reg_operand" "=r,r") (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhzux %3,%0,%2 lhzu %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (zero_extend:SI (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhzux %3,%0,%2 lhzu %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (sign_extend:SI (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhaux %3,%0,%2 lhau %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:HI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ sthux %3,%0,%2 sthu %3,%2(%0)") (define_insn "" [(set (match_operand:QI 3 "gpc_reg_operand" "=r,r") (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lbzux %3,%0,%2 lbzu %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (zero_extend:SI (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lbzux %3,%0,%2 lbzu %3,%2(%0)" [(set_attr "type" "load")]) (define_insn "" [(set (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:QI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ stbux %3,%0,%2 stbu %3,%2(%0)") (define_insn "" [(set (match_operand:SF 3 "gpc_reg_operand" "=f,f") (mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ lfsux %3,%0,%2 lfsu %3,%2(%0)" [(set_attr "type" "fpload")]) (define_insn "" [(set (mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:SF 3 "gpc_reg_operand" "f,f")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ stfsux %3,%0,%2 stfsu %3,%2(%0)") (define_insn "" [(set (match_operand:DF 3 "gpc_reg_operand" "=f,f") (mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ lfdux %3,%0,%2 lfdu %3,%2(%0)" [(set_attr "type" "fpload")]) (define_insn "" [(set (mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:DF 3 "gpc_reg_operand" "f,f")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ stfdux %3,%0,%2 stfdu %3,%2(%0)") ;; Peephole to convert two consecutive FP loads or stores into lfq/stfq. (define_peephole [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (match_operand:DF 1 "memory_operand" "")) (set (match_operand:DF 2 "gpc_reg_operand" "=f") (match_operand:DF 3 "memory_operand" ""))] "TARGET_POWER2 && TARGET_HARD_FLOAT && registers_ok_for_quad_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && addrs_ok_for_quad_peep (XEXP (operands[1], 0), XEXP (operands[3], 0))" "lfq%U1%X1 %0,%1") (define_peephole [(set (match_operand:DF 0 "memory_operand" "") (match_operand:DF 1 "gpc_reg_operand" "f")) (set (match_operand:DF 2 "memory_operand" "") (match_operand:DF 3 "gpc_reg_operand" "f"))] "TARGET_POWER2 && TARGET_HARD_FLOAT && registers_ok_for_quad_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && addrs_ok_for_quad_peep (XEXP (operands[0], 0), XEXP (operands[2], 0))" "stfq%U0%X0 %1,%0") ;; Next come insns related to the calling sequence. ;; ;; First, an insn to allocate new stack space for dynamic use (e.g., alloca). ;; We move the back-chain and decrement the stack pointer. (define_expand "allocate_stack" [(set (reg:SI 1) (minus:SI (reg:SI 1) (match_operand:SI 0 "reg_or_short_operand" "")))] "" " { rtx chain = gen_reg_rtx (Pmode); rtx stack_bot = gen_rtx (MEM, Pmode, stack_pointer_rtx); rtx neg_op0; emit_move_insn (chain, stack_bot); if (GET_CODE (operands[0]) != CONST_INT || INTVAL (operands[0]) < -32767 || INTVAL (operands[0]) > 32768) { neg_op0 = gen_reg_rtx (Pmode); if (TARGET_POWERPC64) emit_insn (gen_negdi2 (neg_op0, operands[0])); else emit_insn (gen_negsi2 (neg_op0, operands[0])); } else neg_op0 = GEN_INT (- INTVAL (operands[0])); if (TARGET_POWERPC64) emit_insn (gen_movdi_update (stack_pointer_rtx, stack_pointer_rtx, neg_op0, chain)); else emit_insn (gen_movsi_update (stack_pointer_rtx, stack_pointer_rtx, neg_op0, chain)); DONE; }") ;; These patterns say how to save and restore the stack pointer. We need not ;; save the stack pointer at function level since we are careful to ;; preserve the backchain. At block level, we have to restore the backchain ;; when we restore the stack pointer. ;; ;; For nonlocal gotos, we must save both the stack pointer and its ;; backchain and restore both. Note that in the nonlocal case, the ;; save area is a memory location. (define_expand "save_stack_function" [(use (const_int 0))] "" "") (define_expand "restore_stack_function" [(use (const_int 0))] "" "") (define_expand "restore_stack_block" [(set (match_dup 2) (mem:SI (match_operand:SI 0 "register_operand" ""))) (set (match_dup 0) (match_operand:SI 1 "register_operand" "")) (set (mem:SI (match_dup 0)) (match_dup 2))] "" " { operands[2] = gen_reg_rtx (SImode); }") (define_expand "save_stack_nonlocal" [(match_operand:DI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "")] "" " { rtx temp = gen_reg_rtx (SImode); /* Copy the backchain to the first word, sp to the second. */ emit_move_insn (temp, gen_rtx (MEM, SImode, operands[1])); emit_move_insn (operand_subword (operands[0], 0, 0, DImode), temp); emit_move_insn (operand_subword (operands[0], 1, 0, DImode), operands[1]); DONE; }") (define_expand "restore_stack_nonlocal" [(match_operand:SI 0 "register_operand" "") (match_operand:DI 1 "memory_operand" "")] "" " { rtx temp = gen_reg_rtx (SImode); /* Restore the backchain from the first word, sp from the second. */ emit_move_insn (temp, operand_subword (operands[1], 0, 0, DImode)); emit_move_insn (operands[0], operand_subword (operands[1], 1, 0, DImode)); emit_move_insn (gen_rtx (MEM, SImode, operands[0]), temp); DONE; }") ;; A function pointer is a pointer to a data area whose first word contains ;; the actual address of the function, whose second word contains a pointer ;; to its TOC, and whose third word contains a value to place in the static ;; chain register (r11). Note that if we load the static chain, our ;; "trampoline" need not have any executable code. ;; ;; operands[0] is an SImode pseudo in which we place the address of the ;; function. ;; operands[1] is the address of data area of the function to call (define_expand "call_via_ptr" [(set (match_operand:SI 0 "gpc_reg_operand" "") (mem:SI (match_operand:SI 1 "gpc_reg_operand" ""))) (set (mem:SI (plus:SI (reg:SI 1) (const_int 20))) (reg:SI 2)) (set (reg:SI 2) (mem:SI (plus:SI (match_dup 1) (const_int 4)))) (set (reg:SI 11) (mem:SI (plus:SI (match_dup 1) (const_int 8)))) (use (reg:SI 2)) (use (reg:SI 11))] "" "") (define_expand "call" [(parallel [(call (mem:SI (match_operand:SI 0 "address_operand" "")) (match_operand 1 "" "")) (use (match_operand 2 "" "")) (clobber (scratch:SI))])] "" " { if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT) abort (); operands[0] = XEXP (operands[0], 0); if (GET_CODE (operands[0]) != SYMBOL_REF) { #ifndef USING_SVR4_H /* AIX function pointers are really pointers to a three word area */ rtx temp = gen_reg_rtx (SImode); emit_insn (gen_call_via_ptr (temp, force_reg (SImode, operands[0]))); operands[0] = temp; #endif /* !USING_SVR4_H */ } }") (define_expand "call_value" [(parallel [(set (match_operand 0 "" "") (call (mem:SI (match_operand:SI 1 "address_operand" "")) (match_operand 2 "" ""))) (use (match_operand 3 "" "")) (clobber (scratch:SI))])] "" " { if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT) abort (); operands[1] = XEXP (operands[1], 0); if (GET_CODE (operands[1]) != SYMBOL_REF) { #ifndef USING_SVR4_H /* AIX function pointers are really pointers to a three word area */ rtx temp = gen_reg_rtx (SImode); emit_insn (gen_call_via_ptr (temp, force_reg (SImode, operands[1]))); operands[1] = temp; #endif /* !USING_SVR4_H */ } }") ;; Call to function in current module. No TOC pointer reload needed. ;; Operand2 is non-zero if we are using the V.4 calling sequence and ;; either the function was not prototyped, or it was prototyped as a ;; variable argument function. It is > 0 if FP registers were passed ;; and < 0 if they were not. (define_insn "" [(call (mem:SI (match_operand:SI 0 "current_file_function_operand" "s,s")) (match_operand 1 "" "g,g")) (use (match_operand:SI 2 "immediate_operand" "O,n")) (clobber (match_scratch:SI 3 "=l,l"))] "" "* { if (INTVAL (operands[2]) > 0) return \"creqv 6,6,6\;bl %z0\"; else if (INTVAL (operands[2]) < 0) return \"crxor 6,6,6\;bl %z0\"; return \"bl %z0\"; }" [(set_attr "length" "4,8")]) ;; Call to function which may be in another module. Restore the TOC ;; pointer (r2) after the call unless this is System V. ;; Operand2 is non-zero if we are using the V.4 calling sequence and ;; either the function was not prototyped, or it was prototyped as a ;; variable argument function. It is > 0 if FP registers were passed ;; and < 0 if they were not. (define_insn "" [(call (mem:SI (match_operand:SI 0 "call_operand" "l,s,l,s")) (match_operand 1 "" "fg,fg,fg,fg")) (use (match_operand:SI 2 "immediate_operand" "O,O,n,n")) (clobber (match_scratch:SI 3 "=l,l,l,l"))] "" "* { if (INTVAL (operands[2]) > 0) output_asm_insn (\"creqv 6,6,6\", operands); else if (INTVAL (operands[2]) < 0) output_asm_insn (\"crxor 6,6,6\", operands); #ifndef USING_SVR4_H if (GET_CODE (operands[0]) == REG) return \"{brl|blrl}\;{l|lwz} 2,20(1)\"; return \"bl %z0\;%.\"; #else if (GET_CODE (operands[0]) == REG) return \"{brl|blrl}\"; return \"bl %z0\"; #endif }" [(set_attr "length" "8,8,12,12")]) (define_insn "" [(set (match_operand 0 "" "=fg,fg") (call (mem:SI (match_operand:SI 1 "current_file_function_operand" "s,s")) (match_operand 2 "" "g,g"))) (use (match_operand:SI 3 "immediate_operand" "O,n")) (clobber (match_scratch:SI 4 "=l,l"))] "" "* { if (INTVAL (operands[3]) > 0) return \"creqv 6,6,6\;bl %z1\"; else if (INTVAL (operands[3]) < 0) return \"crxor 6,6,6\;bl %z1\"; return \"bl %z1\"; }" [(set_attr "length" "4,8")]) (define_insn "" [(set (match_operand 0 "" "=fg,fg,fg,fg") (call (mem:SI (match_operand:SI 1 "call_operand" "l,s,l,s")) (match_operand 2 "" "fg,fg,fg,fg"))) (use (match_operand:SI 3 "immediate_operand" "O,O,n,n")) (clobber (match_scratch:SI 4 "=l,l,l,l"))] "" "* { if (INTVAL (operands[3]) > 0) output_asm_insn (\"creqv 6,6,6\", operands); else if (INTVAL (operands[3]) < 0) output_asm_insn (\"crxor 6,6,6\", operands); #ifndef USING_SVR4_H if (GET_CODE (operands[1]) == REG) return \"{brl|blrl}\;{l|lwz} 2,20(1)\"; return \"bl %z1\;%.\"; #else if (GET_CODE (operands[1]) == REG) return \"{brl|blrl}\"; return \"bl %z1\"; #endif }" [(set_attr "length" "8,8,12,12")]) ;; Call subroutine returning any type. (define_expand "untyped_call" [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand 1 "" "") (match_operand 2 "" "")])] "" " { int i; emit_call_insn (gen_call (operands[0], const0_rtx, const0_rtx, const0_rtx)); for (i = 0; i < XVECLEN (operands[2], 0); i++) { rtx set = XVECEXP (operands[2], 0, i); emit_move_insn (SET_DEST (set), SET_SRC (set)); } /* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by claiming that all hard registers are used and clobbered at this point. */ emit_insn (gen_blockage ()); DONE; }") ;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point. (define_insn "blockage" [(unspec_volatile [(const_int 0)] 0)] "" "") ;; Synchronize instruction/data caches for V.4 trampolines (define_insn "sync_isync" [(unspec [(match_operand 0 "memory_operand" "=m")] 1)] "" "{dcs|sync}\;{ics|isync}" [(set_attr "length" "8")]) ;; Compare insns are next. Note that the RS/6000 has two types of compares, ;; signed & unsigned, and one type of branch. ;; ;; Start with the DEFINE_EXPANDs to generate the rtl for compares, scc ;; insns, and branches. We store the operands of compares until we see ;; how it is used. (define_expand "cmpsi" [(set (cc0) (compare (match_operand:SI 0 "gpc_reg_operand" "") (match_operand:SI 1 "reg_or_short_operand" "")))] "" " { /* Take care of the possibility that operands[1] might be negative but this might be a logical operation. That insn doesn't exist. */ if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0) operands[1] = force_reg (SImode, operands[1]); rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 0; DONE; }") (define_expand "cmpsf" [(set (cc0) (compare (match_operand:SF 0 "gpc_reg_operand" "") (match_operand:SF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 1; DONE; }") (define_expand "cmpdf" [(set (cc0) (compare (match_operand:DF 0 "gpc_reg_operand" "") (match_operand:DF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 1; DONE; }") (define_expand "beq" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (eq (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "bne" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ne (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "blt" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (lt (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "bgt" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (gt (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "ble" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (le (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "bge" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ge (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "bgtu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (gtu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "bltu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ltu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "bgeu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (geu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "bleu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (leu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") ;; For SNE, we would prefer that the xor/abs sequence be used for integers. ;; For SEQ, likewise, except that comparisons with zero should be done ;; with an scc insns. However, due to the order that combine see the ;; resulting insns, we must, in fact, allow SEQ for integers. Fail in ;; the cases we don't want to handle. (define_expand "seq" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (eq:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "sne" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ne:SI (match_dup 2) (const_int 0)))] "" " { if (! rs6000_compare_fp_p) FAIL; operands[1] = gen_rtx (COMPARE, CCFPmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCFPmode); }") ;; A > 0 is best done using the portable sequence, so fail in that case. (define_expand "sgt" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (gt:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") ;; A < 0 is best done in the portable way for A an integer. (define_expand "slt" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (lt:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "sge" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ge:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") ;; A <= 0 is best done the portable way for A an integer. (define_expand "sle" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (le:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }") (define_expand "sgtu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (gtu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "sltu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ltu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "sgeu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (geu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") (define_expand "sleu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (leu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") ;; Here are the actual compare insns. (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=y") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{cmp%I2|cmpw%I2} %0,%1,%2" [(set_attr "type" "compare")]) ;; If we are comparing a register for equality with a large constant, ;; we can do this with an XOR followed by a compare. But we need a scratch ;; register for the result of the XOR. (define_split [(set (match_operand:CC 0 "cc_reg_operand" "") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_short_cint_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "find_single_use (operands[0], insn, 0) && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)" [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4))) (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))] " { /* Get the constant we are comparing against, C, and see what it looks like sign-extended to 16 bits. Then see what constant could be XOR'ed with C to get the sign-extended value. */ int c = INTVAL (operands[2]); int sextc = (c << 16) >> 16; int xorv = c ^ sextc; operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv); operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc); }") (define_insn "" [(set (match_operand:CCUNS 0 "cc_reg_operand" "=y") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_u_short_operand" "rI")))] "" "{cmpl%I2|cmplw%I2} %0,%1,%W2" [(set_attr "type" "compare")]) ;; The following two insns don't exist as single insns, but if we provide ;; them, we can swap an add and compare, which will enable us to overlap more ;; of the required delay between a compare and branch. We generate code for ;; them by splitting. (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=y") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "short_cint_operand" "i"))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))] "" "#" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CCUNS 3 "cc_reg_operand" "=y") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "u_short_cint_operand" "i"))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))] "" "#" [(set_attr "length" "8")]) (define_split [(set (match_operand:CC 3 "cc_reg_operand" "") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "short_cint_operand" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))] "" [(set (match_dup 3) (compare:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))]) (define_split [(set (match_operand:CCUNS 3 "cc_reg_operand" "") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "u_short_cint_operand" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))] "" [(set (match_dup 3) (compare:CCUNS (match_dup 1) (match_dup 2))) (set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))]) (define_insn "" [(set (match_operand:CCFP 0 "cc_reg_operand" "=y") (compare:CCFP (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fcmpu %0,%1,%2" [(set_attr "type" "fpcompare")]) (define_insn "" [(set (match_operand:CCFP 0 "cc_reg_operand" "=y") (compare:CCFP (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fcmpu %0,%1,%2" [(set_attr "type" "fpcompare")]) ;; Now we have the scc insns. We can do some combinations because of the ;; way the machine works. ;; ;; Note that this is probably faster if we can put an insn between the ;; mfcr and rlinm, but this is tricky. Let's leave it for now. In most ;; cases the insns below which don't use an intermediate CR field will ;; be used instead. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]))] "" "%D1mfcr %0\;{rlinm|rlwinm} %0,%0,%J1,1" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (const_int 0))) (set (match_operand:SI 3 "gpc_reg_operand" "=r") (match_op_dup 1 [(match_dup 2) (const_int 0)]))] "" "%D1mfcr %3\;{rlinm.|rlwinm.} %3,%3,%J1,1" [(set_attr "type" "delayed_compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operand:SI 3 "const_int_operand" "n")))] "" "* { int is_bit = ccr_bit (operands[1], 1); int put_bit = 31 - (INTVAL (operands[3]) & 31); int count; if (is_bit >= put_bit) count = is_bit - put_bit; else count = 32 - (put_bit - is_bit); operands[4] = gen_rtx (CONST_INT, VOIDmode, count); operands[5] = gen_rtx (CONST_INT, VOIDmode, put_bit); return \"%D1mfcr %0\;{rlinm|rlwinm} %0,%0,%4,%5,%5\"; }" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operand:SI 3 "const_int_operand" "n")) (const_int 0))) (set (match_operand:SI 4 "gpc_reg_operand" "=r") (ashift:SI (match_op_dup 1 [(match_dup 2) (const_int 0)]) (match_dup 3)))] "" "* { int is_bit = ccr_bit (operands[1], 1); int put_bit = 31 - (INTVAL (operands[3]) & 31); int count; if (is_bit >= put_bit) count = is_bit - put_bit; else count = 32 - (put_bit - is_bit); operands[5] = gen_rtx (CONST_INT, VOIDmode, count); operands[6] = gen_rtx (CONST_INT, VOIDmode, put_bit); return \"%D1mfcr %4\;{rlinm.|rlwinm.} %4,%4,%5,%6,%6\"; }" [(set_attr "type" "delayed_compare") (set_attr "length" "12")]) ;; If we are comparing the result of two comparisons, this can be done ;; using creqv or crxor. (define_insn "" [(set (match_operand:CCEQ 0 "cc_reg_operand" "=y") (compare:CCEQ (match_operator 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operator 3 "scc_comparison_operator" [(match_operand 4 "cc_reg_operand" "y") (const_int 0)])))] "REGNO (operands[2]) != REGNO (operands[4])" "* { enum rtx_code code1, code2; code1 = GET_CODE (operands[1]); code2 = GET_CODE (operands[3]); if ((code1 == EQ || code1 == LT || code1 == GT || code1 == LTU || code1 == GTU || (code1 != NE && GET_MODE (operands[2]) == CCFPmode)) != (code2 == EQ || code2 == LT || code2 == GT || code2 == LTU || code2 == GTU || (code2 != NE && GET_MODE (operands[4]) == CCFPmode))) return \"%C1%C3crxor %E0,%j1,%j3\"; else return \"%C1%C3creqv %E0,%j1,%j3\"; }" [(set_attr "length" "12")]) ;; There is a 3 cycle delay between consecutive mfcr instructions ;; so it is useful to combine 2 scc instructions to use only one mfcr. (define_peephole [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)])) (set (match_operand:SI 3 "gpc_reg_operand" "=r") (match_operator:SI 4 "scc_comparison_operator" [(match_operand 5 "cc_reg_operand" "y") (const_int 0)]))] "REGNO (operands[2]) != REGNO (operands[5])" "%D1%D4mfcr %3\;{rlinm|rlwinm} %0,%3,%J1,1\;{rlinm|rlwinm} %3,%3,%J4,1" [(set_attr "length" "20")]) ;; There are some scc insns that can be done directly, without a compare. ;; These are faster because they don't involve the communications between ;; the FXU and branch units. In fact, we will be replacing all of the ;; integer scc insns here or in the portable methods in emit_store_flag. ;; ;; Also support (neg (scc ..)) since that construct is used to replace ;; branches, (plus (scc ..) ..) since that construct is common and ;; takes no more insns than scc, and (and (neg (scc ..)) ..) in the ;; cases where it is no more expensive than (neg (scc ..)). ;; Have reload force a constant into a register for the simple insns that ;; otherwise won't accept constants. We do this because it is faster than ;; the cmp/mfcr sequence we would otherwise generate. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))) (clobber (match_scratch:SI 3 "=r,&r,r,r,r"))] "" "@ xor %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0 {sfi|subfic} %3,%1,0\;{ae|adde} %0,%3,%1 {xoril|xori} %0,%1,%b2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0 {xoriu|xoris} %0,%1,%u2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0 {sfi|subfic} %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0" [(set_attr "length" "12,8,12,12,12")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (eq:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r,&r,r,r,r"))] "" "@ xor %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0 {sfi|subfic} %3,%1,0\;{ae.|adde.} %0,%3,%1 {xoril|xori} %0,%1,%b2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0 {xoriu|xoris} %0,%1,%u2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0 {sfi|subfic} %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")]) ;; We have insns of the form shown by the first define_insn below. If ;; there is something inside the comparison operation, we must split it. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_operator 1 "comparison_operator" [(match_operand:SI 2 "" "") (match_operand:SI 3 "reg_or_cint_operand" "")]) (match_operand:SI 4 "gpc_reg_operand" ""))) (clobber (match_operand:SI 5 "register_operand" ""))] "! gpc_reg_operand (operands[2], SImode)" [(set (match_dup 5) (match_dup 2)) (set (match_dup 2) (plus:SI (match_op_dup 1 [(match_dup 2) (match_dup 3)]) (match_dup 4)))]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r"))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3 {sfi|subfic} %4,%1,0\;{aze|addze} %0,%3 {xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3 {xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3 {sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3" [(set_attr "length" "12,8,12,12,12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3 {sfi|subfic} %4,%1,0\;{aze.|addze.} %0,%3 {xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3 {xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3 {sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (plus:SI (eq:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3 {sfi|subfic} %4,%1,0\;{aze.|addze.} %4,%3 {xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3 {xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3 {sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (neg:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))))] "" "@ xor %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,-1\;{sfe|subfe} %0,%0,%0 {xoril|xori} %0,%1,%b2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0 {xoriu|xoris} %0,%1,%u2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0 {sfi|subfic} %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12,8,12,12,12")]) ;; Simplify (ne X (const_int 0)) on the PowerPC. No need to on the Power, ;; since it nabs/sr is just as fast. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31))) (clobber (match_scratch:SI 2 "=&r"))] "!TARGET_POWER" "{ai|addic} %2,%1,-1\;{sfe|subfe} %0,%2,%1" [(set_attr "length" "8")]) ;; This is what (plus (ne X (const_int 0)) Y) looks like. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1\;{aze|addze} %0,%2" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1\;{aze.|addze.} %3,%2" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_dup 1))) (const_int 31)) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1\;{aze.|addze.} %0,%2" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O"))) (clobber (match_scratch:SI 3 "=r,X"))] "TARGET_POWER" "@ doz %3,%2,%1\;{sfi|subfic} %0,%3,0\;{ae|adde} %0,%0,%3 {ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{sri|srwi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x,x") (compare:CC (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (le:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r,X"))] "TARGET_POWER" "@ doz %3,%2,%1\;{sfi|subfic} %0,%3,0\;{ae.|adde.} %0,%0,%3 {ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{sri.|srwi.} %0,%0,31" [(set_attr "type" "compare,delayed_compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3 {srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze|addze} %0,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3 {srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (le:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3 {srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O"))))] "TARGET_POWER" "@ doz %0,%2,%1\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{srai|srawi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (leu:SI (match_dup 1) (match_dup 2)))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{aze|addze} %0,%3" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (leu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;nand %0,%0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (leu:SI (match_dup 1) (match_dup 2))) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "TARGET_POWER" "doz%I2 %0,%1,%2\;nabs %0,%0\;{sri|srwi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (lt:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "doz%I2 %0,%1,%2\;nabs %0,%0\;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze|addze} %0,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lt:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "TARGET_POWER" "doz%I2 %0,%1,%2\;nabs %0,%0\;{srai|srawi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))] "" "@ {sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;neg %0,%0 {ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0\;neg %0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ltu:SI (match_dup 1) (match_dup 2)))] "" "@ {sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;neg. %0,%0 {ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0\;neg. %0,%0" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,r,P,P")) (match_operand:SI 3 "reg_or_short_operand" "r,I,r,I"))) (clobber (match_scratch:SI 4 "=&r,r,&r,r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3 {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %4,%4,%3 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %4,%4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (ltu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))))] "" "@ {sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2 %3,%1,%2\;{sfi|subfic} %0,%3,0\;{ae|adde} %0,%0,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ge:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2 %3,%1,%2\;{sfi|subfic} %0,%3,0\;{ae.|adde.} %0,%0,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (ge:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "TARGET_POWER" "doz%I2 %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12")]) ;; This is (and (neg (ge X (const_int 0))) Y). (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31\;andc %0,%2,%3" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31\;andc. %3,%2,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (lshiftrt:SI (not:SI (match_dup 1)) (const_int 31))) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31\;andc. %0,%2,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))] "" "@ {sf|subfc} %0,%2,%1\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0 {ai|addic} %0,%1,%n2\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (geu:SI (match_dup 1) (match_dup 2)))] "" "@ {sf|subfc} %0,%2,%1\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0 {ai|addic} %0,%1,%n2\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{aze|addze} %0,%3 {ai|addic} %4,%1,%n2\;{aze|addze} %0,%3" [(set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{aze.|addze.} %4,%3 {ai|addic} %4,%1,%n2\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (geu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{aze.|addze.} %0,%3 {ai|addic} %4,%1,%n2\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))] "" "@ {sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;nand %0,%0,%0 {sfi|subfic} %0,%1,-1\;a%I2 %0,%0,%2\;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (and:SI (neg:SI (geu:SI (match_dup 1) (match_dup 2))) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4 {ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)))] "" "{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{sri|srwi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_dup 1) (const_int 0)))] "" "{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")))] "TARGET_POWER" "doz %0,%2,%1\;nabs %0,%0\;{sri|srwi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "doz %0,%2,%1\;nabs %0,%0\;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze|addze} %0,%2" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze.|addze.} %0,%2" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_dup 1) (const_int 0)) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze.|addze.} %3,%2" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze|addze} %0,%3" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0))))] "" "{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{srai|srawi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r"))))] "TARGET_POWER" "doz %0,%2,%1\;nabs %0,%0\;{srai|srawi} %0,%0,31" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;neg %0,%0" [(set_attr "length" "12")]) (define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gtu:SI (match_dup 1) (match_dup 2)))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;neg. %0,%0" [(set_attr "type" "compare") (set_attr "length" "12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r,rI")) (match_operand:SI 3 "reg_or_short_operand" "r,r,I"))) (clobber (match_scratch:SI 4 "=&r,&r,&r"))] "" "@ {ai|addic} %4,%1,%k2\;{aze|addze} %0,%3 {sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3 {sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3" [(set_attr "length" "8,12,12")]) (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {ai|addic} %4,%1,%k2\;{aze.|addze.} %0,%3 {sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "8,12")]) (define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (gtu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {ai|addic} %4,%1,%k2\;{aze.|addze.} %0,%3 {sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "8,12")]) (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "" "{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0" [(set_attr "length" "8")]) ;; Define both directions of branch and return. If we need a reload ;; register, we'd rather use CR0 since it is much easier to copy a ;; register CC value to there. (define_insn "" [(set (pc) (if_then_else (match_operator 1 "branch_comparison_operator" [(match_operand 2 "cc_reg_operand" "x,?y") (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (get_attr_length (insn) == 8) return \"%C1bc %t1,%j1,%l0\"; else return \"%C1bc %T1,%j1,$+8\;b %l0\"; }" [(set_attr "type" "branch")]) (define_insn "" [(set (pc) (if_then_else (match_operator 0 "branch_comparison_operator" [(match_operand 1 "cc_reg_operand" "x,?y") (const_int 0)]) (return) (pc)))] "direct_return ()" "{%C0bcr|%C0bclr} %t0,%j0" [(set_attr "length" "8")]) (define_insn "" [(set (pc) (if_then_else (match_operator 1 "branch_comparison_operator" [(match_operand 2 "cc_reg_operand" "x,?y") (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (get_attr_length (insn) == 8) return \"%C1bc %T1,%j1,%l0\"; else return \"%C1bc %t1,%j1,$+8\;b %l0\"; }" [(set_attr "type" "branch")]) (define_insn "" [(set (pc) (if_then_else (match_operator 0 "branch_comparison_operator" [(match_operand 1 "cc_reg_operand" "x,?y") (const_int 0)]) (pc) (return)))] "direct_return ()" "{%C0bcr|%C0bclr} %T0,%j0" [(set_attr "length" "8")]) ;; Unconditional branch and return. (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "b %l0") (define_insn "return" [(return)] "direct_return ()" "{br|blr}" [(set_attr "type" "jmpreg")]) (define_insn "indirect_jump" [(set (pc) (match_operand:SI 0 "register_operand" "c,l"))] "" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")]) ;; Table jump for switch statements: (define_expand "tablejump" [(set (match_dup 3) (plus:SI (match_operand:SI 0 "" "") (match_dup 2))) (parallel [(set (pc) (match_dup 3)) (use (label_ref (match_operand 1 "" "")))])] "" " { operands[0] = force_reg (SImode, operands[0]); operands[2] = force_reg (SImode, gen_rtx (LABEL_REF, VOIDmode, operands[1])); operands[3] = gen_reg_rtx (SImode); }") (define_insn "" [(set (pc) (match_operand:SI 0 "register_operand" "c,l")) (use (label_ref (match_operand 1 "" "")))] "" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")]) (define_insn "nop" [(const_int 0)] "" "{cror 0,0,0|nop}") ;; Define the subtract-one-and-jump insns, starting with the template ;; so loop.c knows what to generate. (define_expand "decrement_and_branchsi" [(parallel [(set (match_operand:SI 0 "register_operand" "") (plus:SI (match_dup 0) (const_int -1))) (set (pc) (if_then_else (ne (match_dup 0) (const_int 1)) (label_ref (match_operand 1 "" "")) (pc))) (clobber (match_scratch:CC 2 "")) (clobber (match_scratch:SI 3 ""))])] "" "") ;; We need to be able to do this for any operand, including MEM, or we ;; will cause reload to blow up since we don't allow output reloads on ;; JUMP_INSNs. ;; In order that the length attribute is calculated correctly, the ;; label MUST be operand 0. (define_insn "" [(set (pc) (if_then_else (ne (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"{bdn|bdnz} %l0\"; else return \"bdz $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) (define_insn "" [(set (pc) (if_then_else (ne (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"bdz %l0\"; else return \"{bdn|bdnz} $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) ;; Similar, but we can use GE since we have a REG_NONNEG. (define_insn "" [(set (pc) (if_then_else (ge (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 0)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&X")) (clobber (match_scratch:SI 4 "=X,X,r"))] "find_reg_note (insn, REG_NONNEG, 0)" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"{bdn|bdnz} %l0\"; else return \"bdz $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) (define_insn "" [(set (pc) (if_then_else (ge (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 0)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&X")) (clobber (match_scratch:SI 4 "=X,X,r"))] "find_reg_note (insn, REG_NONNEG, 0)" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"bdz %l0\"; else return \"{bdn|bdnz} $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) (define_insn "" [(set (pc) (if_then_else (eq (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"bdz %l0\"; else return \"{bdn|bdnz} $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) (define_insn "" [(set (pc) (if_then_else (eq (match_operand:SI 1 "register_operand" "c,*r,*r") (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,*r,m*q*c*l") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return \"#\"; else if (get_attr_length (insn) == 8) return \"{bdn|bdnz} %l0\"; else return \"bdz $+8\;b %l0\"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")]) (define_split [(set (pc) (if_then_else (match_operator 2 "comparison_operator" [(match_operand:SI 1 "gpc_reg_operand" "") (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:SI 4 ""))] "reload_completed" [(parallel [(set (match_dup 3) (compare:CC (plus:SI (match_dup 1) (const_int -1)) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 1) (const_int -1)))]) (set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))] " { operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3], const0_rtx); }") (define_split [(set (pc) (if_then_else (match_operator 2 "comparison_operator" [(match_operand:SI 1 "gpc_reg_operand" "") (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) (set (match_operand:SI 0 "general_operand" "") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:SI 4 ""))] "reload_completed && ! gpc_reg_operand (operands[0], SImode)" [(parallel [(set (match_dup 3) (compare:CC (plus:SI (match_dup 1) (const_int -1)) (const_int 0))) (set (match_dup 4) (plus:SI (match_dup 1) (const_int -1)))]) (set (match_dup 0) (match_dup 4)) (set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))] " { operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3], const0_rtx); }")