
PROVING THE CORRECTNESS OF

PROCESSORS WITH DELAYED BRANCH

USING DELAYED PC

Silvia M. Mueller, Wolfgang J. Paul, and Daniel Kroening

Abstract:

We show that the programming model of delayed branch is equivalent to

what we call delayed PC: all instruction fetches are delayed by one instruction,

not just taken branches. This leads to a very simple new implementation of

the delayed branch mechanism. We then prove the correctness of a pipelined

machine with delayed PC.

INTRODUCTION

Machine veri�ed correctness proofs for (almost) entire processors have been
produced for sequential machines [1], for pipelined machines [2, 3, 4, 5, 6] and
for machines with out of order execution [7, 6, 8, 9]. In all non sequential designs
cited above either a branch-not-taken strategy is applied or the following actions
are performed in a single cycle: i) the evaluation of the condition of branch
instructions ii) the next PC computation iii) the fetch of the next instruction.

In real machine these three actions are usually performed in two or more
cycles in order to reduce cycle time. This does not remain invisible to the
programmer: taken branches are delayed by one or more instructions. The
delayed branch semantics is, for example, used in the MIPS [10], the SPARC
[11] and the PA-RISC [12] instruction set.

In this paper we show that the programming model of delayed branch is
equivalent to what we call delayed PC: all instruction fetches are delayed by
one instruction, not only taken branches. This leads to a very simple new im-
plementation of the delayed branch mechanism. We then prove the correctness
of a pipelined machine with delayed PC. Parts of the proof have been veri�ed
by machine already.

The paper is organized in the following way: In the next section, we formally
de�ne the semantics of a DLX machine [13] with delayed branch and delayed
PC, and we show that they are equivalent. We then describe a sequential
machine DLX� with the following features: i) delayed PC, ii) pipelined data

579



580

paths with a 5 stage pipeline, iii) the pipeline stages are clocked in a round
robin fashion. In the last section we turn the sequential machine DLX� into a
pipelined machineDLX� by only 2 changes: i) the delayed PC of the sequential
machine is bypassed, ii) the clocking of the pipeline stages is modi�ed. We then
show that the pipelined machine simulates the sequential machine.

DELAYED BRANCH AND DELAYED PC

We consider sequences I = I0; I1; ::: of DLX instructions started after reset.
For registers R and instructions Ii we denote by Ri the value of register R after
sequential execution of instruction Ii. By R�1 we denote the initial value of R
before the execution of I0. Observe that for sequential machines instruction Ii
is fetched from memory address PCi�1.

A (sequential) semantic of delayed branch requires the introduction of state
variables which memorize, whether previous instructions were taken branches
(or jumps), and memorize the branch target of branches/jumps. We use the
variables bjtaken and btarget. If Ii is a relative branch/jump with immediate
constant immi or an absolute jump with operand RS1i�1, then for machines
with delayed branch the branch target is

btargeti =

�
RS1i�1 for absolute jumps
PCi�1 + 4 + immi for relative branch/jumps

Observe that the addition of 4 is an artifact. The variable bjtakeni = 1 indi-
cates that instruction Ii is a jump or a taken branch. The machine is initialized
with

PC�1 = 0 and bjtaken�1 = 0:

The delayed branch mechanism is speci�ed by

PCi+1 =

�
btargeti if bjtakeni = 1
PCi + 4 otherwise

and by the requirement that delay slots do not contain branch instructions.
The delayed PC mechanism uses a program counter PC 0 and its delayed

version DPC which is used for fetching instructions. They are initialized with

DPC�1 = 0 and PC 0

�1 = 4:

The computation of the next PC 0 is completely free of artifacts:

PC 0

i =

(
PC 0

i�1 + immi if bjtakeni = 1 ^ Iiis relative branch/jump
RS1i�1 if bjtakeni = 1 ^ Iiis absolute branch/jump
PC 0

i�1 + 4 otherwise

The delayed program counter is simply computed by

DPCi+1 = PC 0

i :



CORRECTNESS OF A DELAYED PC MECHANISM 581

The semantics of the jump and link instructions change by the delayed
branch mechanism as well. Saving PC+4 into general purpose registerGPR[31]
results in a return to the delay slot of the jump and link instruction. Of course,
the return should be to the instruction after the delay slot. Formally, if Ii is a
jump and link instruction, then

PCi = PCi�1 + 4

because Ii is not in a delay slot, and instruction Ii+1 fetched from address PCi

is the instruction in the delay slot of Ii. The jump and link instruction Ii should
therefore save

GPR[31]i = PCi + 4 = PCi�1 + 8:

In the simpler delayed PC mechanism, one simply saves

GPR[31]i = PC 0

i�1 + 4:

The equivalence of the two mechanisms is asserted in

Theorem 1. Suppose a machine with delayed branch and a machine with de-
layed PC are started with identical memory contents and identical contents of
the visible registers, then

1. (PCi; PCi+1) = (DPCi; PC
0

i);

2. and if Ii is a jump and link instruction, the value GPR[31]i saved into
register 31 during instruction Ii is identical for both machines.

Proof. The theorem is proven by induction on i. The case i = �1 follows
from the rules for initializing PC, bjtaken, PC 0, and DPC. Concluding from
i� 1 to i has two parts. The equation

DPCi = PC 0

i�1 = PCi

follows directly from the de�nition of DPC and the induction hypothesis. The
proof of the equation PCi+1 = PC 0

i has several cases.
If Ii is a branch or jump, instruction Ii is not in a delay slot, and hence

bjtakeni�1 = 0.
If Ii is a taken branch or a relative jump, it then follows for the target address

PC 0

i = PC 0

i�1 + immi

= PC 0

i�2 + 4 + immi because bjtakeni�1 = 0
= PCi�1 + 4 + immi by the induction hypothesis for i� 2
= btargeti

whereas for an absolute jump it follows

PC 0

i = RS1i�1 = btargeti:



582

In both cases, bjtakeni = 1; this implies that

PC 0

i = btargeti = PCi+1:

In any other case, bjtakeni = 0 and one concludes

PC 0

i = PC 0

i�1 + 4
= PCi + 4 by the induction hypothesis
= PCi+1 by the de�nition of delayed branch:

For the second part, suppose Ii is a jump and link instruction. With delayed
branch, one then saves PCi�1 + 8. Because Ii is not in a delay slot, it holds

PCi�1 + 8 = PCi + 4
= DPCi + 4 by induction hypothesis
= PC 0

i�1 + 4 by de�nition of delayed PC:

This is exactly the value saved in the delayed PC version.

PREPARED SEQUENTIAL MACHINES

The sequential machine DLX� is constructed in the following three steps: i)
Take a textbook design of a pipelined DLX machine with a classical 5 stage
pipeline [14, 13], but without forwarding and interlock. Figure 1 sketches almost
the data paths of such a machine. Each register, register �le or memory is drawn
at the end of the stage in which it is written. ii) In stage ID a straightforward
circuit NextPC computes the input for PC 0 which in turn is clocked into DPC
(Figure 2). iii) The pipeline stages are updated in a round robin fashion. With
proof techniques for sequential machines one shows

Theorem 2. Machine DLX� interprets the DLX instruction set with delayed
PC semantics.

Theorem 1 implies that machine DLX� also interprets the DLX instruction
set with delayed branch semantics.

For pipeline stages k = 0; :::; 4, nonnegative integers i, and cycles T we
denote by

I�(k; T ) = i

the fact that instruction Ii is in stage k in cycle T . We have

I�(k; T ) = i $ T = 5i+ k:

The content of a register R in cycle T is denoted by RT .
Suppose execution of instruction Ii is in stage k during cycle T 0 and the

output registers of stage k will be clocked at the end of this cycle. The round
robin updating schedule then implies that i) all registers above stage k have
already the value they will have after instruction Ii, and ii) all output registers
of stages k and below still have the values they had after instruction Ii�1. This
is asserted in



CORRECTNESS OF A DELAYED PC MECHANISM 583

NextPC

DM

GPR

IM

M

WB

EX

ID

IF

out(3)

out(2)

out(1)

out(0)

PC’ DPC

out(4)

Figure 1 Data 
ow between the pipeline stages of the DLX� design

NextPC

IM

4

RS1
ID

IF

reset0 1
��
��
��
��

Add(32)

0 1

0 1

Add(32)

��
��
��
��

PC’

0

DPC

reset
4

bjtaken

jumpR 0 1

imm

Figure 2 PC environment of the DLX� design



584

NextPC

4

RS1

Add(32)

0 1

0 1

reset0 1
����

Add(32)

����

IF

reset

PC’

4
bjtaken 0

dpc IM

ID

jumpR 0 1

imm

Figure 3 PC environment of the DLX� design

T reset ue[0] ue[1] ue[2] ue[3] ue[4]
0 1 1 0 0 0 0
1 0 1 1 0 0 0
2 0 1 1 1 0 0
3 0 1 1 1 1 0
4 0 1 1 1 1 1
� � � 0 1 1 1 1 1

Table 1 The activation of the update enable signals ue[4 : 0] after reset. For all i, signal
ue[i] enables the update of registers and RAMs in out(i).

Theorem 3. Let I�(k; T
0) = i and let R be an output of stage s. Then

RT 0

=

�
Ri�1 if s � k
Ri if s < k

A formal proof uses the fact that Ri�1 = R5i and proceeds for T = 5i + k

by induction on k.

PIPELINING AS A TRANSFORMATION

Machine DLX� is transformed into a pipelined machine DLX� in two steps:
i) Register DPC is bypassed as shown in Figure 3. This is not surprising; reg-
ister DPC is an artifact introduced in order to construct a sequential machine
for a delayed branch semantics. ii) Following reset the stages are updated as
indicated in Table 1.

The schedule for this machine is described by the following function I� :

I�(k; T ) = i $ T = k + i:



CORRECTNESS OF A DELAYED PC MECHANISM 585

stage s I�(s; T ) I�(s; T � 1)
k-1 i
k i i-1

Table 2 Illustration of the scheduling function I� for the stages k � 1 and k.

If forwarding and a hardware interlock are added this formula has to be replaced
by a more complicated inductive de�nition [15].

That the pipelined machine simulates the sequential machine is asserted in
Theorem 3. In the absence of forwarding and hardware interlock a hypothesis
is required about the programs executed.

If we talk about the same register R in the sequential and the pipelined
machine, we call one R� and the other R� .

Theorem 4. Suppose for all i holds that if Ii reads general purpose register
R, the instructions Ii�1; Ii�2 and Ii�3 do not write R. If I�(k; T ) = i and R

is an output register of stage k, then

RT+1
� = Ri:

Proof. The proof is done by induction on T . For the cycle T = 0, the
hypothesis follows from the reset mechanism, e.g.,

PC 01

� = 4 = PC 0

�1:

The induction step from T � 1 to T has 5 cases, one for each stage. They all
follow the same pattern. Let R be an input register of stage k and let T 0 be the
cycle when instruction Ii is in stage k in machine DLX�, i.e., I�(k; T

0) = k.
The technical problem is to argue that

RT 0

� = RT
� :

If we can show this for all input registers of stage k then in the corresponding
cycles T and T 0 stage k has in machinesDLX� andDLX� the same inputs. Be-
cause the stages are identical they produce the same output and the induction
step for stage k follows.

The tricky arguments are those dealing with registers R of a stage below
stage k. We present here only the case k = 0 (instruction fetch) and k = 1
(decode). For the remaining cases we refer to [15].

Case k = 0. In case of stage k = 0 (instruction fetch), we have to justify that
the delayed PC can be discarded. The input register PC 0 is an output register
of stage 1. We have I�(0; T ) = i. The scheduling function implies

I�(1; T � 1) = I�(0; T � 1)� 1 = i� 2:

This is illustrated in Table 2. Using Theorem 3 with stage s = 1 we conclude



586

stage s I�(s; T ) I�(s; T � 1)
1 i
2 i-1
3 i-2
4 i-3 i-4

Table 3 Illustration of the scheduling function I� for the stages 1 to 4.

PC 0T
� = PC 0

i�2 by induction hypothesis
= DPCi�1 by the construction of delayed PC

= DPCT 0

� by Theorem 3

Case k = 1. The induction step for stage k = 1 (reading of the operands)
uses the hypothesis about the program. In either design, the decode stage has
as inputs some registers R 2 out(0) and the register �le GPR 2 out(4).

For R 2 out(0), the scheduling function implies

I�(0; T � 1) = I�(1; T ) = I�(1; T
0) = i;

as illustrated in Table 2. Using Theorem 3 with stage s = 0, we conclude

RT
� = Ri = RT 0

:

If instruction Ii reads a register GPR[r] only the value GPR[r]T can be
used. The scheduling function implies (Table 3)

I�(4; T � 1) = i� 4:

For i � 4, we conclude using Theorem 3 with stage s = 4 that

GPR[r]T� = GPR[r]i�4 by induction hypothesis

= GPR[r]T
0

� :

According to the hypothesis of the theorem, instructions Ii�3; : : : ; Ii�1 do not
write register GPR[r] and hence

GPR[r]i�1 = GPR[r]i�4:

i � 3. The update of the register �le GPR is enabled by signal ue[4]. The
stall engine (Table 1) therefore ensures that the register �le is not updated
during cycles t 2 f1; 2; 3g. Thus,

GPR�1 = GPR1
� = � � � = GPR4

�:

The hypothesis of the theorem implies that instructions Ij with 0 � j < 3 do
not write register GPR[r]. Hence,

GPR[r]�1 = � � � = GPR[r]i�1:

By Theorem 3 with stage s = 4, we conclude

GPR[r]4� = GPR[r]i�1 = GPR[r]T
0

� :



CORRECTNESS OF A DELAYED PC MECHANISM 587

CONCLUSION

Using the construction of delayed PC's we have shown the correctness of a
pipelined machine with delayed branch.

References

[1] Phillip J. Windley, \Formal modeling and veri�cation of microprocessors",
IEEE Transactions on Computers, 1995, 44(1), 54{72.

[2] Mark Bickford and Mandayam Srivas, \Veri�cation of a pipelined micro-
processor using Clio", Proceedings of the Mathematical Sciences Institute
Workshop on Hardware Speci�cation, Veri�cation and Synthesis: Mathe-
matical Aspects, Springer, 1990, volume 408 of LNCS, 307{332.

[3] James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horn-
ing, \Using transformations and veri�cation in circuit design", Technical
report, Digital Systems Research Center, 1991.

[4] Jerry R. Burch and David L. Dill, \Automatic veri�cation of pipelined mi-
croprocessor control, Proc. International Conference on Computer Aided
Veri�cation, 1994.

[5] Jeremy Levitt and Kunle Olukotun, \A scalable formal veri�cation
methodology for pipelined microprocessors", 33rd Design Automation
Conference (DAC'96), Association for Computing Machinery, 1996, 558{
563.

[6] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani, \You as-
sume, we guarantee: Methodology and case studies", Proc. 10th Interna-
tional Conference on Computer-aided Veri�cation (CAV), 1998.

[7] W. Damm and A. Pnueli, \Verifying out-of-order executions", Advances
in Hardware Design and Veri�cation: IFIP WG 10.5 Internatinal Confer-
ence on Correct Hardware Design and Veri�cation Methods (CHARME),
Chapmann & Hall., 1997, 23{47.

[8] K.L. McMillan, \Veri�cation of an implementation of Tomasulo's algo-
rithm by composition model checking", Proc. 10th International Confer-
ence on Computer Aided Veri�cation, 1998, 110{121.

[9] A. Shen and X. Shen, \Using term rewriting systems to design and ver-
ify processors", IEEE Micro Special Issue on Modeling and Validation of
Microprocessors, May/June, 1999.

[10] G. Kane and J. Heinrich, \MIPS RISC Architecture", Prentice Hall, 1992.

[11] SPARC International Inc., \The SPARC Architecture Manual", Prentice
Hall, 1992.

[12] Hewlett Packard, \PA-RISC 1.1 Architecture Reference Manual", 1994.

[13] J.L. Hennessy and D.A. Patterson, \Computer Architecture: A Quantita-
tive Approach",Morgan Kaufmann Publishers, INC., San Mateo, CA, 2nd
edition, 1996.



588

[14] D.A. Patterson and J.L. Hennessy, \The Hardware/Software Interface",
Morgan Kaufmann Publishers, INC., San Mateo, CA, 1994.

[15] S. M. Mueller and W. J. Paul., \The Complexity of Simple Computer
Architectures II", Lecture notes, to appear as a book, 1999. Email:
fsmueller,wjpg@cs.uni-sb.de.


