/* Subroutines used for code generation on the DEC Alpha. Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "config.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "recog.h" #include "reload.h" #include "expr.h" #include "obstack.h" #include "tree.h" /* Save information from a "cmpxx" operation until the branch or scc is emitted. */ rtx alpha_compare_op0, alpha_compare_op1; int alpha_compare_fp_p; /* Save the name of the current function as used by the assembler. This is used by the epilogue. */ char *alpha_function_name; /* Non-zero if inside of a function, because the Alpha asm can't handle .files inside of functions. */ static int inside_function = FALSE; /* Nonzero if the current function needs gp. */ int alpha_function_needs_gp; extern char *version_string; extern int rtx_equal_function_value_matters; /* Declarations of static functions. */ static void alpha_set_memflags_1 PROTO((rtx, int, int, int)); static void add_long_const PROTO((FILE *, HOST_WIDE_INT, int, int, int)); /* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */ int zap_mask (value) HOST_WIDE_INT value; { int i; for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; i++, value >>= 8) if ((value & 0xff) != 0 && (value & 0xff) != 0xff) return 0; return 1; } /* Returns 1 if OP is either the constant zero or a register. If a register, it must be in the proper mode unless MODE is VOIDmode. */ int reg_or_0_operand (op, mode) register rtx op; enum machine_mode mode; { return op == const0_rtx || register_operand (op, mode); } /* Return 1 if OP is a constant in the range of 0-63 (for a shift) or any register. */ int reg_or_6bit_operand (op, mode) register rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (op) < 64) || register_operand (op, mode)); } /* Return 1 if OP is an 8-bit constant or any register. */ int reg_or_8bit_operand (op, mode) register rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100) || register_operand (op, mode)); } /* Return 1 if OP is an 8-bit constant. */ int cint8_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100); } /* Return 1 if the operand is a valid second operand to an add insn. */ int add_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'K') || CONST_OK_FOR_LETTER_P (INTVAL (op), 'L') || CONST_OK_FOR_LETTER_P (INTVAL (op), 'O')); return register_operand (op, mode); } /* Return 1 if the operand is a valid second operand to a sign-extending add insn. */ int sext_add_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return ((unsigned HOST_WIDE_INT) INTVAL (op) < 255 || (unsigned HOST_WIDE_INT) (- INTVAL (op)) < 255); return register_operand (op, mode); } /* Return 1 if OP is the constant 4 or 8. */ int const48_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && (INTVAL (op) == 4 || INTVAL (op) == 8)); } /* Return 1 if OP is a valid first operand to an AND insn. */ int and_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode) return (zap_mask (CONST_DOUBLE_LOW (op)) && zap_mask (CONST_DOUBLE_HIGH (op))); if (GET_CODE (op) == CONST_INT) return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100 || zap_mask (INTVAL (op))); return register_operand (op, mode); } /* Return 1 if OP is a valid first operand to an IOR or XOR insn. */ int or_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100); return register_operand (op, mode); } /* Return 1 if OP is a constant that is the width, in bits, of an integral mode smaller than DImode. */ int mode_width_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && (INTVAL (op) == 8 || INTVAL (op) == 16 || INTVAL (op) == 32)); } /* Return 1 if OP is a constant that is the width of an integral machine mode smaller than an integer. */ int mode_mask_operand (op, mode) register rtx op; enum machine_mode mode; { #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (op) == CONST_DOUBLE) return CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == -1; #endif return (GET_CODE (op) == CONST_INT && (INTVAL (op) == 0xff || INTVAL (op) == 0xffff #if HOST_BITS_PER_WIDE_INT == 64 || INTVAL (op) == 0xffffffff #endif )); } /* Return 1 if OP is a multiple of 8 less than 64. */ int mul8_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (op) < 64 && (INTVAL (op) & 7) == 0); } /* Return 1 if OP is the constant zero in floating-point. */ int fp0_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_MODE (op) == mode && GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode)); } /* Return 1 if OP is the floating-point constant zero or a register. */ int reg_or_fp0_operand (op, mode) register rtx op; enum machine_mode mode; { return fp0_operand (op, mode) || register_operand (op, mode); } /* Return 1 if OP is a register or a constant integer. */ int reg_or_cint_operand (op, mode) register rtx op; enum machine_mode mode; { return GET_CODE (op) == CONST_INT || register_operand (op, mode); } /* Return 1 if OP is something that can be reloaded into a register; if it is a MEM, it need not be valid. */ int some_operand (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op)) return 0; switch (GET_CODE (op)) { case REG: case MEM: case CONST_DOUBLE: case CONST_INT: case LABEL_REF: case SYMBOL_REF: case CONST: return 1; case SUBREG: return some_operand (SUBREG_REG (op), VOIDmode); } return 0; } /* Return 1 if OP is a valid operand for the source of a move insn. */ int input_operand (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op)) return 0; if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case LABEL_REF: case SYMBOL_REF: case CONST: /* This handles both the Windows/NT and OSF cases. */ return mode == ptr_mode || mode == DImode; case REG: return 1; case SUBREG: if (register_operand (op, mode)) return 1; /* ... fall through ... */ case MEM: return mode != HImode && mode != QImode && general_operand (op, mode); case CONST_DOUBLE: return GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode); case CONST_INT: return mode == QImode || mode == HImode || add_operand (op, mode); } return 0; } /* Return 1 if OP is a SYMBOL_REF for a function known to be in this file. */ int current_file_function_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == SYMBOL_REF && ! profile_flag && ! profile_block_flag && (SYMBOL_REF_FLAG (op) || op == XEXP (DECL_RTL (current_function_decl), 0))); } /* Return 1 if OP is a valid operand for the MEM of a CALL insn. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (mode != Pmode) return 0; return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG); } /* Return 1 if OP is a valid Alpha comparison operator. Here we know which comparisons are valid in which insn. */ int alpha_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); if (mode != GET_MODE (op) || GET_RTX_CLASS (code) != '<') return 0; return (code == EQ || code == LE || code == LT || (mode == DImode && (code == LEU || code == LTU))); } /* Return 1 if OP is a signed comparison operation. */ int signed_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case EQ: case NE: case LE: case LT: case GE: case GT: return 1; } return 0; } /* Return 1 if this is a divide or modulus operator. */ int divmod_operator (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case DIV: case MOD: case UDIV: case UMOD: return 1; } return 0; } /* Return 1 if this memory address is a known aligned register plus a constant. It must be a valid address. This means that we can do this as an aligned reference plus some offset. Take into account what reload will do. We could say that out-of-range stack slots are alignable, but that would complicate get_aligned_mem and it isn't worth the trouble since few functions have large stack space. */ int aligned_memory_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == SUBREG) { if (GET_MODE (op) != mode) return 0; op = SUBREG_REG (op); mode = GET_MODE (op); } if (reload_in_progress && GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER) op = reg_equiv_mem[REGNO (op)]; if (GET_CODE (op) != MEM || GET_MODE (op) != mode || ! memory_address_p (mode, XEXP (op, 0))) return 0; op = XEXP (op, 0); if (GET_CODE (op) == PLUS) op = XEXP (op, 0); return (GET_CODE (op) == REG && (REGNO (op) == STACK_POINTER_REGNUM || op == hard_frame_pointer_rtx || (REGNO (op) >= FIRST_VIRTUAL_REGISTER && REGNO (op) <= LAST_VIRTUAL_REGISTER))); } /* Similar, but return 1 if OP is a MEM which is not alignable. */ int unaligned_memory_operand (op, mode) register rtx op; enum machine_mode mode; { if (GET_CODE (op) == SUBREG) { if (GET_MODE (op) != mode) return 0; op = SUBREG_REG (op); mode = GET_MODE (op); } if (reload_in_progress && GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER) op = reg_equiv_mem[REGNO (op)]; if (GET_CODE (op) != MEM || GET_MODE (op) != mode) return 0; op = XEXP (op, 0); if (! memory_address_p (mode, op)) return 1; if (GET_CODE (op) == PLUS) op = XEXP (op, 0); return (GET_CODE (op) != REG || (REGNO (op) != STACK_POINTER_REGNUM && op != hard_frame_pointer_rtx && (REGNO (op) < FIRST_VIRTUAL_REGISTER || REGNO (op) > LAST_VIRTUAL_REGISTER))); } /* Return 1 if OP is any memory location. During reload a pseudo matches. */ int any_memory_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_CODE (op) == MEM || (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG) || (reload_in_progress && GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER) || (reload_in_progress && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG && REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)); } /* REF is an alignable memory location. Place an aligned SImode reference into *PALIGNED_MEM and the number of bits to shift into *PBITNUM. */ void get_aligned_mem (ref, paligned_mem, pbitnum) rtx ref; rtx *paligned_mem, *pbitnum; { rtx base; HOST_WIDE_INT offset = 0; if (GET_CODE (ref) == SUBREG) { offset = SUBREG_WORD (ref) * UNITS_PER_WORD; if (BYTES_BIG_ENDIAN) offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (ref))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (ref))))); ref = SUBREG_REG (ref); } if (GET_CODE (ref) == REG) ref = reg_equiv_mem[REGNO (ref)]; if (reload_in_progress) base = find_replacement (&XEXP (ref, 0)); else base = XEXP (ref, 0); if (GET_CODE (base) == PLUS) offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0); *paligned_mem = gen_rtx (MEM, SImode, plus_constant (base, offset & ~3)); MEM_IN_STRUCT_P (*paligned_mem) = MEM_IN_STRUCT_P (ref); MEM_VOLATILE_P (*paligned_mem) = MEM_VOLATILE_P (ref); RTX_UNCHANGING_P (*paligned_mem) = RTX_UNCHANGING_P (ref); *pbitnum = GEN_INT ((offset & 3) * 8); } /* Similar, but just get the address. Handle the two reload cases. */ rtx get_unaligned_address (ref) rtx ref; { rtx base; HOST_WIDE_INT offset = 0; if (GET_CODE (ref) == SUBREG) { offset = SUBREG_WORD (ref) * UNITS_PER_WORD; if (BYTES_BIG_ENDIAN) offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (ref))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (ref))))); ref = SUBREG_REG (ref); } if (GET_CODE (ref) == REG) ref = reg_equiv_mem[REGNO (ref)]; if (reload_in_progress) base = find_replacement (&XEXP (ref, 0)); else base = XEXP (ref, 0); if (GET_CODE (base) == PLUS) offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0); return plus_constant (base, offset); } /* Subfunction of the following function. Update the flags of any MEM found in part of X. */ static void alpha_set_memflags_1 (x, in_struct_p, volatile_p, unchanging_p) rtx x; int in_struct_p, volatile_p, unchanging_p; { int i; switch (GET_CODE (x)) { case SEQUENCE: case PARALLEL: for (i = XVECLEN (x, 0) - 1; i >= 0; i--) alpha_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p, unchanging_p); break; case INSN: alpha_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p, unchanging_p); break; case SET: alpha_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p, unchanging_p); alpha_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p, unchanging_p); break; case MEM: MEM_IN_STRUCT_P (x) = in_struct_p; MEM_VOLATILE_P (x) = volatile_p; RTX_UNCHANGING_P (x) = unchanging_p; break; } } /* Given INSN, which is either an INSN or a SEQUENCE generated to perform a memory operation, look for any MEMs in either a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and volatile flags from REF into each of the MEMs found. If REF is not a MEM, don't do anything. */ void alpha_set_memflags (insn, ref) rtx insn; rtx ref; { /* Note that it is always safe to get these flags, though they won't be what we think if REF is not a MEM. */ int in_struct_p = MEM_IN_STRUCT_P (ref); int volatile_p = MEM_VOLATILE_P (ref); int unchanging_p = RTX_UNCHANGING_P (ref); if (GET_CODE (ref) != MEM || (! in_struct_p && ! volatile_p && ! unchanging_p)) return; alpha_set_memflags_1 (insn, in_struct_p, volatile_p, unchanging_p); } /* Try to output insns to set TARGET equal to the constant C if it can be done in less than N insns. Do all computations in MODE. Returns the place where the output has been placed if it can be done and the insns have been emitted. If it would take more than N insns, zero is returned and no insns and emitted. */ rtx alpha_emit_set_const (target, mode, c, n) rtx target; enum machine_mode mode; HOST_WIDE_INT c; int n; { HOST_WIDE_INT new = c; int i, bits; /* Use a pseudo if highly optimizing and still generating RTL. */ rtx subtarget = (flag_expensive_optimizations && rtx_equal_function_value_matters ? 0 : target); rtx temp; #if HOST_BITS_PER_WIDE_INT == 64 /* We are only called for SImode and DImode. If this is SImode, ensure that we are sign extended to a full word. This does not make any sense when cross-compiling on a narrow machine. */ if (mode == SImode) c = (c & 0xffffffff) - 2 * (c & 0x80000000); #endif /* If this is a sign-extended 32-bit constant, we can do this in at most three insns, so do it if we have enough insns left. We always have a sign-extended 32-bit constant when compiling on a narrow machine. Note that we cannot handle the constant 0x80000000. */ if ((HOST_BITS_PER_WIDE_INT != 64 || c >> 31 == -1 || c >> 31 == 0) && c != 0x80000000U) { HOST_WIDE_INT low = (c & 0xffff) - 2 * (c & 0x8000); HOST_WIDE_INT tmp1 = c - low; HOST_WIDE_INT high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000); HOST_WIDE_INT extra = 0; /* If HIGH will be interpreted as negative but the constant is positive, we must adjust it to do two ldha insns. */ if ((high & 0x8000) != 0 && c >= 0) { extra = 0x4000; tmp1 -= 0x40000000; high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000); } if (c == low || (low == 0 && extra == 0)) return copy_to_suggested_reg (GEN_INT (c), target, mode); else if (n >= 2 + (extra != 0) /* We can't do this when SImode if HIGH required adjustment. This is because the code relies on an implicit overflow which is invisible to the RTL. We can thus get incorrect code if the two ldah instructions are combined. */ && ! (mode == SImode && extra != 0)) { temp = copy_to_suggested_reg (GEN_INT (low), subtarget, mode); if (extra != 0) temp = expand_binop (mode, add_optab, temp, GEN_INT (extra << 16), subtarget, 0, OPTAB_WIDEN); return expand_binop (mode, add_optab, temp, GEN_INT (high << 16), target, 0, OPTAB_WIDEN); } } /* If we couldn't do it that way, try some other methods. But if we have no instructions left, don't bother. Likewise, if this is SImode and we can't make pseudos, we can't do anything since the expand_binop and expand_unop calls will widen and try to make pseudos. */ if (n == 1 || (mode == SImode && ! rtx_equal_function_value_matters)) return 0; #if HOST_BITS_PER_WIDE_INT == 64 /* First, see if can load a value into the target that is the same as the constant except that all bytes that are 0 are changed to be 0xff. If we can, then we can do a ZAPNOT to obtain the desired constant. */ for (i = 0; i < 64; i += 8) if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0) new |= (HOST_WIDE_INT) 0xff << i; /* We are only called for SImode and DImode. If this is SImode, ensure that we are sign extended to a full word. */ if (mode == SImode) new = (new & 0xffffffff) - 2 * (new & 0x80000000); if (new != c && (temp = alpha_emit_set_const (subtarget, mode, new, n - 1)) != 0) return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new), target, 0, OPTAB_WIDEN); #endif /* Next, see if we can load a related constant and then shift and possibly negate it to get the constant we want. Try this once each increasing numbers of insns. */ for (i = 1; i < n; i++) { /* First try complementing. */ if ((temp = alpha_emit_set_const (subtarget, mode, ~ c, i)) != 0) return expand_unop (mode, one_cmpl_optab, temp, target, 0); /* Next try to form a constant and do a left shift. We can do this if some low-order bits are zero; the exact_log2 call below tells us that information. The bits we are shifting out could be any value, but here we'll just try the 0- and sign-extended forms of the constant. To try to increase the chance of having the same constant in more than one insn, start at the highest number of bits to shift, but try all possibilities in case a ZAPNOT will be useful. */ if ((bits = exact_log2 (c & - c)) > 0) for (; bits > 0; bits--) if ((temp = (alpha_emit_set_const (subtarget, mode, (unsigned HOST_WIDE_INT) c >> bits, i))) != 0 || ((temp = (alpha_emit_set_const (subtarget, mode, ((unsigned HOST_WIDE_INT) c) >> bits, i))) != 0)) return expand_binop (mode, ashl_optab, temp, GEN_INT (bits), target, 0, OPTAB_WIDEN); /* Now try high-order zero bits. Here we try the shifted-in bits as all zero and all ones. Be careful to avoid shifting outside the mode and to avoid shifting outside the host wide int size. */ if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8) - floor_log2 (c) - 1)) > 0) for (; bits > 0; bits--) if ((temp = alpha_emit_set_const (subtarget, mode, c << bits, i)) != 0 || ((temp = (alpha_emit_set_const (subtarget, mode, ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)), i))) != 0)) return expand_binop (mode, lshr_optab, temp, GEN_INT (bits), target, 1, OPTAB_WIDEN); /* Now try high-order 1 bits. We get that with a sign-extension. But one bit isn't enough here. Be careful to avoid shifting outside the mode and to avoid shifting outside the host wide int size. */ if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8) - floor_log2 (~ c) - 2)) > 0) for (; bits > 0; bits--) if ((temp = alpha_emit_set_const (subtarget, mode, c << bits, i)) != 0 || ((temp = (alpha_emit_set_const (subtarget, mode, ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)), i))) != 0)) return expand_binop (mode, ashr_optab, temp, GEN_INT (bits), target, 0, OPTAB_WIDEN); } return 0; } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ int alpha_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { rtx set; /* If the dependence is an anti-dependence, there is no cost. For an output dependence, there is sometimes a cost, but it doesn't seem worth handling those few cases. */ if (REG_NOTE_KIND (link) != 0) return 0; /* If INSN is a store insn and DEP_INSN is setting the data being stored, we can sometimes lower the cost. */ if (recog_memoized (insn) >= 0 && get_attr_type (insn) == TYPE_ST && (set = single_set (dep_insn)) != 0 && GET_CODE (PATTERN (insn)) == SET && rtx_equal_p (SET_DEST (set), SET_SRC (PATTERN (insn)))) switch (get_attr_type (dep_insn)) { case TYPE_LD: /* No savings here. */ return cost; case TYPE_IMULL: case TYPE_IMULQ: /* In these cases, we save one cycle. */ return cost - 2; default: /* In all other cases, we save two cycles. */ return MAX (0, cost - 4); } /* Another case that needs adjustment is an arithmetic or logical operation. It's cost is usually one cycle, but we default it to two in the MD file. The only case that it is actually two is for the address in loads and stores. */ if (recog_memoized (dep_insn) >= 0 && get_attr_type (dep_insn) == TYPE_IADDLOG) switch (get_attr_type (insn)) { case TYPE_LD: case TYPE_ST: return cost; default: return 2; } /* The final case is when a compare feeds into an integer branch. The cost is only one cycle in that case. */ if (recog_memoized (dep_insn) >= 0 && get_attr_type (dep_insn) == TYPE_ICMP && recog_memoized (insn) >= 0 && get_attr_type (insn) == TYPE_IBR) return 2; /* Otherwise, return the default cost. */ return cost; } /* Print an operand. Recognize special options, documented below. */ void print_operand (file, x, code) FILE *file; rtx x; char code; { int i; switch (code) { case 'r': /* If this operand is the constant zero, write it as "$31". */ if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x)]); else if (x == CONST0_RTX (GET_MODE (x))) fprintf (file, "$31"); else output_operand_lossage ("invalid %%r value"); break; case 'R': /* Similar, but for floating-point. */ if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x)]); else if (x == CONST0_RTX (GET_MODE (x))) fprintf (file, "$f31"); else output_operand_lossage ("invalid %%R value"); break; case 'N': /* Write the 1's complement of a constant. */ if (GET_CODE (x) != CONST_INT) output_operand_lossage ("invalid %%N value"); fprintf (file, "%ld", ~ INTVAL (x)); break; case 'P': /* Write 1 << C, for a constant C. */ if (GET_CODE (x) != CONST_INT) output_operand_lossage ("invalid %%P value"); fprintf (file, "%ld", (HOST_WIDE_INT) 1 << INTVAL (x)); break; case 'h': /* Write the high-order 16 bits of a constant, sign-extended. */ if (GET_CODE (x) != CONST_INT) output_operand_lossage ("invalid %%h value"); fprintf (file, "%ld", INTVAL (x) >> 16); break; case 'L': /* Write the low-order 16 bits of a constant, sign-extended. */ if (GET_CODE (x) != CONST_INT) output_operand_lossage ("invalid %%L value"); fprintf (file, "%ld", (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000)); break; case 'm': /* Write mask for ZAP insn. */ if (GET_CODE (x) == CONST_DOUBLE) { HOST_WIDE_INT mask = 0; HOST_WIDE_INT value; value = CONST_DOUBLE_LOW (x); for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; i++, value >>= 8) if (value & 0xff) mask |= (1 << i); value = CONST_DOUBLE_HIGH (x); for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; i++, value >>= 8) if (value & 0xff) mask |= (1 << (i + sizeof (int))); fprintf (file, "%ld", mask & 0xff); } else if (GET_CODE (x) == CONST_INT) { HOST_WIDE_INT mask = 0, value = INTVAL (x); for (i = 0; i < 8; i++, value >>= 8) if (value & 0xff) mask |= (1 << i); fprintf (file, "%ld", mask); } else output_operand_lossage ("invalid %%m value"); break; case 'M': /* 'b', 'w', or 'l' as the value of the constant. */ if (GET_CODE (x) != CONST_INT || (INTVAL (x) != 8 && INTVAL (x) != 16 && INTVAL (x) != 32)) output_operand_lossage ("invalid %%M value"); fprintf (file, "%s", INTVAL (x) == 8 ? "b" : INTVAL (x) == 16 ? "w" : "l"); break; case 'U': /* Similar, except do it from the mask. */ if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xff) fprintf (file, "b"); else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffff) fprintf (file, "w"); #if HOST_BITS_PER_WIDE_INT == 32 else if (GET_CODE (x) == CONST_DOUBLE && CONST_DOUBLE_HIGH (x) == 0 && CONST_DOUBLE_LOW (x) == -1) fprintf (file, "l"); #else else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffffffff) fprintf (file, "l"); #endif else output_operand_lossage ("invalid %%U value"); break; case 's': /* Write the constant value divided by 8. */ if (GET_CODE (x) != CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64 && (INTVAL (x) & 7) != 8) output_operand_lossage ("invalid %%s value"); fprintf (file, "%ld", INTVAL (x) / 8); break; case 'S': /* Same, except compute (64 - c) / 8 */ if (GET_CODE (x) != CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64 && (INTVAL (x) & 7) != 8) output_operand_lossage ("invalid %%s value"); fprintf (file, "%ld", (64 - INTVAL (x)) / 8); break; case 'C': /* Write out comparison name. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%C value"); if (GET_CODE (x) == LEU) fprintf (file, "ule"); else if (GET_CODE (x) == LTU) fprintf (file, "ult"); else fprintf (file, "%s", GET_RTX_NAME (GET_CODE (x))); break; case 'D': /* Similar, but write reversed code. We can't get an unsigned code here. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%D value"); fprintf (file, "%s", GET_RTX_NAME (reverse_condition (GET_CODE (x)))); break; case 'c': /* Similar to `c', but swap. We can't get unsigned here either. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%D value"); fprintf (file, "%s", GET_RTX_NAME (swap_condition (GET_CODE (x)))); break; case 'd': /* Similar, but reverse and swap. We can't get unsigned here either. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%D value"); fprintf (file, "%s", GET_RTX_NAME (swap_condition (reverse_condition ((GET_CODE (x)))))); break; case 'E': /* Write the divide or modulus operator. */ switch (GET_CODE (x)) { case DIV: fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q"); break; case UDIV: fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q"); break; case MOD: fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q"); break; case UMOD: fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q"); break; default: output_operand_lossage ("invalid %%E value"); break; } break; case 'A': /* Write "_u" for unaligned access. */ if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND) fprintf (file, "_u"); break; case 0: if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x)]); else if (GET_CODE (x) == MEM) output_address (XEXP (x, 0)); else output_addr_const (file, x); break; default: output_operand_lossage ("invalid %%xn code"); } } /* Do what is necessary for `va_start'. The argument is ignored; We look at the current function to determine if stdarg or varargs is used and fill in an initial va_list. A pointer to this constructor is returned. */ struct rtx_def * alpha_builtin_saveregs (arglist) tree arglist; { rtx block, addr, argsize; tree fntype = TREE_TYPE (current_function_decl); int stdarg = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); /* Compute the current position into the args, taking into account both registers and memory. Both of these are already included in current_function_args_info. */ argsize = GEN_INT (current_function_args_info * UNITS_PER_WORD); /* SETUP_INCOMING_VARARGS moves the starting address base up by 48, storing fp arg registers in the first 48 bytes, and the integer arg registers in the next 48 bytes. This is only done, however, if any integer registers need to be stored. If no integer registers need be stored, then we must subtract 48 in order to account for the integer arg registers which are counted in argsize above, but which are not actually stored on the stack. */ addr = (current_function_args_info <= 5 + stdarg ? plus_constant (virtual_incoming_args_rtx, 6 * UNITS_PER_WORD) : plus_constant (virtual_incoming_args_rtx, - (6 * UNITS_PER_WORD))); addr = force_operand (addr, NULL_RTX); /* Allocate the va_list constructor */ block = assign_stack_local (BLKmode, 2 * UNITS_PER_WORD, BITS_PER_WORD); RTX_UNCHANGING_P (block) = 1; RTX_UNCHANGING_P (XEXP (block, 0)) = 1; /* Store the address of the first integer register in the __base member. */ #ifdef POINTERS_EXTEND_UNSIGNED addr = convert_memory_address (ptr_mode, addr); #endif emit_move_insn (change_address (block, ptr_mode, XEXP (block, 0)), addr); /* Store the argsize as the __va_offset member. */ emit_move_insn (change_address (block, TYPE_MODE (integer_type_node), plus_constant (XEXP (block, 0), POINTER_SIZE/BITS_PER_UNIT)), argsize); /* Return the address of the va_list constructor, but don't put it in a register. Doing so would fail when not optimizing and produce worse code when optimizing. */ return XEXP (block, 0); } /* This page contains routines that are used to determine what the function prologue and epilogue code will do and write them out. */ /* Compute the size of the save area in the stack. */ int alpha_sa_size () { int size = 0; int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (! fixed_regs[i] && ! call_used_regs[i] && regs_ever_live[i]) size++; /* If some registers were saved but not reg 26, reg 26 must also be saved, so leave space for it. */ if (size != 0 && ! regs_ever_live[26]) size++; /* Our size must be even (multiple of 16 bytes). */ if (size & 1) size ++; return size * 8; } /* Return 1 if this function can directly return via $26. */ int direct_return () { return (reload_completed && alpha_sa_size () == 0 && get_frame_size () == 0 && current_function_outgoing_args_size == 0 && current_function_pretend_args_size == 0); } /* Write a version stamp. Don't write anything if we are running as a cross-compiler. Otherwise, use the versions in /usr/include/stamp.h. */ #if !defined(CROSS_COMPILE) && !defined(_WIN32) #include #endif void alpha_write_verstamp (file) FILE *file; { #ifdef MS_STAMP fprintf (file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP); #endif } /* Write code to add constant C to register number IN_REG (possibly 31) and put the result into OUT_REG. Use TEMP_REG as a scratch register; usually this will be OUT_REG, but should not be if OUT_REG is STACK_POINTER_REGNUM, since it must be updated in a single instruction. Write the code to FILE. */ static void add_long_const (file, c, in_reg, out_reg, temp_reg) FILE *file; HOST_WIDE_INT c; int in_reg, out_reg, temp_reg; { HOST_WIDE_INT low = (c & 0xffff) - 2 * (c & 0x8000); HOST_WIDE_INT tmp1 = c - low; HOST_WIDE_INT high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000); HOST_WIDE_INT extra = 0; /* We don't have code to write out constants larger than 32 bits. */ #if HOST_BITS_PER_LONG_INT == 64 if ((unsigned HOST_WIDE_INT) c >> 32 != 0) abort (); #endif /* If HIGH will be interpreted as negative, we must adjust it to do two ldha insns. Note that we will never be building a negative constant here. */ if (high & 0x8000) { extra = 0x4000; tmp1 -= 0x40000000; high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000); } if (low != 0) { int result_reg = (extra == 0 && high == 0) ? out_reg : temp_reg; if (low >= 0 && low < 255) fprintf (file, "\taddq $%d,%d,$%d\n", in_reg, low, result_reg); else fprintf (file, "\tlda $%d,%d($%d)\n", result_reg, low, in_reg); in_reg = result_reg; } if (extra) { int result_reg = (high == 0) ? out_reg : temp_reg; fprintf (file, "\tldah $%d,%d($%d)\n", result_reg, extra, in_reg); in_reg = result_reg; } if (high) fprintf (file, "\tldah $%d,%d($%d)\n", out_reg, high, in_reg); } /* Write function prologue. */ void output_prolog (file, size) FILE *file; int size; { HOST_WIDE_INT out_args_size = ALPHA_ROUND (current_function_outgoing_args_size); HOST_WIDE_INT sa_size = alpha_sa_size (); HOST_WIDE_INT frame_size = (out_args_size + sa_size + ALPHA_ROUND (size + current_function_pretend_args_size)); HOST_WIDE_INT reg_offset = out_args_size; HOST_WIDE_INT start_reg_offset = reg_offset; HOST_WIDE_INT actual_start_reg_offset = start_reg_offset; int int_reg_save_area_size = 0; rtx insn; unsigned reg_mask = 0; int i; /* Ecoff can handle multiple .file directives, so put out file and lineno. We have to do that before the .ent directive as we cannot switch files within procedures with native ecoff because line numbers are linked to procedure descriptors. Outputting the lineno helps debugging of one line functions as they would otherwise get no line number at all. Please note that we would like to put out last_linenum from final.c, but it is not accessible. */ if (write_symbols == SDB_DEBUG) { ASM_OUTPUT_SOURCE_FILENAME (file, DECL_SOURCE_FILE (current_function_decl)); if (debug_info_level != DINFO_LEVEL_TERSE) ASM_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl)); } /* The assembly language programmer's guide states that the second argument to the .ent directive, the lex_level, is ignored by the assembler, so we might as well omit it. */ fprintf (file, "\t.ent "); assemble_name (file, alpha_function_name); fprintf (file, "\n"); ASM_OUTPUT_LABEL (file, alpha_function_name); inside_function = TRUE; /* Set up offsets to alpha virtual arg/local debugging pointer. */ alpha_auto_offset = -frame_size + current_function_pretend_args_size; alpha_arg_offset = -frame_size + 48; /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first. Even if we are a static function, we still need to do this in case our address is taken and passed to something like qsort. We never need a GP for Windows/NT. */ alpha_function_needs_gp = 0; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if ((GET_CODE (insn) == CALL_INSN) || (GET_RTX_CLASS (GET_CODE (insn)) == 'i' && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER && (get_attr_type (insn) == TYPE_LDSYM || get_attr_type (insn) == TYPE_ISUBR))) { alpha_function_needs_gp = 1; break; } if (WINDOWS_NT == 0) { if (alpha_function_needs_gp) fprintf (file, "\tldgp $29,0($27)\n"); /* Put a label after the GP load so we can enter the function at it. */ assemble_name (file, alpha_function_name); fprintf (file, "..ng:\n"); } /* Adjust the stack by the frame size. If the frame size is > 4096 bytes, we need to be sure we probe somewhere in the first and last 4096 bytes (we can probably get away without the latter test) and every 8192 bytes in between. If the frame size is > 32768, we do this in a loop. Otherwise, we generate the explicit probe instructions. Note that we are only allowed to adjust sp once in the prologue. */ if (frame_size < 32768) { if (frame_size > 4096) { int probed = 4096; fprintf (file, "\tstq $31,-%d($30)\n", probed); while (probed + 8192 < frame_size) fprintf (file, "\tstq $31,-%d($30)\n", probed += 8192); /* We only have to do this probe if we aren't saving registers. */ if (sa_size == 0 && probed + 4096 < frame_size) fprintf (file, "\tstq $31,-%d($30)\n", frame_size); } if (frame_size != 0) fprintf (file, "\tlda $30,-%d($30)\n", frame_size); } else { /* Here we generate code to set R4 to SP + 4096 and set R5 to the number of 8192 byte blocks to probe. We then probe each block in the loop and then set SP to the proper location. If the amount remaining is > 4096, we have to do one more probe if we are not saving any registers. */ HOST_WIDE_INT blocks = (frame_size + 4096) / 8192; HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192; add_long_const (file, blocks, 31, 5, 5); fprintf (file, "\tlda $4,4096($30)\n"); assemble_name (file, alpha_function_name); fprintf (file, "..sc:\n"); fprintf (file, "\tstq $31,-8192($4)\n"); fprintf (file, "\tsubq $5,1,$5\n"); fprintf (file, "\tlda $4,-8192($4)\n"); fprintf (file, "\tbne $5,"); assemble_name (file, alpha_function_name); fprintf (file, "..sc\n"); if (leftover > 4096 && sa_size == 0) fprintf (file, "\tstq $31,-%d($4)\n", leftover); fprintf (file, "\tlda $30,-%d($4)\n", leftover); } /* Describe our frame. */ fprintf (file, "\t.frame $%d,%d,$26,%d\n", (frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM), frame_size, current_function_pretend_args_size); /* Save register 26 if any other register needs to be saved. */ if (sa_size != 0) { reg_mask |= 1 << 26; fprintf (file, "\tstq $26,%d($30)\n", reg_offset); reg_offset += 8; int_reg_save_area_size += 8; } /* Now save any other used integer registers required to be saved. */ for (i = 0; i < 32; i++) if (! fixed_regs[i] && ! call_used_regs[i] && regs_ever_live[i] && i != 26) { reg_mask |= 1 << i; fprintf (file, "\tstq $%d,%d($30)\n", i, reg_offset); reg_offset += 8; int_reg_save_area_size += 8; } /* Print the register mask and do floating-point saves. */ if (reg_mask) fprintf (file, "\t.mask 0x%x,%d\n", reg_mask, actual_start_reg_offset - frame_size); start_reg_offset = reg_offset; reg_mask = 0; for (i = 0; i < 32; i++) if (! fixed_regs[i + 32] && ! call_used_regs[i + 32] && regs_ever_live[i + 32]) { reg_mask |= 1 << i; fprintf (file, "\tstt $f%d,%d($30)\n", i, reg_offset); reg_offset += 8; } /* Print the floating-point mask, if we've saved any fp register. */ if (reg_mask) fprintf (file, "\t.fmask 0x%x,%d\n", reg_mask, actual_start_reg_offset - frame_size + int_reg_save_area_size); /* If we need a frame pointer, set it from the stack pointer. Note that this must always be the last instruction in the prologue. */ if (frame_pointer_needed) fprintf (file, "\tbis $30,$30,$15\n"); /* End the prologue and say if we used gp. */ fprintf (file, "\t.prologue %d\n", alpha_function_needs_gp); } /* Write function epilogue. */ void output_epilog (file, size) FILE *file; int size; { rtx insn = get_last_insn (); HOST_WIDE_INT out_args_size = ALPHA_ROUND (current_function_outgoing_args_size); HOST_WIDE_INT sa_size = alpha_sa_size (); HOST_WIDE_INT frame_size = (out_args_size + sa_size + ALPHA_ROUND (size + current_function_pretend_args_size)); HOST_WIDE_INT reg_offset = out_args_size; HOST_WIDE_INT frame_size_from_reg_save = frame_size - reg_offset; int restore_fp = frame_pointer_needed && regs_ever_live[HARD_FRAME_POINTER_REGNUM]; int i; /* If the last insn was a BARRIER, we don't have to write anything except the .end pseudo-op. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn == 0 || GET_CODE (insn) != BARRIER) { int fp_offset = 0; /* If we have a frame pointer, restore SP from it. */ if (frame_pointer_needed) fprintf (file, "\tbis $15,$15,$30\n"); /* Restore all the registers, starting with the return address register. */ if (sa_size != 0) { fprintf (file, "\tldq $26,%d($30)\n", reg_offset); reg_offset += 8; } /* Now restore any other used integer registers that that we saved, except for FP if it is being used as FP, since it must be restored last. */ for (i = 0; i < 32; i++) if (! fixed_regs[i] && ! call_used_regs[i] && regs_ever_live[i] && i != 26) { if (i == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) fp_offset = reg_offset; else fprintf (file, "\tldq $%d,%d($30)\n", i, reg_offset); reg_offset += 8; } for (i = 0; i < 32; i++) if (! fixed_regs[i + 32] && ! call_used_regs[i + 32] && regs_ever_live[i + 32]) { fprintf (file, "\tldt $f%d,%d($30)\n", i, reg_offset); reg_offset += 8; } /* If the stack size is large and we have a frame pointer, compute the size of the stack into a register because the old FP restore, stack pointer adjust, and return are required to be consecutive instructions. */ if (frame_size > 32767 && restore_fp) add_long_const (file, frame_size, 31, 1, 1); /* If we needed a frame pointer and we have to restore it, do it now. This must be done in one instruction immediately before the SP update. */ if (restore_fp && fp_offset) fprintf (file, "\tldq $15,%d($30)\n", fp_offset); /* Now update the stack pointer, if needed. Only one instruction must modify the stack pointer. It must be the last instruction in the sequence and must be an ADDQ or LDA instruction. If the frame pointer was loaded above, we may only put one instruction here. */ if (frame_size > 32768 && restore_fp) fprintf (file, "\taddq $1,$30,$30\n"); else add_long_const (file, frame_size, 30, 30, 1); /* Finally return to the caller. */ fprintf (file, "\tret $31,($26),1\n"); } /* End the function. */ fprintf (file, "\t.end "); assemble_name (file, alpha_function_name); fprintf (file, "\n"); inside_function = FALSE; /* Show that we know this function if it is called again. */ SYMBOL_REF_FLAG (XEXP (DECL_RTL (current_function_decl), 0)) = 1; } /* Debugging support. */ #include "gstab.h" /* Count the number of sdb related labels are generated (to find block start and end boundaries). */ int sdb_label_count = 0; /* Next label # for each statement. */ static int sym_lineno = 0; /* Count the number of .file directives, so that .loc is up to date. */ static int num_source_filenames = 0; /* Name of the file containing the current function. */ static char *current_function_file = ""; /* Offsets to alpha virtual arg/local debugging pointers. */ long alpha_arg_offset; long alpha_auto_offset; /* Emit a new filename to a stream. */ void alpha_output_filename (stream, name) FILE *stream; char *name; { static int first_time = TRUE; char ltext_label_name[100]; if (first_time) { first_time = FALSE; ++num_source_filenames; current_function_file = name; fprintf (stream, "\t.file\t%d ", num_source_filenames); output_quoted_string (stream, name); fprintf (stream, "\n"); if (!TARGET_GAS && write_symbols == DBX_DEBUG) fprintf (stream, "\t#@stabs\n"); } else if (!TARGET_GAS && write_symbols == DBX_DEBUG) { ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0); fprintf (stream, "%s ", ASM_STABS_OP); output_quoted_string (stream, name); fprintf (stream, ",%d,0,0,%s\n", N_SOL, <ext_label_name[1]); } else if (name != current_function_file && strcmp (name, current_function_file) != 0) { if (inside_function && ! TARGET_GAS) fprintf (stream, "\t#.file\t%d ", num_source_filenames); else { ++num_source_filenames; current_function_file = name; fprintf (stream, "\t.file\t%d ", num_source_filenames); } output_quoted_string (stream, name); fprintf (stream, "\n"); } } /* Emit a linenumber to a stream. */ void alpha_output_lineno (stream, line) FILE *stream; int line; { if (! TARGET_GAS && write_symbols == DBX_DEBUG) { /* mips-tfile doesn't understand .stabd directives. */ ++sym_lineno; fprintf (stream, "$LM%d:\n\t%s %d,0,%d,$LM%d\n", sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno); } else fprintf (stream, "\n\t.loc\t%d %d\n", num_source_filenames, line); }