/* Subroutines for insn-output.c for HPPA. Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "config.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "tree.h" #include "c-tree.h" #include "expr.h" #include "obstack.h" /* Save the operands last given to a compare for use when we generate a scc or bcc insn. */ rtx hppa_compare_op0, hppa_compare_op1; enum cmp_type hppa_branch_type; /* Which cpu we are scheduling for. */ enum processor_type pa_cpu; /* String to hold which cpu we are scheduling for. */ char *pa_cpu_string; /* Set by the FUNCTION_PROFILER macro. */ int hp_profile_labelno; /* Counts for the number of callee-saved general and floating point registers which were saved by the current function's prologue. */ static int gr_saved, fr_saved; static rtx find_addr_reg (); /* Keep track of the number of bytes we have output in the CODE subspaces during this compilation so we'll know when to emit inline long-calls. */ unsigned int total_code_bytes; /* Variables to handle plabels that we discover are necessary at assembly output time. They are output after the current function. */ struct defer_plab { rtx internal_label; rtx symbol; } *deferred_plabels = 0; int n_deferred_plabels = 0; void override_options () { /* Default to 700 scheduling which is reasonable for older 800 processors correct for the 700s, and not too bad for the 7100s and 7100LCs. */ if (pa_cpu_string == NULL || ! strcmp (pa_cpu_string, "700")) { pa_cpu_string = "700"; pa_cpu = PROCESSOR_700; } else if (! strcmp (pa_cpu_string, "7100")) { pa_cpu_string = "7100"; pa_cpu = PROCESSOR_7100; } else if (! strcmp (pa_cpu_string, "7100LC")) { pa_cpu_string = "7100LC"; pa_cpu = PROCESSOR_7100LC; } else { warning ("Unknown -mschedule= option (%s).\nValid options are 700, 7100 and 7100LC\n", pa_cpu_string); } } /* Return non-zero only if OP is a register of mode MODE, or CONST0_RTX. */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { return (op == CONST0_RTX (mode) || register_operand (op, mode)); } /* Return non-zero if OP is suitable for use in a call to a named function. (???) For 2.5 try to eliminate either call_operand_address or function_label_operand, they perform very similar functions. */ int call_operand_address (op, mode) rtx op; enum machine_mode mode; { return (CONSTANT_P (op) && ! TARGET_PORTABLE_RUNTIME); } /* Return 1 if X contains a symbolic expression. We know these expressions will have one of a few well defined forms, so we need only check those forms. */ int symbolic_expression_p (x) register rtx x; { /* Strip off any HIGH. */ if (GET_CODE (x) == HIGH) x = XEXP (x, 0); return (symbolic_operand (x, VOIDmode)); } int symbolic_operand (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } /* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */ int symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF); } /* Return 1 if the operand is either a register or a memory operand that is not symbolic. */ int reg_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0; } /* Return 1 if the operand is either a register, zero, or a memory operand that is not symbolic. */ int reg_or_0_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (op == CONST0_RTX (mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0; } /* Accept any constant that can be moved in one instructions into a general register. */ int cint_ok_for_move (intval) HOST_WIDE_INT intval; { /* OK if ldo, ldil, or zdepi, can be used. */ return (VAL_14_BITS_P (intval) || (intval & 0x7ff) == 0 || zdepi_cint_p (intval)); } /* Accept anything that can be moved in one instruction into a general register. */ int move_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return cint_ok_for_move (INTVAL (op)); if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); if (GET_CODE (op) == LO_SUM) return (register_operand (XEXP (op, 0), Pmode) && CONSTANT_P (XEXP (op, 1))); return memory_address_p (mode, op); } /* Accept REG and any CONST_INT that can be moved in one instruction into a general register. */ int reg_or_cint_move_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return cint_ok_for_move (INTVAL (op)); return 0; } int pic_label_operand (op, mode) rtx op; enum machine_mode mode; { if (!flag_pic) return 0; switch (GET_CODE (op)) { case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return (GET_CODE (XEXP (op, 0)) == LABEL_REF && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } int fp_reg_operand (op, mode) rtx op; enum machine_mode mode; { return reg_renumber && FP_REG_P (op); } /* Return truth value of whether OP can be used as an operand in a three operand arithmetic insn that accepts registers of mode MODE or 14-bit signed integers. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && INT_14_BITS (op))); } /* Return truth value of whether OP can be used as an operand in a three operand arithmetic insn that accepts registers of mode MODE or 11-bit signed integers. */ int arith11_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && INT_11_BITS (op))); } /* A constant integer suitable for use in a PRE_MODIFY memory reference. */ int pre_cint_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && INTVAL (op) >= -0x2000 && INTVAL (op) < 0x10); } /* A constant integer suitable for use in a POST_MODIFY memory reference. */ int post_cint_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && INTVAL (op) < 0x2000 && INTVAL (op) >= -0x10); } int arith_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == mode && VAL_14_BITS_P (CONST_DOUBLE_LOW (op)) && (CONST_DOUBLE_HIGH (op) >= 0 == ((CONST_DOUBLE_LOW (op) & 0x1000) == 0)))); } /* Return truth value of whether OP is a integer which fits the range constraining immediate operands in three-address insns. */ int int5_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && INT_5_BITS (op)); } int uint5_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && INT_U5_BITS (op)); } int int11_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && INT_11_BITS (op)); } int uint32_operand (op, mode) rtx op; enum machine_mode mode; { #if HOST_BITS_PER_WIDE_INT > 32 /* All allowed constants will fit a CONST_INT. */ return (GET_CODE (op) == CONST_INT && (INTVAL (op) >= 0 && INTVAL (op) < 0x100000000L)); #else return (GET_CODE (op) == CONST_INT || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0)); #endif } int arith5_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || int5_operand (op, mode); } /* True iff zdepi can be used to generate this CONST_INT. */ int zdepi_cint_p (x) unsigned HOST_WIDE_INT x; { unsigned HOST_WIDE_INT lsb_mask, t; /* This might not be obvious, but it's at least fast. This function is critical; we don't have the time loops would take. */ lsb_mask = x & -x; t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1); /* Return true iff t is a power of two. */ return ((t & (t - 1)) == 0); } /* True iff depi or extru can be used to compute (reg & mask). Accept bit pattern like these: 0....01....1 1....10....0 1..10..01..1 */ int and_mask_p (mask) unsigned HOST_WIDE_INT mask; { mask = ~mask; mask += mask & -mask; return (mask & (mask - 1)) == 0; } /* True iff depi or extru can be used to compute (reg & OP). */ int and_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && and_mask_p (INTVAL (op)))); } /* True iff depi can be used to compute (reg | MASK). */ int ior_mask_p (mask) unsigned HOST_WIDE_INT mask; { mask += mask & -mask; return (mask & (mask - 1)) == 0; } /* True iff depi can be used to compute (reg | OP). */ int ior_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && ior_mask_p (INTVAL (op))); } int lhs_lshift_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || lhs_lshift_cint_operand (op, mode); } /* True iff OP is a CONST_INT of the forms 0...0xxxx or 0...01...1xxxx. Such values can be the left hand side x in (x << r), using the zvdepi instruction. */ int lhs_lshift_cint_operand (op, mode) rtx op; enum machine_mode mode; { unsigned HOST_WIDE_INT x; if (GET_CODE (op) != CONST_INT) return 0; x = INTVAL (op) >> 4; return (x & (x + 1)) == 0; } int arith32_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || GET_CODE (op) == CONST_INT; } int pc_or_label_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == PC || GET_CODE (op) == LABEL_REF); } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go to REG. If we need more than one register, we lose. */ rtx legitimize_pic_address (orig, mode, reg) rtx orig, reg; enum machine_mode mode; { rtx pic_ref = orig; /* Labels need special handling. */ if (pic_label_operand (orig)) { emit_insn (gen_pic_load_label (reg, orig)); current_function_uses_pic_offset_table = 1; return reg; } if (GET_CODE (orig) == SYMBOL_REF) { if (reg == 0) abort (); if (flag_pic == 2) { emit_insn (gen_pic2_highpart (reg, pic_offset_table_rtx, orig)); pic_ref = gen_rtx (MEM, Pmode, gen_rtx (LO_SUM, Pmode, reg, gen_rtx (UNSPEC, SImode, gen_rtvec (1, orig), 0))); } else pic_ref = gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, pic_offset_table_rtx, orig)); current_function_uses_pic_offset_table = 1; RTX_UNCHANGING_P (pic_ref) = 1; emit_move_insn (reg, pic_ref); return reg; } else if (GET_CODE (orig) == CONST) { rtx base; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) abort (); if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); } else abort (); if (GET_CODE (orig) == CONST_INT) { if (INT_14_BITS (orig)) return plus_constant_for_output (base, INTVAL (orig)); orig = force_reg (Pmode, orig); } pic_ref = gen_rtx (PLUS, Pmode, base, orig); /* Likewise, should we set special REG_NOTEs here? */ } return pic_ref; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the PA, transform: memory(X + ) into: if ( & mask) >= 16 Y = ( & ~mask) + mask + 1 Round up. else Y = ( & ~mask) Round down. Z = X + Y memory (Z + ( - Y)); This is for CSE to find several similar references, and only use one Z. X can either be a SYMBOL_REF or REG, but because combine can not perform a 4->2 combination we do nothing for SYMBOL_REF + D where D will not fit in 14 bits. MODE_FLOAT references allow displacements which fit in 5 bits, so use 0x1f as the mask. MODE_INT references allow displacements which fit in 14 bits, so use 0x3fff as the mask. This relies on the fact that most mode MODE_FLOAT references will use FP registers and most mode MODE_INT references will use integer registers. (In the rare case of an FP register used in an integer MODE, we depend on secondary reloads to clean things up.) It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed addressing modes to be used). Put X and Z into registers. Then put the entire expression into a register. */ rtx hppa_legitimize_address (x, oldx, mode) rtx x, oldx; enum machine_mode mode; { rtx orig = x; if (flag_pic) return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode)); /* Strip off CONST. */ if (GET_CODE (x) == CONST) x = XEXP (x, 0); /* Note we must reject symbols which represent function addresses since the assembler/linker can't handle arithmetic on plabels. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT && ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF && !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0))) || GET_CODE (XEXP (x, 0)) == REG)) { rtx int_part, ptr_reg; int newoffset; int offset = INTVAL (XEXP (x, 1)); int mask = GET_MODE_CLASS (mode) == MODE_FLOAT ? 0x1f : 0x3fff; /* Choose which way to round the offset. Round up if we are >= halfway to the next boundary. */ if ((offset & mask) >= ((mask + 1) / 2)) newoffset = (offset & ~ mask) + mask + 1; else newoffset = (offset & ~ mask); /* If the newoffset will not fit in 14 bits (ldo), then handling this would take 4 or 5 instructions (2 to load the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to add the new offset and the SYMBOL_REF.) Combine can not handle 4->2 or 5->2 combinations, so do not create them. */ if (! VAL_14_BITS_P (newoffset) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF) { rtx const_part = gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, Pmode, XEXP (x, 0), GEN_INT (newoffset))); rtx tmp_reg = force_reg (Pmode, gen_rtx (HIGH, Pmode, const_part)); ptr_reg = force_reg (Pmode, gen_rtx (LO_SUM, Pmode, tmp_reg, const_part)); } else { if (! VAL_14_BITS_P (newoffset)) int_part = force_reg (Pmode, GEN_INT (newoffset)); else int_part = GEN_INT (newoffset); ptr_reg = force_reg (Pmode, gen_rtx (PLUS, Pmode, force_reg (Pmode, XEXP (x, 0)), int_part)); } return plus_constant (ptr_reg, offset - newoffset); } /* Try to arrange things so that indexing modes can be used, but only do so if indexing is safe. Indexing is safe when the second operand for the outer PLUS is a REG, SUBREG, SYMBOL_REF or the like. For 2.5, indexing is also safe for (plus (symbol_ref) (const_int)) if the integer is > 0. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))) && (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == 'o' || GET_CODE (XEXP (x, 1)) == SUBREG) && GET_CODE (XEXP (x, 1)) != CONST) { int val = INTVAL (XEXP (XEXP (x, 0), 1)); rtx reg1, reg2; reg1 = force_reg (Pmode, force_operand (XEXP (x, 1), 0)); reg2 = force_reg (Pmode, force_operand (XEXP (XEXP (x, 0), 0), 0)); return force_reg (Pmode, gen_rtx (PLUS, Pmode, gen_rtx (MULT, Pmode, reg2, GEN_INT (val)), reg1)); } /* Uh-oh. We might have an address for x[n-100000]. This needs special handling. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))) { /* Ugly. We modify things here so that the address offset specified by the index expression is computed first, then added to x to form the entire address. For 2.5, it might be profitable to set things up so that we compute the raw (unscaled) index first, then use scaled indexing to access memory, or better yet have the MI parts of the compiler handle this. */ rtx regx1, regy1, regy2, y; /* Strip off any CONST. */ y = XEXP (x, 1); if (GET_CODE (y) == CONST) y = XEXP (y, 0); if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS) { regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0)); regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0)); regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0)); regx1 = force_reg (Pmode, gen_rtx (GET_CODE (y), Pmode, regx1, regy2)); return force_reg (Pmode, gen_rtx (PLUS, Pmode, regx1, regy1)); } } return orig; } /* For the HPPA, REG and REG+CONST is cost 0 and addresses involving symbolic constants are cost 2. PIC addresses are very expensive. It is no coincidence that this has the same structure as GO_IF_LEGITIMATE_ADDRESS. */ int hppa_address_cost (X) rtx X; { if (GET_CODE (X) == PLUS) return 1; else if (GET_CODE (X) == LO_SUM) return 1; else if (GET_CODE (X) == HIGH) return 2; return 4; } /* Emit insns to move operands[1] into operands[0]. Return 1 if we have written out everything that needs to be done to do the move. Otherwise, return 0 and the caller will emit the move normally. */ int emit_move_sequence (operands, mode, scratch_reg) rtx *operands; enum machine_mode mode; rtx scratch_reg; { register rtx operand0 = operands[0]; register rtx operand1 = operands[1]; /* Handle secondary reloads for loads/stores of FP registers from REG+D addresses where D does not fit in 5 bits, including (subreg (mem (addr)) cases. */ if (fp_reg_operand (operand0, mode) && ((GET_CODE (operand1) == MEM && ! memory_address_p (DFmode, XEXP (operand1, 0))) || ((GET_CODE (operand1) == SUBREG && GET_CODE (XEXP (operand1, 0)) == MEM && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0))))) && scratch_reg) { if (GET_CODE (operand1) == SUBREG) operand1 = XEXP (operand1, 0); scratch_reg = gen_rtx (REG, SImode, REGNO (scratch_reg)); /* D might not fit in 14 bits either; for such cases load D into scratch reg. */ if (!memory_address_p (SImode, XEXP (operand1, 0))) { emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); emit_move_insn (scratch_reg, gen_rtx (GET_CODE (XEXP (operand1, 0)), SImode, XEXP (XEXP (operand1, 0), 0), scratch_reg)); } else emit_move_insn (scratch_reg, XEXP (operand1, 0)); emit_insn (gen_rtx (SET, VOIDmode, operand0, gen_rtx (MEM, mode, scratch_reg))); return 1; } else if (fp_reg_operand (operand1, mode) && ((GET_CODE (operand0) == MEM && ! memory_address_p (DFmode, XEXP (operand0, 0))) || ((GET_CODE (operand0) == SUBREG) && GET_CODE (XEXP (operand0, 0)) == MEM && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0)))) && scratch_reg) { if (GET_CODE (operand0) == SUBREG) operand0 = XEXP (operand0, 0); scratch_reg = gen_rtx (REG, SImode, REGNO (scratch_reg)); /* D might not fit in 14 bits either; for such cases load D into scratch reg. */ if (!memory_address_p (SImode, XEXP (operand0, 0))) { emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1)); emit_move_insn (scratch_reg, gen_rtx (GET_CODE (XEXP (operand0, 0)), SImode, XEXP (XEXP (operand0, 0), 0), scratch_reg)); } else emit_move_insn (scratch_reg, XEXP (operand0, 0)); emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (MEM, mode, scratch_reg), operand1)); return 1; } /* Handle secondary reloads for loads of FP registers from constant expressions by forcing the constant into memory. use scratch_reg to hold the address of the memory location. ??? The proper fix is to change PREFERRED_RELOAD_CLASS to return NO_REGS when presented with a const_int and an register class containing only FP registers. Doing so unfortunately creates more problems than it solves. Fix this for 2.5. */ else if (fp_reg_operand (operand0, mode) && CONSTANT_P (operand1) && scratch_reg) { rtx xoperands[2]; /* Force the constant into memory and put the address of the memory location into scratch_reg. */ xoperands[0] = scratch_reg; xoperands[1] = XEXP (force_const_mem (mode, operand1), 0); emit_move_sequence (xoperands, Pmode, 0); /* Now load the destination register. */ emit_insn (gen_rtx (SET, mode, operand0, gen_rtx (MEM, mode, scratch_reg))); return 1; } /* Handle secondary reloads for SAR. These occur when trying to load the SAR from memory a FP register, or with a constant. */ else if (GET_CODE (operand0) == REG && REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS && (GET_CODE (operand1) == MEM || GET_CODE (operand1) == CONST_INT || (GET_CODE (operand1) == REG && FP_REG_CLASS_P (REGNO_REG_CLASS (REGNO (operand1))))) && scratch_reg) { emit_move_insn (scratch_reg, operand1); emit_move_insn (operand0, scratch_reg); return 1; } /* Handle most common case: storing into a register. */ else if (register_operand (operand0, mode)) { if (register_operand (operand1, mode) || (GET_CODE (operand1) == CONST_INT && INT_14_BITS (operand1)) || (operand1 == CONST0_RTX (mode)) || (GET_CODE (operand1) == HIGH && !symbolic_operand (XEXP (operand1, 0), VOIDmode)) /* Only `general_operands' can come here, so MEM is ok. */ || GET_CODE (operand1) == MEM) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } } else if (GET_CODE (operand0) == MEM) { if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode)) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } if (! (reload_in_progress || reload_completed)) { operands[0] = validize_mem (operand0); operands[1] = operand1 = force_reg (mode, operand1); } } /* Simplify the source if we need to. */ if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode)) || (GET_CODE (operand1) == HIGH && symbolic_operand (XEXP (operand1, 0), mode))) { int ishighonly = 0; if (GET_CODE (operand1) == HIGH) { ishighonly = 1; operand1 = XEXP (operand1, 0); } if (symbolic_operand (operand1, mode)) { rtx const_part = NULL; /* Argh. The assembler and linker can't handle arithmetic involving plabels. We'll have to split up operand1 here if it's a function label involved in an arithmetic expression. Luckily, this only happens with addition of constants to plabels, which simplifies the test. We add the constant back in just before returning to our caller. */ if (GET_CODE (operand1) == CONST && GET_CODE (XEXP (operand1, 0)) == PLUS && function_label_operand (XEXP (XEXP (operand1, 0), 0), Pmode)) { /* Save away the constant part of the expression. */ const_part = XEXP (XEXP (operand1, 0), 1); if (GET_CODE (const_part) != CONST_INT) abort (); /* Set operand1 to just the SYMBOL_REF. */ operand1 = XEXP (XEXP (operand1, 0), 0); } if (flag_pic) { rtx temp; if (reload_in_progress || reload_completed) temp = scratch_reg ? scratch_reg : operand0; else temp = gen_reg_rtx (Pmode); /* If operand1 is a function label, then we've got to force it to memory, then load op0 from memory. */ if (function_label_operand (operand1, mode)) { operands[1] = force_const_mem (mode, operand1); emit_move_sequence (operands, mode, temp); } /* Likewise for (const (plus (symbol) (const_int)) when generating pic code during or after reload and const_int will not fit in 14 bits. */ else if (GET_CODE (operand1) == CONST && GET_CODE (XEXP (operand1, 0)) == PLUS && GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT && !INT_14_BITS (XEXP (XEXP (operand1, 0), 1)) && (reload_completed || reload_in_progress) && flag_pic) { operands[1] = force_const_mem (mode, operand1); operands[1] = legitimize_pic_address (XEXP (operands[1], 0), mode, temp); emit_move_sequence (operands, mode, temp); } else { operands[1] = legitimize_pic_address (operand1, mode, temp); emit_insn (gen_rtx (SET, VOIDmode, operand0, operands[1])); } } /* On the HPPA, references to data space are supposed to use dp, register 27, but showing it in the RTL inhibits various cse and loop optimizations. */ else { rtx temp, set; if (reload_in_progress || reload_completed) temp = scratch_reg ? scratch_reg : operand0; else temp = gen_reg_rtx (mode); if (ishighonly) set = gen_rtx (SET, mode, operand0, temp); else set = gen_rtx (SET, VOIDmode, operand0, gen_rtx (LO_SUM, mode, temp, operand1)); emit_insn (gen_rtx (SET, VOIDmode, temp, gen_rtx (HIGH, mode, operand1))); emit_insn (set); } /* Add back in the constant part if needed. */ if (const_part != NULL) expand_inc (operand0, const_part); return 1; } else if (GET_CODE (operand1) != CONST_INT || ! cint_ok_for_move (INTVAL (operand1))) { rtx temp; if (reload_in_progress || reload_completed) temp = operand0; else temp = gen_reg_rtx (mode); emit_insn (gen_rtx (SET, VOIDmode, temp, gen_rtx (HIGH, mode, operand1))); operands[1] = gen_rtx (LO_SUM, mode, temp, operand1); } } /* Now have insn-emit do whatever it normally does. */ return 0; } /* Does operand (which is a symbolic_operand) live in text space? If so SYMBOL_REF_FLAG, which is set by ENCODE_SECTION_INFO, will be true. */ int read_only_operand (operand) rtx operand; { if (GET_CODE (operand) == CONST) operand = XEXP (XEXP (operand, 0), 0); if (flag_pic) { if (GET_CODE (operand) == SYMBOL_REF) return SYMBOL_REF_FLAG (operand) && !CONSTANT_POOL_ADDRESS_P (operand); } else { if (GET_CODE (operand) == SYMBOL_REF) return SYMBOL_REF_FLAG (operand) || CONSTANT_POOL_ADDRESS_P (operand); } return 1; } /* Return the best assembler insn template for moving operands[1] into operands[0] as a fullword. */ char * singlemove_string (operands) rtx *operands; { HOST_WIDE_INT intval; if (GET_CODE (operands[0]) == MEM) return "stw %r1,%0"; if (GET_CODE (operands[1]) == MEM) return "ldw %1,%0"; if (GET_CODE (operands[1]) == CONST_DOUBLE) { long i; REAL_VALUE_TYPE d; if (GET_MODE (operands[1]) != SFmode) abort (); /* Translate the CONST_DOUBLE to a CONST_INT with the same target bit pattern. */ REAL_VALUE_FROM_CONST_DOUBLE (d, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (d, i); operands[1] = GEN_INT (i); /* Fall through to CONST_INT case. */ } if (GET_CODE (operands[1]) == CONST_INT) { intval = INTVAL (operands[1]); if (VAL_14_BITS_P (intval)) return "ldi %1,%0"; else if ((intval & 0x7ff) == 0) return "ldil L'%1,%0"; else if (zdepi_cint_p (intval)) return "zdepi %Z1,%0"; else return "ldil L'%1,%0\n\tldo R'%1(%0),%0"; } return "copy %1,%0"; } /* Compute position (in OP[1]) and width (in OP[2]) useful for copying IMM to a register using the zdepi instructions. Store the immediate value to insert in OP[0]. */ void compute_zdepi_operands (imm, op) unsigned HOST_WIDE_INT imm; unsigned *op; { int lsb, len; /* Find the least significant set bit in IMM. */ for (lsb = 0; lsb < 32; lsb++) { if ((imm & 1) != 0) break; imm >>= 1; } /* Choose variants based on *sign* of the 5-bit field. */ if ((imm & 0x10) == 0) len = (lsb <= 28) ? 4 : 32 - lsb; else { /* Find the width of the bitstring in IMM. */ for (len = 5; len < 32; len++) { if ((imm & (1 << len)) == 0) break; } /* Sign extend IMM as a 5-bit value. */ imm = (imm & 0xf) - 0x10; } op[0] = imm; op[1] = 31 - lsb; op[2] = len; } /* Output assembler code to perform a doubleword move insn with operands OPERANDS. */ char * output_move_double (operands) rtx *operands; { enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1; rtx latehalf[2]; rtx addreg0 = 0, addreg1 = 0; /* First classify both operands. */ if (REG_P (operands[0])) optype0 = REGOP; else if (offsettable_memref_p (operands[0])) optype0 = OFFSOP; else if (GET_CODE (operands[0]) == MEM) optype0 = MEMOP; else optype0 = RNDOP; if (REG_P (operands[1])) optype1 = REGOP; else if (CONSTANT_P (operands[1])) optype1 = CNSTOP; else if (offsettable_memref_p (operands[1])) optype1 = OFFSOP; else if (GET_CODE (operands[1]) == MEM) optype1 = MEMOP; else optype1 = RNDOP; /* Check for the cases that the operand constraints are not supposed to allow to happen. Abort if we get one, because generating code for these cases is painful. */ if (optype0 != REGOP && optype1 != REGOP) abort (); /* Handle auto decrementing and incrementing loads and stores specifically, since the structure of the function doesn't work for them without major modification. Do it better when we learn this port about the general inc/dec addressing of PA. (This was written by tege. Chide him if it doesn't work.) */ if (optype0 == MEMOP) { /* We have to output the address syntax ourselves, since print_operand doesn't deal with the addresses we want to use. Fix this later. */ rtx addr = XEXP (operands[0], 0); if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC) { rtx high_reg = gen_rtx (SUBREG, SImode, operands[1], 0); operands[0] = XEXP (addr, 0); if (GET_CODE (operands[1]) != REG || GET_CODE (operands[0]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == POST_INC) return "stws,ma %1,8(0,%0)\n\tstw %R1,-4(0,%0)"; return "stws,ma %1,-8(0,%0)\n\tstw %R1,12(0,%0)"; } else abort(); } else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC) { rtx high_reg = gen_rtx (SUBREG, SImode, operands[1], 0); operands[0] = XEXP (addr, 0); if (GET_CODE (operands[1]) != REG || GET_CODE (operands[0]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == PRE_INC) return "stws,mb %1,8(0,%0)\n\tstw %R1,4(0,%0)"; return "stws,mb %1,-8(0,%0)\n\tstw %R1,4(0,%0)"; } else abort(); } } if (optype1 == MEMOP) { /* We have to output the address syntax ourselves, since print_operand doesn't deal with the addresses we want to use. Fix this later. */ rtx addr = XEXP (operands[1], 0); if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC) { rtx high_reg = gen_rtx (SUBREG, SImode, operands[0], 0); operands[1] = XEXP (addr, 0); if (GET_CODE (operands[0]) != REG || GET_CODE (operands[1]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == POST_INC) return "ldws,ma 8(0,%1),%0\n\tldw -4(0,%1),%R0"; return "ldws,ma -8(0,%1),%0\n\tldw 12(0,%1),%R0"; } else { /* This is an undefined situation. We should load into the address register *and* update that register. Probably we don't need to handle this at all. */ if (GET_CODE (addr) == POST_INC) return "ldw 4(0,%1),%R0\n\tldws,ma 8(0,%1),%0"; return "ldw 4(0,%1),%R0\n\tldws,ma -8(0,%1),%0"; } } else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC) { rtx high_reg = gen_rtx (SUBREG, SImode, operands[0], 0); operands[1] = XEXP (addr, 0); if (GET_CODE (operands[0]) != REG || GET_CODE (operands[1]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == PRE_INC) return "ldws,mb 8(0,%1),%0\n\tldw 4(0,%1),%R0"; return "ldws,mb -8(0,%1),%0\n\tldw 4(0,%1),%R0"; } else { /* This is an undefined situation. We should load into the address register *and* update that register. Probably we don't need to handle this at all. */ if (GET_CODE (addr) == PRE_INC) return "ldw 12(0,%1),%R0\n\tldws,mb 8(0,%1),%0"; return "ldw -4(0,%1),%R0\n\tldws,mb -8(0,%1),%0"; } } } /* If an operand is an unoffsettable memory ref, find a register we can increment temporarily to make it refer to the second word. */ if (optype0 == MEMOP) addreg0 = find_addr_reg (XEXP (operands[0], 0)); if (optype1 == MEMOP) addreg1 = find_addr_reg (XEXP (operands[1], 0)); /* Ok, we can do one word at a time. Normally we do the low-numbered word first. In either case, set up in LATEHALF the operands to use for the high-numbered word and in some cases alter the operands in OPERANDS to be suitable for the low-numbered word. */ if (optype0 == REGOP) latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); else if (optype0 == OFFSOP) latehalf[0] = adj_offsettable_operand (operands[0], 4); else latehalf[0] = operands[0]; if (optype1 == REGOP) latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); else if (optype1 == OFFSOP) latehalf[1] = adj_offsettable_operand (operands[1], 4); else if (optype1 == CNSTOP) split_double (operands[1], &operands[1], &latehalf[1]); else latehalf[1] = operands[1]; /* If the first move would clobber the source of the second one, do them in the other order. RMS says "This happens only for registers; such overlap can't happen in memory unless the user explicitly sets it up, and that is an undefined circumstance." but it happens on the HP-PA when loading parameter registers, so I am going to define that circumstance, and make it work as expected. */ if (optype0 == REGOP && (optype1 == MEMOP || optype1 == OFFSOP) && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) { /* XXX THIS PROBABLY DOESN'T WORK. */ /* Do the late half first. */ if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); output_asm_insn (singlemove_string (latehalf), latehalf); if (addreg1) output_asm_insn ("ldo -4(%0),%0", &addreg1); /* Then clobber. */ return singlemove_string (operands); } if (optype0 == REGOP && optype1 == REGOP && REGNO (operands[0]) == REGNO (operands[1]) + 1) { output_asm_insn (singlemove_string (latehalf), latehalf); return singlemove_string (operands); } /* Normal case: do the two words, low-numbered first. */ output_asm_insn (singlemove_string (operands), operands); /* Make any unoffsettable addresses point at high-numbered word. */ if (addreg0) output_asm_insn ("ldo 4(%0),%0", &addreg0); if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("ldo -4(%0),%0", &addreg0); if (addreg1) output_asm_insn ("ldo -4(%0),%0", &addreg1); return ""; } char * output_fp_move_double (operands) rtx *operands; { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1]) || operands[1] == CONST0_RTX (GET_MODE (operands[0]))) output_asm_insn ("fcpy,dbl %r1,%0", operands); else output_asm_insn ("fldds%F1 %1,%0", operands); } else if (FP_REG_P (operands[1])) { output_asm_insn ("fstds%F0 %1,%0", operands); } else if (operands[1] == CONST0_RTX (GET_MODE (operands[0]))) { if (GET_CODE (operands[0]) == REG) { rtx xoperands[2]; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); xoperands[0] = operands[0]; output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands); } /* This is a pain. You have to be prepared to deal with an arbitrary address here including pre/post increment/decrement. so avoid this in the MD. */ else abort (); } else abort (); return ""; } /* Return a REG that occurs in ADDR with coefficient 1. ADDR can be effectively incremented by incrementing REG. */ static rtx find_addr_reg (addr) rtx addr; { while (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG) addr = XEXP (addr, 0); else if (GET_CODE (XEXP (addr, 1)) == REG) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 0))) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 1))) addr = XEXP (addr, 0); else abort (); } if (GET_CODE (addr) == REG) return addr; abort (); } /* Emit code to perform a block move. Restriction: If the length argument is non-constant, alignment must be 4. OPERANDS[0] is the destination pointer as a REG, clobbered. OPERANDS[1] is the source pointer as a REG, clobbered. if SIZE_IS_CONSTANT OPERANDS[2] is a register for temporary storage. OPERANDS[4] is the size as a CONST_INT else OPERANDS[2] is a REG which will contain the size, clobbered. OPERANDS[3] is a register for temporary storage. OPERANDS[5] is the alignment safe to use, as a CONST_INT. */ char * output_block_move (operands, size_is_constant) rtx *operands; int size_is_constant; { int align = INTVAL (operands[5]); unsigned long n_bytes; /* We can't move more than four bytes at a time because the PA has no longer integer move insns. (Could use fp mem ops?) */ if (align > 4) align = 4; if (size_is_constant) { unsigned long offset; rtx temp; n_bytes = INTVAL (operands[4]); if (n_bytes == 0) return ""; if (align >= 4) { /* Don't unroll too large blocks. */ if (n_bytes > 32) goto copy_with_loop; /* Read and store using two registers, and hide latency by deferring the stores until three instructions after the corresponding load. The last load insn will read the entire word were the last bytes are, possibly past the end of the source block, but since loads are aligned, this is harmless. */ output_asm_insn ("ldws,ma 4(0,%1),%2", operands); for (offset = 4; offset < n_bytes; offset += 4) { output_asm_insn ("ldws,ma 4(0,%1),%3", operands); output_asm_insn ("stws,ma %2,4(0,%0)", operands); temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; } if (n_bytes % 4 == 0) /* Store the last word. */ output_asm_insn ("stw %2,0(0,%0)", operands); else { /* Store the last, partial word. */ operands[4] = GEN_INT (n_bytes % 4); output_asm_insn ("stbys,e %2,%4(0,%0)", operands); } return ""; } if (align >= 2 && n_bytes >= 2) { output_asm_insn ("ldhs,ma 2(0,%1),%2", operands); for (offset = 2; offset + 2 <= n_bytes; offset += 2) { output_asm_insn ("ldhs,ma 2(0,%1),%3", operands); output_asm_insn ("sths,ma %2,2(0,%0)", operands); temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; } if (n_bytes % 2 != 0) output_asm_insn ("ldb 0(0,%1),%3", operands); output_asm_insn ("sths,ma %2,2(0,%0)", operands); if (n_bytes % 2 != 0) output_asm_insn ("stb %3,0(0,%0)", operands); return ""; } output_asm_insn ("ldbs,ma 1(0,%1),%2", operands); for (offset = 1; offset + 1 <= n_bytes; offset += 1) { output_asm_insn ("ldbs,ma 1(0,%1),%3", operands); output_asm_insn ("stbs,ma %2,1(0,%0)", operands); temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; } output_asm_insn ("stb %2,0(0,%0)", operands); return ""; } if (align != 4) abort(); copy_with_loop: if (size_is_constant) { /* Size is compile-time determined, and also not very small (such small cases are handled above). */ operands[4] = GEN_INT (n_bytes - 4); output_asm_insn ("ldo %4(0),%2", operands); } else { /* Decrement counter by 4, and if it becomes negative, jump past the word copying loop. */ output_asm_insn ("addib,<,n -4,%2,.+16", operands); } /* Copying loop. Note that the first load is in the annulled delay slot of addib. Is it OK on PA to have a load in a delay slot, i.e. is a possible page fault stopped in time? */ output_asm_insn ("ldws,ma 4(0,%1),%3", operands); output_asm_insn ("addib,>= -4,%2,.-4", operands); output_asm_insn ("stws,ma %3,4(0,%0)", operands); /* The counter is negative, >= -4. The remaining number of bytes are determined by the two least significant bits. */ if (size_is_constant) { if (n_bytes % 4 != 0) { /* Read the entire word of the source block tail. */ output_asm_insn ("ldw 0(0,%1),%3", operands); operands[4] = GEN_INT (n_bytes % 4); output_asm_insn ("stbys,e %3,%4(0,%0)", operands); } } else { /* Add 4 to counter. If it becomes zero, we're done. */ output_asm_insn ("addib,=,n 4,%2,.+16", operands); /* Read the entire word of the source block tail. (Also this load is in an annulled delay slot.) */ output_asm_insn ("ldw 0(0,%1),%3", operands); /* Make %0 point at the first byte after the destination block. */ output_asm_insn ("addl %2,%0,%0", operands); /* Store the leftmost bytes, up to, but not including, the address in %0. */ output_asm_insn ("stbys,e %3,0(0,%0)", operands); } return ""; } /* Count the number of insns necessary to handle this block move. Basic structure is the same as emit_block_move, except that we count insns rather than emit them. */ int compute_movstrsi_length (insn) rtx insn; { rtx pat = PATTERN (insn); int size_is_constant; int align = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0)); unsigned long n_bytes; int insn_count = 0; if (GET_CODE (XEXP (XVECEXP (pat, 0, 5), 0)) == CONST_INT) { size_is_constant = 1; n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 5), 0)); } else { size_is_constant = 0; n_bytes = 0; } /* We can't move more than four bytes at a time because the PA has no longer integer move insns. (Could use fp mem ops?) */ if (align > 4) align = 4; if (size_is_constant) { unsigned long offset; if (n_bytes == 0) return 0; if (align >= 4) { /* Don't unroll too large blocks. */ if (n_bytes > 32) goto copy_with_loop; /* first load */ insn_count = 1; /* Count the unrolled insns. */ for (offset = 4; offset < n_bytes; offset += 4) insn_count += 2; /* Count last store or partial store. */ insn_count += 1; return insn_count * 4; } if (align >= 2 && n_bytes >= 2) { /* initial load. */ insn_count = 1; /* Unrolled loop. */ for (offset = 2; offset + 2 <= n_bytes; offset += 2) insn_count += 2; /* ??? odd load/store */ if (n_bytes % 2 != 0) insn_count += 2; /* ??? final store from loop. */ insn_count += 1; return insn_count * 4; } /* First load. */ insn_count = 1; /* The unrolled loop. */ for (offset = 1; offset + 1 <= n_bytes; offset += 1) insn_count += 2; /* Final store. */ insn_count += 1; return insn_count * 4; } if (align != 4) abort(); copy_with_loop: /* setup for constant and non-constant case. */ insn_count = 1; /* The copying loop. */ insn_count += 3; /* The counter is negative, >= -4. The remaining number of bytes are determined by the two least significant bits. */ if (size_is_constant) { if (n_bytes % 4 != 0) insn_count += 2; } else insn_count += 4; return insn_count * 4; } char * output_and (operands) rtx *operands; { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0) { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int ls0, ls1, ms0, p, len; for (ls0 = 0; ls0 < 32; ls0++) if ((mask & (1 << ls0)) == 0) break; for (ls1 = ls0; ls1 < 32; ls1++) if ((mask & (1 << ls1)) != 0) break; for (ms0 = ls1; ms0 < 32; ms0++) if ((mask & (1 << ms0)) == 0) break; if (ms0 != 32) abort(); if (ls1 == 32) { len = ls0; if (len == 0) abort (); operands[2] = GEN_INT (len); return "extru %1,31,%2,%0"; } else { /* We could use this `depi' for the case above as well, but `depi' requires one more register file access than an `extru'. */ p = 31 - ls0; len = ls1 - ls0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "depi 0,%2,%3,%0"; } } else return "and %1,%2,%0"; } char * output_ior (operands) rtx *operands; { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int bs0, bs1, p, len; if (INTVAL (operands[2]) == 0) return "copy %1,%0"; for (bs0 = 0; bs0 < 32; bs0++) if ((mask & (1 << bs0)) != 0) break; for (bs1 = bs0; bs1 < 32; bs1++) if ((mask & (1 << bs1)) == 0) break; if (bs1 != 32 && ((unsigned HOST_WIDE_INT) 1 << bs1) <= mask) abort(); p = 31 - bs0; len = bs1 - bs0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "depi -1,%2,%3,%0"; } /* Output an ascii string. */ void output_ascii (file, p, size) FILE *file; unsigned char *p; int size; { int i; int chars_output; unsigned char partial_output[16]; /* Max space 4 chars can occupy. */ /* The HP assembler can only take strings of 256 characters at one time. This is a limitation on input line length, *not* the length of the string. Sigh. Even worse, it seems that the restriction is in number of input characters (see \xnn & \whatever). So we have to do this very carefully. */ fprintf (file, "\t.STRING \""); chars_output = 0; for (i = 0; i < size; i += 4) { int co = 0; int io = 0; for (io = 0, co = 0; io < MIN (4, size - i); io++) { register unsigned int c = p[i + io]; if (c == '\"' || c == '\\') partial_output[co++] = '\\'; if (c >= ' ' && c < 0177) partial_output[co++] = c; else { unsigned int hexd; partial_output[co++] = '\\'; partial_output[co++] = 'x'; hexd = c / 16 - 0 + '0'; if (hexd > '9') hexd -= '9' - 'a' + 1; partial_output[co++] = hexd; hexd = c % 16 - 0 + '0'; if (hexd > '9') hexd -= '9' - 'a' + 1; partial_output[co++] = hexd; } } if (chars_output + co > 243) { fprintf (file, "\"\n\t.STRING \""); chars_output = 0; } fwrite (partial_output, 1, co, file); chars_output += co; co = 0; } fprintf (file, "\"\n"); } /* You may have trouble believing this, but this is the HP-PA stack layout. Wow. Offset Contents Variable arguments (optional; any number may be allocated) SP-(4*(N+9)) arg word N : : SP-56 arg word 5 SP-52 arg word 4 Fixed arguments (must be allocated; may remain unused) SP-48 arg word 3 SP-44 arg word 2 SP-40 arg word 1 SP-36 arg word 0 Frame Marker SP-32 External Data Pointer (DP) SP-28 External sr4 SP-24 External/stub RP (RP') SP-20 Current RP SP-16 Static Link SP-12 Clean up SP-8 Calling Stub RP (RP'') SP-4 Previous SP Top of Frame SP-0 Stack Pointer (points to next available address) */ /* This function saves registers as follows. Registers marked with ' are this function's registers (as opposed to the previous function's). If a frame_pointer isn't needed, r4 is saved as a general register; the space for the frame pointer is still allocated, though, to keep things simple. Top of Frame SP (FP') Previous FP SP + 4 Alignment filler (sigh) SP + 8 Space for locals reserved here. . . . SP + n All call saved register used. . . . SP + o All call saved fp registers used. . . . SP + p (SP') points to next available address. */ /* Emit RTL to store REG at the memory location specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const pattern. Note in DISP > 8k case, we will leave the high part of the address in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/ static void store_reg (reg, disp, base) int reg, disp, base; { if (VAL_14_BITS_P (disp)) { emit_move_insn (gen_rtx (MEM, SImode, gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, base), GEN_INT (disp))), gen_rtx (REG, SImode, reg)); } else { emit_insn (gen_add_high_const (gen_rtx (REG, SImode, 1), gen_rtx (REG, SImode, base), GEN_INT (disp))); emit_move_insn (gen_rtx (MEM, SImode, gen_rtx (LO_SUM, SImode, gen_rtx (REG, SImode, 1), GEN_INT (disp))), gen_rtx (REG, SImode, reg)); } } /* Emit RTL to load REG from the memory location specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const pattern. Note in DISP > 8k case, we will leave the high part of the address in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/ static void load_reg (reg, disp, base) int reg, disp, base; { if (VAL_14_BITS_P (disp)) { emit_move_insn (gen_rtx (REG, SImode, reg), gen_rtx (MEM, SImode, gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, base), GEN_INT (disp)))); } else { emit_insn (gen_add_high_const (gen_rtx (REG, SImode, 1), gen_rtx (REG, SImode, base), GEN_INT (disp))); emit_move_insn (gen_rtx (REG, SImode, reg), gen_rtx (MEM, SImode, gen_rtx (LO_SUM, SImode, gen_rtx (REG, SImode, 1), GEN_INT (disp)))); } } /* Emit RTL to set REG to the value specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const pattern. Note in DISP > 8k case, we will leave the high part of the address in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/ static void set_reg_plus_d(reg, base, disp) int reg, base, disp; { if (VAL_14_BITS_P (disp)) { emit_move_insn (gen_rtx (REG, SImode, reg), gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, base), GEN_INT (disp))); } else { emit_insn (gen_add_high_const (gen_rtx (REG, SImode, 1), gen_rtx (REG, SImode, base), GEN_INT (disp))); emit_move_insn (gen_rtx (REG, SImode, reg), gen_rtx (LO_SUM, SImode, gen_rtx (REG, SImode, 1), GEN_INT (disp))); } } /* Global variables set by FUNCTION_PROLOGUE. */ /* Size of frame. Need to know this to emit return insns from leaf procedures. */ static int actual_fsize; static int local_fsize, save_fregs; int compute_frame_size (size, fregs_live) int size; int *fregs_live; { extern int current_function_outgoing_args_size; int i, fsize; /* 8 is space for frame pointer + filler. If any frame is allocated we need to add this in because of STARTING_FRAME_OFFSET. */ fsize = size + (size || frame_pointer_needed ? 8 : 0); for (i = 18; i >= 4; i--) { if (regs_ever_live[i]) fsize += 4; } /* If we don't have a frame pointer, the register normally used for that purpose is saved just like other registers, not in the "frame marker". */ if (! frame_pointer_needed) { if (regs_ever_live[FRAME_POINTER_REGNUM]) fsize += 4; } fsize = (fsize + 7) & ~7; for (i = 66; i >= 48; i -= 2) if (regs_ever_live[i] || regs_ever_live[i + 1]) { fsize += 8; if (fregs_live) *fregs_live = 1; } fsize += current_function_outgoing_args_size; if (! leaf_function_p () || fsize) fsize += 32; return (fsize + 63) & ~63; } rtx hp_profile_label_rtx; static char hp_profile_label_name[8]; void output_function_prologue (file, size) FILE *file; int size; { /* The function's label and associated .PROC must never be separated and must be output *after* any profiling declarations to avoid changing spaces/subspaces within a procedure. */ ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); fputs ("\t.PROC\n", file); /* hppa_expand_prologue does the dirty work now. We just need to output the assembler directives which denote the start of a function. */ fprintf (file, "\t.CALLINFO FRAME=%d", actual_fsize); if (regs_ever_live[2] || profile_flag) fprintf (file, ",CALLS,SAVE_RP"); else fprintf (file, ",NO_CALLS"); if (frame_pointer_needed) fprintf (file, ",SAVE_SP"); /* Pass on information about the number of callee register saves performed in the prologue. The compiler is supposed to pass the highest register number saved, the assembler then has to adjust that number before entering it into the unwind descriptor (to account for any caller saved registers with lower register numbers than the first callee saved register). */ if (gr_saved) fprintf (file, ",ENTRY_GR=%d", gr_saved + 2); if (fr_saved) fprintf (file, ",ENTRY_FR=%d", fr_saved + 11); fprintf (file, "\n\t.ENTRY\n"); /* Horrid hack. emit_function_prologue will modify this RTL in place to get the expected results. */ if (profile_flag) ASM_GENERATE_INTERNAL_LABEL (hp_profile_label_name, "LP", hp_profile_labelno); if (insn_addresses) { unsigned int old_total = total_code_bytes; total_code_bytes += insn_addresses[INSN_UID (get_last_insn())]; total_code_bytes += FUNCTION_BOUNDARY /BITS_PER_UNIT; /* Be prepared to handle overflows. */ total_code_bytes = old_total > total_code_bytes ? -1 : total_code_bytes; } else total_code_bytes = -1; } void hppa_expand_prologue() { extern char call_used_regs[]; int size = get_frame_size (); int merge_sp_adjust_with_store = 0; int i, offset; rtx tmpreg, size_rtx; gr_saved = 0; fr_saved = 0; save_fregs = 0; local_fsize = size + (size || frame_pointer_needed ? 8 : 0); actual_fsize = compute_frame_size (size, &save_fregs); /* Compute a few things we will use often. */ tmpreg = gen_rtx (REG, SImode, 1); size_rtx = GEN_INT (actual_fsize); /* Save RP first. The calling conventions manual states RP will always be stored into the caller's frame at sp-20. */ if (regs_ever_live[2] || profile_flag) store_reg (2, -20, STACK_POINTER_REGNUM); /* Allocate the local frame and set up the frame pointer if needed. */ if (actual_fsize) if (frame_pointer_needed) { /* Copy the old frame pointer temporarily into %r1. Set up the new stack pointer, then store away the saved old frame pointer into the stack at sp+actual_fsize and at the same time update the stack pointer by actual_fsize bytes. Two versions, first handles small (<8k) frames. The second handles large (>8k) frames. */ emit_move_insn (tmpreg, frame_pointer_rtx); emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); if (VAL_14_BITS_P (actual_fsize)) emit_insn (gen_post_stwm (stack_pointer_rtx, stack_pointer_rtx, size_rtx, tmpreg)); else { /* It is incorrect to store the saved frame pointer at *sp, then increment sp (writes beyond the current stack boundary). So instead use stwm to store at *sp and post-increment the stack pointer as an atomic operation. Then increment sp to finish allocating the new frame. */ emit_insn (gen_post_stwm (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (64), tmpreg)); set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, actual_fsize - 64); } } /* no frame pointer needed. */ else { /* In some cases we can perform the first callee register save and allocating the stack frame at the same time. If so, just make a note of it and defer allocating the frame until saving the callee registers. */ if (VAL_14_BITS_P (-actual_fsize) && local_fsize == 0 && ! profile_flag && ! flag_pic) merge_sp_adjust_with_store = 1; /* Can not optimize. Adjust the stack frame by actual_fsize bytes. */ else if (actual_fsize != 0) set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, actual_fsize); } /* The hppa calling conventions say that that %r19, the pic offset register, is saved at sp - 32 (in this function's frame) when generating PIC code. FIXME: What is the correct thing to do for functions which make no calls and allocate no frame? Do we need to allocate a frame, or can we just omit the save? For now we'll just omit the save. */ if (actual_fsize != 0 && flag_pic) store_reg (PIC_OFFSET_TABLE_REGNUM, -32, STACK_POINTER_REGNUM); /* Profiling code. Instead of taking one argument, the counter label, as most normal mcounts do, _mcount appears to behave differently on the HPPA. It takes the return address of the caller, the address of this routine, and the address of the label. Also, it isn't magic, so argument registers have to be preserved. */ if (profile_flag) { int pc_offset, i, arg_offset, basereg, offsetadj; pc_offset = 4 + (frame_pointer_needed ? (VAL_14_BITS_P (actual_fsize) ? 12 : 20) : (VAL_14_BITS_P (actual_fsize) ? 4 : 8)); /* When the function has a frame pointer, use it as the base register for saving/restore registers. Else use the stack pointer. Adjust the offset according to the frame size if this function does not have a frame pointer. */ basereg = frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM; offsetadj = frame_pointer_needed ? 0 : actual_fsize; /* Horrid hack. emit_function_prologue will modify this RTL in place to get the expected results. sprintf here is just to put something in the name. */ sprintf(hp_profile_label_name, "LP$%04d", -1); hp_profile_label_rtx = gen_rtx (SYMBOL_REF, SImode, hp_profile_label_name); if (current_function_returns_struct) store_reg (STRUCT_VALUE_REGNUM, - 12 - offsetadj, basereg); for (i = 26, arg_offset = -36 - offsetadj; i >= 23; i--, arg_offset -= 4) if (regs_ever_live [i]) { store_reg (i, arg_offset, basereg); /* Deal with arg_offset not fitting in 14 bits. */ pc_offset += VAL_14_BITS_P (arg_offset) ? 4 : 8; } emit_move_insn (gen_rtx (REG, SImode, 26), gen_rtx (REG, SImode, 2)); emit_move_insn (tmpreg, gen_rtx (HIGH, SImode, hp_profile_label_rtx)); emit_move_insn (gen_rtx (REG, SImode, 24), gen_rtx (LO_SUM, SImode, tmpreg, hp_profile_label_rtx)); /* %r25 is set from within the output pattern. */ emit_insn (gen_call_profiler (GEN_INT (- pc_offset - 20))); /* Restore argument registers. */ for (i = 26, arg_offset = -36 - offsetadj; i >= 23; i--, arg_offset -= 4) if (regs_ever_live [i]) load_reg (i, arg_offset, basereg); if (current_function_returns_struct) load_reg (STRUCT_VALUE_REGNUM, -12 - offsetadj, basereg); } /* Normal register save. Do not save the frame pointer in the frame_pointer_needed case. It was done earlier. */ if (frame_pointer_needed) { for (i = 18, offset = local_fsize; i >= 4; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { store_reg (i, offset, FRAME_POINTER_REGNUM); offset += 4; gr_saved++; } /* Account for %r4 which is saved in a special place. */ gr_saved++; } /* No frame pointer needed. */ else { for (i = 18, offset = local_fsize - actual_fsize; i >= 3; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { /* If merge_sp_adjust_with_store is nonzero, then we can optimize the first GR save. */ if (merge_sp_adjust_with_store) { merge_sp_adjust_with_store = 0; emit_insn (gen_post_stwm (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-offset), gen_rtx (REG, SImode, i))); } else store_reg (i, offset, STACK_POINTER_REGNUM); offset += 4; gr_saved++; } /* If we wanted to merge the SP adjustment with a GR save, but we never did any GR saves, then just emit the adjustment here. */ if (merge_sp_adjust_with_store) set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, actual_fsize); } /* Align pointer properly (doubleword boundary). */ offset = (offset + 7) & ~7; /* Floating point register store. */ if (save_fregs) { /* First get the frame or stack pointer to the start of the FP register save area. */ if (frame_pointer_needed) set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset); else set_reg_plus_d (1, STACK_POINTER_REGNUM, offset); /* Now actually save the FP registers. */ for (i = 66; i >= 48; i -= 2) if (regs_ever_live[i] || regs_ever_live[i + 1]) { emit_move_insn (gen_rtx (MEM, DFmode, gen_rtx (POST_INC, DFmode, tmpreg)), gen_rtx (REG, DFmode, i)); fr_saved++; } } /* When generating PIC code it is necessary to save/restore the PIC register around each function call. We used to do this in the call patterns themselves, but that implementation made incorrect assumptions about using global variables to hold per-function rtl code generated in the backend. So instead, we copy the PIC register into a reserved callee saved register in the prologue. Then after each call we reload the PIC register from the callee saved register. We also reload the PIC register from the callee saved register in the epilogue ensure the PIC register is valid at function exit. This may (depending on the exact characteristics of the function) even be more efficient. Avoid this if the callee saved register wasn't used (these are leaf functions. */ if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM_SAVED]) emit_move_insn (gen_rtx (REG, SImode, PIC_OFFSET_TABLE_REGNUM_SAVED), gen_rtx (REG, SImode, PIC_OFFSET_TABLE_REGNUM)); } void output_function_epilogue (file, size) FILE *file; int size; { rtx insn = get_last_insn (); int i; /* hppa_expand_epilogue does the dirty work now. We just need to output the assembler directives which denote the end of a function. To make debuggers happy, emit a nop if the epilogue was completely eliminated due to a volatile call as the last insn in the current function. That way the return address (in %r2) will always point to a valid instruction in the current function. */ /* Get the last real insn. */ if (GET_CODE (insn) == NOTE) insn = prev_real_insn (insn); /* If it is a sequence, then look inside. */ if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) insn = XVECEXP (PATTERN (insn), 0, 0); /* If insn is a CALL_INSN, then it must be a call to a volatile function (otherwise there would be epilogue insns). */ if (insn && GET_CODE (insn) == CALL_INSN) fprintf (file, "\tnop\n"); fprintf (file, "\t.EXIT\n\t.PROCEND\n"); /* If we have deferred plabels, then we need to switch into the data section and align it to a 4 byte boundary before we output the deferred plabels. */ if (n_deferred_plabels) { data_section (); ASM_OUTPUT_ALIGN (file, 2); } /* Now output the deferred plabels. */ for (i = 0; i < n_deferred_plabels; i++) { ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (deferred_plabels[i].internal_label)); ASM_OUTPUT_INT (file, deferred_plabels[i].symbol); } n_deferred_plabels = 0; } void hppa_expand_epilogue () { rtx tmpreg; int offset,i; int merge_sp_adjust_with_load = 0; /* We will use this often. */ tmpreg = gen_rtx (REG, SImode, 1); /* Try to restore RP early to avoid load/use interlocks when RP gets used in the return (bv) instruction. This appears to still be necessary even when we schedule the prologue and epilogue. */ if (frame_pointer_needed && (regs_ever_live [2] || profile_flag)) load_reg (2, -20, FRAME_POINTER_REGNUM); /* No frame pointer, and stack is smaller than 8k. */ else if (! frame_pointer_needed && VAL_14_BITS_P (actual_fsize + 20) && (regs_ever_live[2] || profile_flag)) load_reg (2, - (actual_fsize + 20), STACK_POINTER_REGNUM); /* General register restores. */ if (frame_pointer_needed) { for (i = 18, offset = local_fsize; i >= 4; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { load_reg (i, offset, FRAME_POINTER_REGNUM); offset += 4; } } else { for (i = 18, offset = local_fsize - actual_fsize; i >= 3; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { /* Only for the first load. merge_sp_adjust_with_load holds the register load with which we will merge the sp adjustment. */ if (VAL_14_BITS_P (actual_fsize + 20) && local_fsize == 0 && ! merge_sp_adjust_with_load) merge_sp_adjust_with_load = i; else load_reg (i, offset, STACK_POINTER_REGNUM); offset += 4; } } /* Align pointer properly (doubleword boundary). */ offset = (offset + 7) & ~7; /* FP register restores. */ if (save_fregs) { /* Adjust the register to index off of. */ if (frame_pointer_needed) set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset); else set_reg_plus_d (1, STACK_POINTER_REGNUM, offset); /* Actually do the restores now. */ for (i = 66; i >= 48; i -= 2) if (regs_ever_live[i] || regs_ever_live[i + 1]) emit_move_insn (gen_rtx (REG, DFmode, i), gen_rtx (MEM, DFmode, gen_rtx (POST_INC, DFmode, tmpreg))); } /* No frame pointer, but we have a stack greater than 8k. We restore %r2 very late in this case. (All other cases are restored as early as possible.) */ if (! frame_pointer_needed && ! VAL_14_BITS_P (actual_fsize + 20) && (regs_ever_live[2] || profile_flag)) { set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, - actual_fsize); /* This used to try and be clever by not depending on the value in %r30 and instead use the value held in %r1 (so that the 2nd insn which sets %r30 could be put in the delay slot of the return insn). That won't work since if the stack is exactly 8k set_reg_plus_d doesn't set %r1, just %r30. */ load_reg (2, - 20, STACK_POINTER_REGNUM); } /* Reset stack pointer (and possibly frame pointer). The stack */ /* pointer is initially set to fp + 64 to avoid a race condition. ??? What race condition?!? */ else if (frame_pointer_needed) { /* Emit a blockage insn here to keep these insns from being moved to the beginning of the prologue or into the main instruction stream, doing so avoids some very obscure problems. */ emit_insn (gen_blockage ()); set_reg_plus_d (STACK_POINTER_REGNUM, FRAME_POINTER_REGNUM, 64); emit_insn (gen_pre_ldwm (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-64), frame_pointer_rtx)); } /* If we were deferring a callee register restore, do it now. */ else if (! frame_pointer_needed && merge_sp_adjust_with_load) emit_insn (gen_pre_ldwm (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (- actual_fsize), gen_rtx (REG, SImode, merge_sp_adjust_with_load))); else if (actual_fsize != 0) set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, - actual_fsize); } /* This is only valid once reload has completed because it depends on knowing exactly how much (if any) frame there is and... It's only valid if there is no frame marker to de-allocate and... It's only valid if %r2 hasn't been saved into the caller's frame (we're not profiling and %r2 isn't live anywhere). */ int hppa_can_use_return_insn_p () { return (reload_completed && (compute_frame_size (get_frame_size (), 0) ? 0 : 1) && ! profile_flag && ! regs_ever_live[2] && ! frame_pointer_needed); } void emit_bcond_fp (code, operand0) enum rtx_code code; rtx operand0; { emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (IF_THEN_ELSE, VOIDmode, gen_rtx (code, VOIDmode, gen_rtx (REG, CCFPmode, 0), const0_rtx), gen_rtx (LABEL_REF, VOIDmode, operand0), pc_rtx))); } rtx gen_cmp_fp (code, operand0, operand1) enum rtx_code code; rtx operand0, operand1; { return gen_rtx (SET, VOIDmode, gen_rtx (REG, CCFPmode, 0), gen_rtx (code, CCFPmode, operand0, operand1)); } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ int pa_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { if (! recog_memoized (insn)) return 0; if (REG_NOTE_KIND (link) == 0) { /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ if (get_attr_type (insn) == TYPE_FPSTORE) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fstXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) { if (! recog_memoized (dep_insn)) return 0; /* DEP_INSN is writing its result to the register being stored in the fpstore INSN. */ switch (get_attr_type (dep_insn)) { case TYPE_FPLOAD: /* This cost 3 cycles, not 2 as the md says for the 700 and 7100. Note scaling of cost for 7100. */ return cost + (pa_cpu == PROCESSOR_700) ? 1 : 2; case TYPE_FPALU: case TYPE_FPMULSGL: case TYPE_FPMULDBL: case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* In these important cases, we save one cycle compared to when flop instruction feed each other. */ return cost - (pa_cpu == PROCESSOR_700) ? 1 : 2; default: return cost; } } } /* For other data dependencies, the default cost specified in the md is correct. */ return cost; } else if (REG_NOTE_KIND (link) == REG_DEP_ANTI) { /* Anti dependency; DEP_INSN reads a register that INSN writes some cycles later. */ if (get_attr_type (insn) == TYPE_FPLOAD) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPALU: case TYPE_FPMULSGL: case TYPE_FPMULDBL: case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* A fpload can't be issued until one cycle before a preceding arithmetic operation has finished if the target of the fpload is any of the sources (or destination) of the arithmetic operation. */ return cost - (pa_cpu == PROCESSOR_700) ? 1 : 2; default: return 0; } } } else if (get_attr_type (insn) == TYPE_FPALU) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* An ALU flop can't be issued until two cycles before a preceding divide or sqrt operation has finished if the target of the ALU flop is any of the sources (or destination) of the divide or sqrt operation. */ return cost - (pa_cpu == PROCESSOR_700) ? 2 : 4; default: return 0; } } } /* For other anti dependencies, the cost is 0. */ return 0; } else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT) { /* Output dependency; DEP_INSN writes a register that INSN writes some cycles later. */ if (get_attr_type (insn) == TYPE_FPLOAD) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPALU: case TYPE_FPMULSGL: case TYPE_FPMULDBL: case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* A fpload can't be issued until one cycle before a preceding arithmetic operation has finished if the target of the fpload is the destination of the arithmetic operation. */ return cost - (pa_cpu == PROCESSOR_700) ? 1 : 2; default: return 0; } } } else if (get_attr_type (insn) == TYPE_FPALU) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* An ALU flop can't be issued until two cycles before a preceding divide or sqrt operation has finished if the target of the ALU flop is also the target of of the divide or sqrt operation. */ return cost - (pa_cpu == PROCESSOR_700) ? 2 : 4; default: return 0; } } } /* For other output dependencies, the cost is 0. */ return 0; } else abort (); } /* Return any length adjustment needed by INSN which already has its length computed as LENGTH. Return zero if no adjustment is necessary. For the PA: function calls, millicode calls, and backwards short conditional branches with unfilled delay slots need an adjustment by +1 (to account for the NOP which will be inserted into the instruction stream). Also compute the length of an inline block move here as it is too complicated to express as a length attribute in pa.md. */ int pa_adjust_insn_length (insn, length) rtx insn; int length; { rtx pat = PATTERN (insn); /* Call insns which are *not* indirect and have unfilled delay slots. */ if (GET_CODE (insn) == CALL_INSN) { if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL && GET_CODE (XEXP (XEXP (XVECEXP (pat, 0, 0), 0), 0)) == SYMBOL_REF) return 4; else if (GET_CODE (XVECEXP (pat, 0, 0)) == SET && GET_CODE (XEXP (XEXP (XEXP (XVECEXP (pat, 0, 0), 1), 0), 0)) == SYMBOL_REF) return 4; else return 0; } /* Jumps inside switch tables which have unfilled delay slots also need adjustment. */ else if (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn) && GET_MODE (PATTERN (insn)) == DImode) return 4; /* Millicode insn with an unfilled delay slot. */ else if (GET_CODE (insn) == INSN && GET_CODE (pat) != SEQUENCE && GET_CODE (pat) != USE && GET_CODE (pat) != CLOBBER && get_attr_type (insn) == TYPE_MILLI) return 4; /* Block move pattern. */ else if (GET_CODE (insn) == INSN && GET_CODE (pat) == PARALLEL && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 1)) == MEM && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 1)) == BLKmode) return compute_movstrsi_length (insn) - 4; /* Conditional branch with an unfilled delay slot. */ else if (GET_CODE (insn) == JUMP_INSN && ! simplejump_p (insn)) { /* Adjust a short backwards conditional with an unfilled delay slot. */ if (GET_CODE (pat) == SET && length == 4 && ! forward_branch_p (insn)) return 4; /* Adjust dbra insn with short backwards conditional branch with unfilled delay slot -- only for case where counter is in a general register register. */ else if (GET_CODE (pat) == PARALLEL && GET_CODE (XVECEXP (pat, 0, 1)) == SET && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == REG && ! FP_REG_P (XEXP (XVECEXP (pat, 0, 1), 0)) && length == 4 && ! forward_branch_p (insn)) return 4; else return 0; } else return 0; } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { switch (code) { case '#': /* Output a 'nop' if there's nothing for the delay slot. */ if (dbr_sequence_length () == 0) fputs ("\n\tnop", file); return; case '*': /* Output an nullification completer if there's nothing for the */ /* delay slot or nullification is requested. */ if (dbr_sequence_length () == 0 || (final_sequence && INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0)))) fputs (",n", file); return; case 'R': /* Print out the second register name of a register pair. I.e., R (6) => 7. */ fputs (reg_names[REGNO (x)+1], file); return; case 'r': /* A register or zero. */ if (x == const0_rtx || (x == CONST0_RTX (DFmode)) || (x == CONST0_RTX (SFmode))) { fputs ("0", file); return; } else break; case 'C': /* Plain (C)ondition */ case 'X': switch (GET_CODE (x)) { case EQ: fprintf (file, "="); break; case NE: fprintf (file, "<>"); break; case GT: fprintf (file, ">"); break; case GE: fprintf (file, ">="); break; case GEU: fprintf (file, ">>="); break; case GTU: fprintf (file, ">>"); break; case LT: fprintf (file, "<"); break; case LE: fprintf (file, "<="); break; case LEU: fprintf (file, "<<="); break; case LTU: fprintf (file, "<<"); break; default: abort (); } return; case 'N': /* Condition, (N)egated */ switch (GET_CODE (x)) { case EQ: fprintf (file, "<>"); break; case NE: fprintf (file, "="); break; case GT: fprintf (file, "<="); break; case GE: fprintf (file, "<"); break; case GEU: fprintf (file, "<<"); break; case GTU: fprintf (file, "<<="); break; case LT: fprintf (file, ">="); break; case LE: fprintf (file, ">"); break; case LEU: fprintf (file, ">>"); break; case LTU: fprintf (file, ">>="); break; default: abort (); } return; /* For floating point comparisons. Need special conditions to deal with NaNs properly. */ case 'Y': switch (GET_CODE (x)) { case EQ: fprintf (file, "!="); break; case NE: fprintf (file, "="); break; case GT: fprintf (file, "!>"); break; case GE: fprintf (file, "!>="); break; case LT: fprintf (file, "!<"); break; case LE: fprintf (file, "!<="); break; default: abort (); } return; case 'S': /* Condition, operands are (S)wapped. */ switch (GET_CODE (x)) { case EQ: fprintf (file, "="); break; case NE: fprintf (file, "<>"); break; case GT: fprintf (file, "<"); break; case GE: fprintf (file, "<="); break; case GEU: fprintf (file, "<<="); break; case GTU: fprintf (file, "<<"); break; case LT: fprintf (file, ">"); break; case LE: fprintf (file, ">="); break; case LEU: fprintf (file, ">>="); break; case LTU: fprintf (file, ">>"); break; default: abort (); } return; case 'B': /* Condition, (B)oth swapped and negate. */ switch (GET_CODE (x)) { case EQ: fprintf (file, "<>"); break; case NE: fprintf (file, "="); break; case GT: fprintf (file, ">="); break; case GE: fprintf (file, ">"); break; case GEU: fprintf (file, ">>"); break; case GTU: fprintf (file, ">>="); break; case LT: fprintf (file, "<="); break; case LE: fprintf (file, "<"); break; case LEU: fprintf (file, "<<"); break; case LTU: fprintf (file, "<<="); break; default: abort (); } return; case 'k': if (GET_CODE (x) == CONST_INT) { fprintf (file, "%d", ~INTVAL (x)); return; } abort(); case 'L': if (GET_CODE (x) == CONST_INT) { fprintf (file, "%d", 32 - (INTVAL (x) & 31)); return; } abort(); case 'O': if (GET_CODE (x) == CONST_INT && exact_log2 (INTVAL (x)) >= 0) { fprintf (file, "%d", exact_log2 (INTVAL (x))); return; } abort(); case 'P': if (GET_CODE (x) == CONST_INT) { fprintf (file, "%d", 31 - (INTVAL (x) & 31)); return; } abort(); case 'I': if (GET_CODE (x) == CONST_INT) fputs ("i", file); return; case 'M': switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case PRE_INC: fprintf (file, "s,mb"); break; case POST_DEC: case POST_INC: fprintf (file, "s,ma"); break; default: break; } return; case 'F': switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case PRE_INC: fprintf (file, ",mb"); break; case POST_DEC: case POST_INC: fprintf (file, ",ma"); break; default: break; } return; case 'G': output_global_address (file, x); return; case 0: /* Don't do anything special */ break; case 'Z': { unsigned op[3]; compute_zdepi_operands (INTVAL (x), op); fprintf (file, "%d,%d,%d", op[0], op[1], op[2]); return; } default: abort (); } if (GET_CODE (x) == REG) { if (FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4 && (REGNO (x) & 1) == 0) fprintf (file, "%sL", reg_names [REGNO (x)]); else fprintf (file, "%s", reg_names [REGNO (x)]); } else if (GET_CODE (x) == MEM) { int size = GET_MODE_SIZE (GET_MODE (x)); rtx base = XEXP (XEXP (x, 0), 0); switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case POST_DEC: fprintf (file, "-%d(0,%s)", size, reg_names [REGNO (base)]); break; case PRE_INC: case POST_INC: fprintf (file, "%d(0,%s)", size, reg_names [REGNO (base)]); break; default: output_address (XEXP (x, 0)); break; } } #if 0 /* The code here is completely wrong. It attempts to extract parts of a CONST_DOUBLE which is wrong since REAL_ARITHMETIC is defined, and it extracts the wrong indices (0 instead of 2 and 1 instead of 3) using the wrong macro (XINT instead of XWINT). Just disable it for now, since the code will never be used anyway! */ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { union { double d; int i[2]; } u; union { float f; int i; } u1; u.i[0] = XINT (x, 0); u.i[1] = XINT (x, 1); u1.f = u.d; if (code == 'f') fprintf (file, "0r%.9g", u1.f); else fprintf (file, "0x%x", u1.i); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode) { union { double d; int i[2]; } u; u.i[0] = XINT (x, 0); u.i[1] = XINT (x, 1); fprintf (file, "0r%.20g", u.d); } #endif else output_addr_const (file, x); } /* output a SYMBOL_REF or a CONST expression involving a SYMBOL_REF. */ void output_global_address (file, x) FILE *file; rtx x; { /* Imagine (high (const (plus ...))). */ if (GET_CODE (x) == HIGH) x = XEXP (x, 0); if (GET_CODE (x) == SYMBOL_REF && read_only_operand (x)) assemble_name (file, XSTR (x, 0)); else if (GET_CODE (x) == SYMBOL_REF && !flag_pic) { assemble_name (file, XSTR (x, 0)); fprintf (file, "-$global$"); } else if (GET_CODE (x) == CONST) { char *sep = ""; int offset = 0; /* assembler wants -$global$ at end */ rtx base; if (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) { base = XEXP (XEXP (x, 0), 0); output_addr_const (file, base); } else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == CONST_INT) offset = INTVAL (XEXP (XEXP (x, 0), 0)); else abort (); if (GET_CODE (XEXP (XEXP (x, 0), 1)) == SYMBOL_REF) { base = XEXP (XEXP (x, 0), 1); output_addr_const (file, base); } else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) offset = INTVAL (XEXP (XEXP (x, 0),1)); else abort (); if (GET_CODE (XEXP (x, 0)) == PLUS) { if (offset < 0) { offset = -offset; sep = "-"; } else sep = "+"; } else if (GET_CODE (XEXP (x, 0)) == MINUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)) sep = "-"; else abort (); if (!read_only_operand (base) && !flag_pic) fprintf (file, "-$global$"); fprintf (file, "%s", sep); if (offset) fprintf (file,"%d", offset); } else output_addr_const (file, x); } /* HP's millicode routines mean something special to the assembler. Keep track of which ones we have used. */ enum millicodes { remI, remU, divI, divU, mulI, mulU, end1000 }; static char imported[(int)end1000]; static char *milli_names[] = {"remI", "remU", "divI", "divU", "mulI", "mulU"}; static char import_string[] = ".IMPORT $$....,MILLICODE"; #define MILLI_START 10 static void import_milli (code) enum millicodes code; { char str[sizeof (import_string)]; if (!imported[(int)code]) { imported[(int)code] = 1; strcpy (str, import_string); strncpy (str + MILLI_START, milli_names[(int)code], 4); output_asm_insn (str, 0); } } /* The register constraints have put the operands and return value in the proper registers. */ char * output_mul_insn (unsignedp, insn) int unsignedp; rtx insn; { import_milli (mulI); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, "$$mulI"), gen_rtx (REG, SImode, 31)); } /* Emit the rtl for doing a division by a constant. */ /* Do magic division millicodes exist for this value? */ static int magic_milli[]= {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1}; /* We'll use an array to keep track of the magic millicodes and whether or not we've used them already. [n][0] is signed, [n][1] is unsigned. */ static int div_milli[16][2]; int div_operand (op, mode) rtx op; enum machine_mode mode; { return (mode == SImode && ((GET_CODE (op) == REG && REGNO (op) == 25) || (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && INTVAL (op) < 16 && magic_milli[INTVAL (op)]))); } int emit_hpdiv_const (operands, unsignedp) rtx *operands; int unsignedp; { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) < 16 && magic_milli[INTVAL (operands[2])]) { emit_move_insn ( gen_rtx (REG, SImode, 26), operands[1]); emit (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (5, gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 29), gen_rtx (unsignedp ? UDIV : DIV, SImode, gen_rtx (REG, SImode, 26), operands[2])), gen_rtx (CLOBBER, VOIDmode, operands[3]), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 26)), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 25)), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 31))))); emit_move_insn (operands[0], gen_rtx (REG, SImode, 29)); return 1; } return 0; } char * output_div_insn (operands, unsignedp, insn) rtx *operands; int unsignedp; rtx insn; { int divisor; /* If the divisor is a constant, try to use one of the special opcodes .*/ if (GET_CODE (operands[0]) == CONST_INT) { static char buf[100]; divisor = INTVAL (operands[0]); if (!div_milli[divisor][unsignedp]) { div_milli[divisor][unsignedp] = 1; if (unsignedp) output_asm_insn (".IMPORT $$divU_%0,MILLICODE", operands); else output_asm_insn (".IMPORT $$divI_%0,MILLICODE", operands); } if (unsignedp) { sprintf (buf, "$$divU_%d", INTVAL (operands[0])); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, buf), gen_rtx (REG, SImode, 31)); } else { sprintf (buf, "$$divI_%d", INTVAL (operands[0])); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, buf), gen_rtx (REG, SImode, 31)); } } /* Divisor isn't a special constant. */ else { if (unsignedp) { import_milli (divU); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, "$$divU"), gen_rtx (REG, SImode, 31)); } else { import_milli (divI); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, "$$divI"), gen_rtx (REG, SImode, 31)); } } } /* Output a $$rem millicode to do mod. */ char * output_mod_insn (unsignedp, insn) int unsignedp; rtx insn; { if (unsignedp) { import_milli (remU); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, "$$remU"), gen_rtx (REG, SImode, 31)); } else { import_milli (remI); return output_call (insn, gen_rtx (SYMBOL_REF, SImode, "$$remI"), gen_rtx (REG, SImode, 31)); } } void output_arg_descriptor (call_insn) rtx call_insn; { char *arg_regs[4]; enum machine_mode arg_mode; rtx link; int i, output_flag = 0; int regno; for (i = 0; i < 4; i++) arg_regs[i] = 0; /* Specify explicitly that no argument relocations should take place if using the portable runtime calling conventions. */ if (TARGET_PORTABLE_RUNTIME) { fprintf (asm_out_file, "\t.CALL ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,RETVAL=NO\n"); return; } if (GET_CODE (call_insn) != CALL_INSN) abort (); for (link = CALL_INSN_FUNCTION_USAGE (call_insn); link; link = XEXP (link, 1)) { rtx use = XEXP (link, 0); if (! (GET_CODE (use) == USE && GET_CODE (XEXP (use, 0)) == REG && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0))))) continue; arg_mode = GET_MODE (XEXP (use, 0)); regno = REGNO (XEXP (use, 0)); if (regno >= 23 && regno <= 26) { arg_regs[26 - regno] = "GR"; if (arg_mode == DImode) arg_regs[25 - regno] = "GR"; } else if (regno >= 32 && regno <= 39) { if (arg_mode == SFmode) arg_regs[(regno - 32) / 2] = "FR"; else { #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED arg_regs[(regno - 34) / 2] = "FR"; arg_regs[(regno - 34) / 2 + 1] = "FU"; #else arg_regs[(regno - 34) / 2] = "FU"; arg_regs[(regno - 34) / 2 + 1] = "FR"; #endif } } } fputs ("\t.CALL ", asm_out_file); for (i = 0; i < 4; i++) { if (arg_regs[i]) { if (output_flag++) fputc (',', asm_out_file); fprintf (asm_out_file, "ARGW%d=%s", i, arg_regs[i]); } } fputc ('\n', asm_out_file); } /* Memory loads/stores to/from the shift need to go through the general registers. */ enum reg_class secondary_reload_class (class, mode, in) enum reg_class class; enum machine_mode mode; rtx in; { int regno = true_regnum (in); /* Trying to load a constant into a FP register during PIC code generation will require %r1 as a scratch register. */ if (flag_pic == 2 && GET_MODE_CLASS (mode) == MODE_INT && FP_REG_CLASS_P (class) && (GET_CODE (in) == CONST_INT || GET_CODE (in) == CONST_DOUBLE)) return R1_REGS; if (((regno >= FIRST_PSEUDO_REGISTER || regno == -1) && GET_MODE_CLASS (mode) == MODE_INT && FP_REG_CLASS_P (class)) || (class == SHIFT_REGS && (regno <= 0 || regno >= 32))) return GENERAL_REGS; if (GET_CODE (in) == HIGH) in = XEXP (in, 0); if (!flag_pic && symbolic_operand (in, VOIDmode) && read_only_operand (in)) return NO_REGS; if (class != R1_REGS && symbolic_operand (in, VOIDmode)) return R1_REGS; if (GET_CODE (in) == SUBREG) in = SUBREG_REG (in); if (FP_REG_CLASS_P (class) && GET_CODE (in) == MEM && !memory_address_p (DFmode, XEXP (in, 0)) && memory_address_p (SImode, XEXP (in, 0))) return GENERAL_REGS; return NO_REGS; } enum direction function_arg_padding (mode, type) enum machine_mode mode; tree type; { int size; if (mode == BLKmode) { if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) size = int_size_in_bytes (type) * BITS_PER_UNIT; else return upward; /* Don't know if this is right, but */ /* same as old definition. */ } else size = GET_MODE_BITSIZE (mode); if (size < PARM_BOUNDARY) return downward; else if (size % PARM_BOUNDARY) return upward; else return none; } /* Do what is necessary for `va_start'. The argument is ignored; We look at the current function to determine if stdargs or varargs is used and fill in an initial va_list. A pointer to this constructor is returned. */ struct rtx_def * hppa_builtin_saveregs (arglist) tree arglist; { rtx offset; tree fntype = TREE_TYPE (current_function_decl); int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))) ? UNITS_PER_WORD : 0); if (argadj) offset = plus_constant (current_function_arg_offset_rtx, argadj); else offset = current_function_arg_offset_rtx; /* Store general registers on the stack. */ move_block_from_reg (23, gen_rtx (MEM, BLKmode, plus_constant (current_function_internal_arg_pointer, -16)), 4, 4 * UNITS_PER_WORD); return copy_to_reg (expand_binop (Pmode, add_optab, current_function_internal_arg_pointer, offset, 0, 0, OPTAB_LIB_WIDEN)); } /* This routine handles all the normal conditional branch sequences we might need to generate. It handles compare immediate vs compare register, nullification of delay slots, varying length branches, negated branches, and all combinations of the above. It returns the output appropriate to emit the branch corresponding to all given parameters. */ char * output_cbranch (operands, nullify, length, negated, insn) rtx *operands; int nullify, length, negated; rtx insn; { static char buf[100]; int useskip = 0; /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. This can happen when not optimizing. In such cases it is safe to emit nothing. */ if (next_active_insn (JUMP_LABEL (insn)) == next_active_insn (insn)) return ""; /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* A forward branch over a single nullified insn can be done with a comclr instruction. This avoids a single cycle penalty due to mis-predicted branch if we fall through (branch not taken). */ if (length == 4 && next_real_insn (insn) != 0 && get_attr_length (next_real_insn (insn)) == 4 && JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn)) && nullify) useskip = 1; switch (length) { /* All short conditional branches except backwards with an unfilled delay slot. */ case 4: if (useskip) strcpy (buf, "com%I2clr,"); else strcpy (buf, "com%I2b,"); if (negated) strcat (buf, "%B3"); else strcat (buf, "%S3"); if (useskip) strcat (buf, " %2,%1,0"); else if (nullify) strcat (buf, ",n %2,%1,%0"); else strcat (buf, " %2,%1,%0"); break; /* All long conditionals. Note an short backward branch with an unfilled delay slot is treated just like a long backward branch with an unfilled delay slot. */ case 8: /* Handle weird backwards branch with a filled delay slot with is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) { strcpy (buf, "com%I2b,"); if (negated) strcat (buf, "%S3"); else strcat (buf, "%B3"); strcat (buf, ",n %2,%1,.+12\n\tbl %0,0"); } /* Handle short backwards branch with an unfilled delay slot. Using a comb;nop rather than comiclr;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && insn_addresses && VAL_14_BITS_P (insn_addresses[INSN_UID (JUMP_LABEL (insn))] - insn_addresses[INSN_UID (insn)])) { strcpy (buf, "com%I2b,"); if (negated) strcat (buf, "%B3 %2,%1,%0%#"); else strcat (buf, "%S3 %2,%1,%0%#"); } else { strcpy (buf, "com%I2clr,"); if (negated) strcat (buf, "%S3"); else strcat (buf, "%B3"); if (nullify) strcat (buf, " %2,%1,0\n\tbl,n %0,0"); else strcat (buf, " %2,%1,0\n\tbl %0,0"); } break; default: abort(); } return buf; } /* This routine handles all the branch-on-bit conditional branch sequences we might need to generate. It handles nullification of delay slots, varying length branches, negated branches and all combinations of the above. it returns the appropriate output template to emit the branch. */ char * output_bb (operands, nullify, length, negated, insn, which) rtx *operands; int nullify, length, negated; rtx insn; int which; { static char buf[100]; int useskip = 0; /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. I do not think this can happen as this pattern is only used when optimizing; jump optimization should eliminate the jump. But be prepared just in case. */ if (next_active_insn (JUMP_LABEL (insn)) == next_active_insn (insn)) return ""; /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* A forward branch over a single nullified insn can be done with a extrs instruction. This avoids a single cycle penalty due to mis-predicted branch if we fall through (branch not taken). */ if (length == 4 && next_real_insn (insn) != 0 && get_attr_length (next_real_insn (insn)) == 4 && JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn)) && nullify) useskip = 1; switch (length) { /* All short conditional branches except backwards with an unfilled delay slot. */ case 4: if (useskip) strcpy (buf, "extrs,"); else strcpy (buf, "bb,"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (useskip) strcat (buf, " %0,%1,1,0"); else if (nullify && negated) strcat (buf, ",n %0,%1,%3"); else if (nullify && ! negated) strcat (buf, ",n %0,%1,%2"); else if (! nullify && negated) strcat (buf, "%0,%1,%3"); else if (! nullify && ! negated) strcat (buf, " %0,%1,%2"); break; /* All long conditionals. Note an short backward branch with an unfilled delay slot is treated just like a long backward branch with an unfilled delay slot. */ case 8: /* Handle weird backwards branch with a filled delay slot with is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) { strcpy (buf, "bb,"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (negated) strcat (buf, ",n %0,%1,.+12\n\tbl %3,0"); else strcat (buf, ",n %0,%1,.+12\n\tbl %2,0"); } /* Handle short backwards branch with an unfilled delay slot. Using a bb;nop rather than extrs;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && insn_addresses && VAL_14_BITS_P (insn_addresses[INSN_UID (JUMP_LABEL (insn))] - insn_addresses[INSN_UID (insn)])) { strcpy (buf, "bb,"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (negated) strcat (buf, " %0,%1,%3%#"); else strcat (buf, " %0,%1,%2%#"); } else { strcpy (buf, "extrs,"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (nullify && negated) strcat (buf, " %0,%1,1,0\n\tbl,n %3,0"); else if (nullify && ! negated) strcat (buf, " %0,%1,1,0\n\tbl,n %2,0"); else if (negated) strcat (buf, " %0,%1,1,0\n\tbl %3,0"); else strcat (buf, " %0,%1,1,0\n\tbl %2,0"); } break; default: abort(); } return buf; } /* Return the output template for emitting a dbra type insn. Note it may perform some output operations on its own before returning the final output string. */ char * output_dbra (operands, insn, which_alternative) rtx *operands; rtx insn; int which_alternative; { /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. Be prepared! */ if (next_active_insn (JUMP_LABEL (insn)) == next_active_insn (insn)) { if (which_alternative == 0) return "ldo %1(%0),%0"; else if (which_alternative == 1) { output_asm_insn ("fstws %0,-16(0,%%r30)",operands); output_asm_insn ("ldw -16(0,%%r30),%4",operands); output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(0,%%r30)", operands); return "fldws -16(0,%%r30),%0"; } else { output_asm_insn ("ldw %0,%4", operands); return "ldo %1(%4),%4\n\tstw %4,%0"; } } if (which_alternative == 0) { int nullify = INSN_ANNULLED_BRANCH_P (insn); int length = get_attr_length (insn); /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* Handle short versions first. */ if (length == 4 && nullify) return "addib,%C2,n %1,%0,%3"; else if (length == 4 && ! nullify) return "addib,%C2 %1,%0,%3"; else if (length == 8) { /* Handle weird backwards branch with a fulled delay slot which is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) return "addib,%N2,n %1,%0,.+12\n\tbl %3,0"; /* Handle short backwards branch with an unfilled delay slot. Using a addb;nop rather than addi;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && insn_addresses && VAL_14_BITS_P (insn_addresses[INSN_UID (JUMP_LABEL (insn))] - insn_addresses[INSN_UID (insn)])) return "addib,%C2 %1,%0,%3%#"; /* Handle normal cases. */ if (nullify) return "addi,%N2 %1,%0,%0\n\tbl,n %3,0"; else return "addi,%N2 %1,%0,%0\n\tbl %3,0"; } else abort(); } /* Deal with gross reload from FP register case. */ else if (which_alternative == 1) { /* Move loop counter from FP register to MEM then into a GR, increment the GR, store the GR into MEM, and finally reload the FP register from MEM from within the branch's delay slot. */ output_asm_insn ("fstws %0,-16(0,%%r30)\n\tldw -16(0,%%r30),%4",operands); output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(0,%%r30)", operands); if (get_attr_length (insn) == 24) return "comb,%S2 0,%4,%3\n\tfldws -16(0,%%r30),%0"; else return "comclr,%B2 0,%4,0\n\tbl %3,0\n\tfldws -16(0,%%r30),%0"; } /* Deal with gross reload from memory case. */ else { /* Reload loop counter from memory, the store back to memory happens in the branch's delay slot. */ output_asm_insn ("ldw %0,%4", operands); if (get_attr_length (insn) == 12) return "addib,%C2 %1,%4,%3\n\tstw %4,%0"; else return "addi,%N2 %1,%4,%4\n\tbl %3,0\n\tstw %4,%0"; } } /* Return the output template for emitting a dbra type insn. Note it may perform some output operations on its own before returning the final output string. */ char * output_movb (operands, insn, which_alternative, reverse_comparison) rtx *operands; rtx insn; int which_alternative; int reverse_comparison; { /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. Be prepared! */ if (next_active_insn (JUMP_LABEL (insn)) == next_active_insn (insn)) { if (which_alternative == 0) return "copy %1,%0"; else if (which_alternative == 1) { output_asm_insn ("stw %1,-16(0,%%r30)",operands); return "fldws -16(0,%%r30),%0"; } else return "stw %1,%0"; } /* Support the second variant. */ if (reverse_comparison) PUT_CODE (operands[2], reverse_condition (GET_CODE (operands[2]))); if (which_alternative == 0) { int nullify = INSN_ANNULLED_BRANCH_P (insn); int length = get_attr_length (insn); /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* Handle short versions first. */ if (length == 4 && nullify) return "movb,%C2,n %1,%0,%3"; else if (length == 4 && ! nullify) return "movb,%C2 %1,%0,%3"; else if (length == 8) { /* Handle weird backwards branch with a filled delay slot which is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) return "movb,%N2,n %1,%0,.+12\n\tbl %3,0"; /* Handle short backwards branch with an unfilled delay slot. Using a movb;nop rather than or;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && insn_addresses && VAL_14_BITS_P (insn_addresses[INSN_UID (JUMP_LABEL (insn))] - insn_addresses[INSN_UID (insn)])) return "movb,%C2 %1,%0,%3%#"; /* Handle normal cases. */ if (nullify) return "or,%N2 %1,%%r0,%0\n\tbl,n %3,0"; else return "or,%N2 %1,%%r0,%0\n\tbl %3,0"; } else abort(); } /* Deal with gross reload from FP register case. */ else if (which_alternative == 1) { /* Move loop counter from FP register to MEM then into a GR, increment the GR, store the GR into MEM, and finally reload the FP register from MEM from within the branch's delay slot. */ output_asm_insn ("stw %1,-16(0,%%r30)",operands); if (get_attr_length (insn) == 12) return "comb,%S2 0,%1,%3\n\tfldws -16(0,%%r30),%0"; else return "comclr,%B2 0,%1,0\n\tbl %3,0\n\tfldws -16(0,%%r30),%0"; } /* Deal with gross reload from memory case. */ else { /* Reload loop counter from memory, the store back to memory happens in the branch's delay slot. */ if (get_attr_length (insn) == 8) return "comb,%S2 0,%1,%3\n\tstw %1,%0"; else return "comclr,%B2 0,%1,0\n\tbl %3,0\n\tstw %1,%0"; } } /* INSN is either a function call or a millicode call. It may have an unconditional jump in its delay slot. CALL_DEST is the routine we are calling. RETURN_POINTER is the register which will hold the return address. %r2 for most calls, %r31 for millicode calls. When TARGET_MILLICODE_LONG_CALLS is true, then we have to assume that two instruction sequences must be used to reach the millicode routines (including dyncall!). */ char * output_call (insn, call_dest, return_pointer) rtx insn; rtx call_dest; rtx return_pointer; { int distance; rtx xoperands[4]; rtx seq_insn; /* Handle long millicode calls for mod, div, and mul. */ if (TARGET_PORTABLE_RUNTIME || (TARGET_MILLICODE_LONG_CALLS && REGNO (return_pointer) == 31)) { xoperands[0] = call_dest; xoperands[1] = return_pointer; output_asm_insn ("ldil L%%%0,%%r29", xoperands); output_asm_insn ("ldo R%%%0(%%r29),%%r29", xoperands); output_asm_insn ("blr 0,%r1\n\tbv,n 0(%%r29)\n\tnop", xoperands); return ""; } /* Handle common case -- empty delay slot or no jump in the delay slot, and we're sure that the branch will reach the beginning of the $CODE$ subspace. */ if ((dbr_sequence_length () == 0 && get_attr_length (insn) == 8) || (dbr_sequence_length () != 0 && GET_CODE (NEXT_INSN (insn)) != JUMP_INSN && get_attr_length (insn) == 4)) { xoperands[0] = call_dest; xoperands[1] = return_pointer; output_asm_insn ("bl %0,%r1%#", xoperands); return ""; } /* This call may not reach the beginning of the $CODE$ subspace. */ if (get_attr_length (insn) > 8) { int delay_insn_deleted = 0; rtx xoperands[2]; rtx link; /* We need to emit an inline long-call branch. Furthermore, because we're changing a named function call into an indirect function call well after the parameters have been set up, we need to make sure any FP args appear in both the integer and FP registers. Also, we need move any delay slot insn out of the delay slot -- Yuk! */ if (dbr_sequence_length () != 0 && GET_CODE (NEXT_INSN (insn)) != JUMP_INSN) { /* A non-jump insn in the delay slot. By definition we can emit this insn before the call (and in fact before argument relocating. */ final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0, 0); /* Now delete the delay insn. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; delay_insn_deleted = 1; } /* Now copy any FP arguments into integer registers. */ for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { int arg_mode, regno; rtx use = XEXP (link, 0); if (! (GET_CODE (use) == USE && GET_CODE (XEXP (use, 0)) == REG && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0))))) continue; arg_mode = GET_MODE (XEXP (use, 0)); regno = REGNO (XEXP (use, 0)); /* Is it a floating point register? */ if (regno >= 32 && regno <= 39) { /* Copy from the FP register into an integer register (via memory). */ if (arg_mode == SFmode) { xoperands[0] = XEXP (use, 0); xoperands[1] = gen_rtx (REG, SImode, 26 - (regno - 32) / 2); output_asm_insn ("fstws %0,-16(%%sr0,%%r30)", xoperands); output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands); } else { xoperands[0] = XEXP (use, 0); xoperands[1] = gen_rtx (REG, DImode, 25 - (regno - 34) / 2); output_asm_insn ("fstds %0,-16(%%sr0,%%r30)", xoperands); output_asm_insn ("ldw -12(%%sr0,%%r30),%R1", xoperands); output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands); } } } if (flag_pic) { /* We have to load the address of the function using a procedure label (plabel). The LP and RP relocs don't work reliably for PIC, so we make a plain 32 bit plabel in the data segment instead. We have to defer outputting it of course... Not pretty. */ xoperands[0] = gen_label_rtx (); output_asm_insn ("addil LT%%%0,%%r19\n\tldw RT%%%0(%%r1),%%r22", xoperands); output_asm_insn ("ldw 0(0,%%r22),%%r22", xoperands); if (deferred_plabels == 0) deferred_plabels = (struct defer_plab *) xmalloc (1 * sizeof (struct defer_plab)); else deferred_plabels = (struct defer_plab *) xrealloc (deferred_plabels, (n_deferred_plabels + 1) * sizeof (struct defer_plab)); deferred_plabels[n_deferred_plabels].internal_label = xoperands[0]; deferred_plabels[n_deferred_plabels].symbol = call_dest; n_deferred_plabels++; } else { /* Now emit the inline long-call. */ xoperands[0] = call_dest; output_asm_insn ("ldil LP%%%0,%%r22\n\tldo RP%%%0(%%r22),%%r22", xoperands); } /* If TARGET_MILLICODE_LONG_CALLS, then we must use a long-call sequence to call dyncall! */ if (TARGET_MILLICODE_LONG_CALLS) { output_asm_insn ("ldil L%%$$dyncall,%%r31", xoperands); output_asm_insn ("ldo R%%$$dyncall(%%r31),%%r31", xoperands); output_asm_insn ("blr 0,%%r2\n\tbv,n 0(%%r31)\n\tnop", xoperands); } else output_asm_insn ("bl $$dyncall,%%r31\n\tcopy %%r31,%%r2", xoperands); /* If we had a jump in the call's delay slot, output it now. */ if (dbr_sequence_length () != 0 && !delay_insn_deleted) { xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1); output_asm_insn ("b,n %0", xoperands); /* Now delete the delay insn. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; } return ""; } /* This call has an unconditional jump in its delay slot. */ /* Use the containing sequence insn's address. */ seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0))); distance = insn_addresses[INSN_UID (JUMP_LABEL (NEXT_INSN (insn)))] - insn_addresses[INSN_UID (seq_insn)] - 8; /* If the branch was too far away, emit a normal call followed by a nop, followed by the unconditional branch. If the branch is close, then adjust %r2 from within the call's delay slot. */ xoperands[0] = call_dest; xoperands[1] = XEXP (PATTERN (NEXT_INSN (insn)), 1); xoperands[2] = return_pointer; if (! VAL_14_BITS_P (distance)) output_asm_insn ("bl %0,%r2\n\tnop\n\tbl,n %1,%%r0", xoperands); else { xoperands[3] = gen_label_rtx (); output_asm_insn ("\n\tbl %0,%r2\n\tldo %1-%3(%r2),%r2", xoperands); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[3])); } /* Delete the jump. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; return ""; } extern struct obstack permanent_obstack; extern struct obstack *saveable_obstack; /* In HPUX 8.0's shared library scheme, special relocations are needed for function labels if they might be passed to a function in a shared library (because shared libraries don't live in code space), and special magic is needed to construct their address. For reasons too disgusting to describe storage for the new name is allocated either on the saveable_obstack (released at function exit) or on the permanent_obstack for things that can never change (libcall names for example). */ void hppa_encode_label (sym, permanent) rtx sym; int permanent; { char *str = XSTR (sym, 0); int len = strlen (str); char *newstr; newstr = obstack_alloc ((permanent ? &permanent_obstack : saveable_obstack), len + 2); if (str[0] == '*') *newstr++ = *str++; strcpy (newstr + 1, str); *newstr = '@'; XSTR (sym,0) = newstr; } int function_label_operand (op, mode) rtx op; enum machine_mode mode; { return GET_CODE (op) == SYMBOL_REF && FUNCTION_NAME_P (XSTR (op, 0)); } /* Returns 1 if OP is a function label involved in a simple addition with a constant. Used to keep certain patterns from matching during instruction combination. */ int is_function_label_plus_const (op) rtx op; { /* Strip off any CONST. */ if (GET_CODE (op) == CONST) op = XEXP (op, 0); return (GET_CODE (op) == PLUS && function_label_operand (XEXP (op, 0), Pmode) && GET_CODE (XEXP (op, 1)) == CONST_INT); } /* Returns 1 if the 6 operands specified in OPERANDS are suitable for use in fmpyadd instructions. */ int fmpyaddoperands (operands) rtx *operands; { enum machine_mode mode = GET_MODE (operands[0]); /* All modes must be the same. */ if (! (mode == GET_MODE (operands[1]) && mode == GET_MODE (operands[2]) && mode == GET_MODE (operands[3]) && mode == GET_MODE (operands[4]) && mode == GET_MODE (operands[5]))) return 0; /* Both DFmode and SFmode should work. But using SFmode makes the assembler complain. Just turn it off for now. */ if (mode != DFmode) return 0; /* Only 2 real operands to the addition. One of the input operands must be the same as the output operand. */ if (! rtx_equal_p (operands[3], operands[4]) && ! rtx_equal_p (operands[3], operands[5])) return 0; /* Inout operand of add can not conflict with any operands from multiply. */ if (rtx_equal_p (operands[3], operands[0]) || rtx_equal_p (operands[3], operands[1]) || rtx_equal_p (operands[3], operands[2])) return 0; /* multiply can not feed into addition operands. */ if (rtx_equal_p (operands[4], operands[0]) || rtx_equal_p (operands[5], operands[0])) return 0; /* Passed. Operands are suitable for fmpyadd. */ return 1; } /* Returns 1 if the 6 operands specified in OPERANDS are suitable for use in fmpysub instructions. */ int fmpysuboperands (operands) rtx *operands; { enum machine_mode mode = GET_MODE (operands[0]); /* All modes must be the same. */ if (! (mode == GET_MODE (operands[1]) && mode == GET_MODE (operands[2]) && mode == GET_MODE (operands[3]) && mode == GET_MODE (operands[4]) && mode == GET_MODE (operands[5]))) return 0; /* Both DFmode and SFmode should work. But using SFmode makes the assembler complain. Just turn it off for now. */ if (mode != DFmode) return 0; /* Only 2 real operands to the subtraction. Subtraction is not a commutative operation, so operands[4] must be the same as operand[3]. */ if (! rtx_equal_p (operands[3], operands[4])) return 0; /* multiply can not feed into subtraction. */ if (rtx_equal_p (operands[5], operands[0])) return 0; /* Inout operand of sub can not conflict with any operands from multiply. */ if (rtx_equal_p (operands[3], operands[0]) || rtx_equal_p (operands[3], operands[1]) || rtx_equal_p (operands[3], operands[2])) return 0; /* Passed. Operands are suitable for fmpysub. */ return 1; } int plus_xor_ior_operator (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == PLUS || GET_CODE (op) == XOR || GET_CODE (op) == IOR); } /* Return 1 if the given constant is 2, 4, or 8. These are the valid constants for shadd instructions. */ int shadd_constant_p (val) int val; { if (val == 2 || val == 4 || val == 8) return 1; else return 0; } /* Return 1 if OP is a CONST_INT with the value 2, 4, or 8. These are the valid constant for shadd instructions. */ int shadd_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && shadd_constant_p (INTVAL (op))); } /* Return 1 if this operand is anything other than a hard register. */ int non_hard_reg_operand (op, mode) rtx op; enum machine_mode mode; { return ! (GET_CODE (op) == REG && REGNO (op) < FIRST_PSEUDO_REGISTER); } /* Return 1 if INSN branches forward. Should be using insn_addresses to avoid walking through all the insns... */ int forward_branch_p (insn) rtx insn; { rtx label = JUMP_LABEL (insn); while (insn) { if (insn == label) break; else insn = NEXT_INSN (insn); } return (insn == label); } /* Return 1 if OP is an equality comparison, else return 0. */ int eq_neq_comparison_operator (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return 1 if OP is an operator suitable for use in a movb instruction. */ int movb_comparison_operator (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE || GET_CODE (op) == LT || GET_CODE (op) == GE); } /* Return 1 if INSN is in the delay slot of a call instruction. */ int jump_in_call_delay (insn) rtx insn; { if (GET_CODE (insn) != JUMP_INSN) return 0; if (PREV_INSN (insn) && PREV_INSN (PREV_INSN (insn)) && GET_CODE (next_active_insn (PREV_INSN (PREV_INSN (insn)))) == INSN) { rtx test_insn = next_active_insn (PREV_INSN (PREV_INSN (insn))); return (GET_CODE (PATTERN (test_insn)) == SEQUENCE && XVECEXP (PATTERN (test_insn), 0, 1) == insn); } else return 0; } /* We use this hook to perform a PA specific optimization which is difficult to do in earlier passes. We want the delay slots of branches within jump tables to be filled. None of the compiler passes at the moment even has the notion that a PA jump table doesn't contain addresses, but instead contains actual instructions! Because we actually jump into the table, the addresses of each entry must stay constant in relation to the beginning of the table (which itself must stay constant relative to the instruction to jump into it). I don't believe we can guarantee earlier passes of the compiler will adhere to those rules. So, late in the compilation process we find all the jump tables, and expand them into real code -- eg each entry in the jump table vector will get an appropriate label followed by a jump to the final target. Reorg and the final jump pass can then optimize these branches and fill their delay slots. We end up with smaller, more efficient code. The jump instructions within the table are special; we must be able to identify them during assembly output (if the jumps don't get filled we need to emit a nop rather than nullifying the delay slot)). We identify jumps in switch tables by marking the SET with DImode. */ pa_reorg (insns) rtx insns; { rtx insn; /* This is fairly cheap, so always run it if optimizing. */ if (optimize > 0) { /* Find and explode all ADDR_VEC insns. */ insns = get_insns (); for (insn = insns; insn; insn = NEXT_INSN (insn)) { rtx pattern, tmp, location; unsigned int length, i; /* Find an ADDR_VEC insn to explode. */ if (GET_CODE (insn) != JUMP_INSN || GET_CODE (PATTERN (insn)) != ADDR_VEC) continue; pattern = PATTERN (insn); location = PREV_INSN (insn); length = XVECLEN (pattern, 0); for (i = 0; i < length; i++) { /* Emit the jump itself. */ tmp = gen_switch_jump (XEXP (XVECEXP (pattern, 0, i), 0)); tmp = emit_jump_insn_after (tmp, location); JUMP_LABEL (tmp) = XEXP (XVECEXP (pattern, 0, i), 0); LABEL_NUSES (JUMP_LABEL (tmp))++; /* Emit a BARRIER after the jump. */ location = NEXT_INSN (location); emit_barrier_after (location); /* Put a CODE_LABEL before each so jump.c does not optimize the jumps away. */ location = NEXT_INSN (location); tmp = gen_label_rtx (); LABEL_NUSES (tmp) = 1; emit_label_after (tmp, location); location = NEXT_INSN (location); } /* Delete the ADDR_VEC. */ delete_insn (insn); } } }