DECISION TREES AND RANDOM ACCESS MACHINES Y

by W. PauL and I. Simon

AnsTRACT: Unil cost random access machines which add, substract
and multiply require time £ (n log A1) to sort n numbers or to perform
certain sequences of n information retrievial operations. If the randor
access machines can also use integer division and boolean operations
these bounds do not hold.

I. INTRODUCTION AND RESULTS

Decision trees are an abstraction of random access machines (RAMS).
In the decision tree model nontrivial lower bounds for several sorting and
searching problems are known [AHU]. In this paper we exhibit a technigue
which allows in some cases to turn these lower bounds into bounds for the
original RAM model. .

OQur RAM model is the model described in [AHU] with instruction
set -+, =, % and uniform cost measure. Registers are addressed by naturai
numbers; for natural numbers i, <[> denotes the content of register 7 ;
A denotes the content of the accumuldtor i.e. the content of the Tegister
with address 0. A program P is a finite sequence of lines (/,, ..., /) where
edch line has the format “label! instructior”. ‘

W.l.o.z. we may assume that for all § the label of lisie [, is j. The instruc-
tions can come from the following list.

Aei, Ade <i>, de<<is>>

<i>ed, <<iz>> 4

A+ Adg <i> where oe{+, =, x}, ieN

il 4 > 0 then goto label j, else goto label j, start, stop.
Execution of | line is counted as 1 step. Inputs for our RAMS are

sequences x = (x,, .., x,) of natural numbers. They are assumed to be
initially in registers I, ..., n. The content of register { alter execution of the
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program is the i'th merput. et e No A program sorts n numbers if for all
inpui sequences x = (v, ..., .x,) the first 7 outpuls produced by the program
ATE Xy(1yr oo .x,,,;,—, where = is a permutation of {1,..,n) and x,, < ..
;- Clearly nn numbers can be sorted in O (i log 1) steps say by merge

L X

sorl.

afn
=

TuconeM b For farge 0 the worst -case complexity of any program
that sorts 1 numbers iy at least (nf2) (leg n—2).

This theorcm has independently been obtained by Charles Rackoeff.
For machines that also use division but no indirect addressing the same
result has been proven by Hong Jiawei.

A program solves the nearest neighbour problem of size n if for all
inputs (xy, voy Xpu F(s .-y J,) the first # outputs produced by the program are
(x,-[, v &) where for all |

pelitlx, —pl<ix, —=p| forall j}.

This problem can easily be solved on-linc by using balanced trees,
even without using multiplication instructions, in time O (rlog n).

THEOREM 2. For large 1 the worst case complexity of any program that
safves the nearest neighbouwr prablem of size n is af least (nf2) (log n—2).

A program solves Lhe symbol table problem of size n if for all inputs
(Xy0 coos Xps Jtys ooy #) the Frst n oulputs produced by the program are
2y, o 2y Where lor all /

o {0 iroyé{xg, .. x,

some index 7 such that y, = x; otherwise.

This problem can be solved in real time by making < x, > = § for all
ie {1, .., 11}, even without using any arithmetic operations. The space
(largest address visited) used by this program is not bounded by any function

" of . Using balanced trees the problem can be solved on-line in time
O (nn log n) and space O {n}, thus space has been traded against time. This
cannol be avoided:

Tueonem 3. For large 1 the worst case complexity of any program
that salves the symbal table problem of size n using space bounded by any
Sunction f(n) s at least (nf2) (logn—2).
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If the instruction set of our RAMS is augmented by integer division
and by beolean operations (componentwise negation and componentwise
AND of register-contents, which are imagined to be binary representations
ol numbers) the bounds of theorems 1 and 3 collapse.

TueorcM 4, RAMS with integer division and boelean operations can
sori 1 numbers and solve the spmbol table problem of size n in time and
space O (). i

2. LOWER BOUNDS

Let P = ((1 :ay), ..., (p :2,)) be a program which halts for all n-tuples
of inputs x = (x|, ..., x,) after at most ¢ steps.

We associate with P a decision tree T, i.e. a rooted binary tres where
to each node » an instruction « (v) is associated and some edges are labelled
with “yes™ or “*no”. The tree is an abstract model of coniputation and the
instructions & (v} do not necessarily come from the list of instructions of
the RAM. The tree T is inductively defined by the following process:

(2.1)  If v is the root then o« (v) is the start Instruction.
(2.2) If (v} is the stop instruction « is a leaf,
(2.3) Il'ax{w) equals “if 4 > 0 then goto j; else goto j,” then v is replaced

by figure 1.
(24 Ho() =a; and a; equals “4 « A ~ < {>" then v is replaced
by figure 2.
(2.5) In all other cases if « (v) = «; then v gets one son v and o (v7)
= Dﬁj+[.
A>07 A > <i> 7
yes nog yes no
o ol Aeh —-<1¥ A<0.
4 J2 :

U{;J+1 dj-ﬂ

Fig. 1 Fig. 2
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In an obvious way the decision tree 7 “does the same” as the program.
It may be infinite but because the program stops [or all n-tuples of inputs
alter at mosl ¢ sleps no node in the tree of depth greater than 27 is reached.
Therefore we may as well prune the Lree at depth 2, Let J = {f,,, very Ty
he the set of addresses occuring in the instructions of program P, w.lo.g.
m=andnd i, = 0,.., 0, = n With each node v of T and each je N we
associate A palynomial p,; in Lhe indeterminates X, ..., X, The intended
meaning of p, ; (x) is the content of register /i the input is x and control
has just passed node o in the decision tree. The polynomials are inductively
definerl: '

(2.6 I v is the root Lhen

X, it jef{l,...n
Dy § = |
Pu, ; 0 otherwise.

IT » is a son of & and p,. ; is defined Tor all ancestors w ol v {including u)
and all j& N then p, ; is defined in the following way:
2.1 Irnt(ﬂ}equnlsA«—A‘o<f>,oe{+,——.x},then
{ Mo@ Pu.l ‘r J =0
I'Ju. i = .
Pu. i otherwise.
(2.8) Ifa{w)equals <i> « Aor

<<k =>> « dand p,, =ifor some ieN then

Y ) e Pu.n ir j = i
. Poi = P i otherwise.

(29) Ife(u)isatest (A>070r A> <i=>7) or the stop instruction or

a(@)equals <<k >> « Aand p, , = iforall i N then g, ;

= p,. ; forall j.
(2.10) [f e (v) equals A « i then

i it j=20
e = .
Py [ Pu, i otherwise.
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R Ma@equals 4 «~ <i>orafw) equals 4 ~ <<k >> and
) Pux = i for some e N then

p _ pu.i’ ]f J =1
" Py, ; otherwise.

(212) If a(v) equals A« <<k >> and p, , &7 for all /e N then
trace the path in T from the root to » until the last node w such
that « (w) equals < <! >> « 4 and p,, =p, . Then

P - p\\-.ﬂ if J =10
o Pu. s otherwise.

If no such node w can be found then

0 ir j=0
Poy = Pu, otlierwise.

So far this is just a farmal definition. We have treated the polynomials
associated with indirect address like values. Figure 3 illustrates a situation
whiere ihe polynomials certainly do not have the intended meaning if
Puk = Pu,1 7 Pz o but the input x is such that p, ,(x) = p. . (x) and
Pu,o (X) # Prg (x).

root

WLy —-—A
z : <Lg3>-—A
v Ae— kDo

Fig. 3

Let I' = T u {i]p, = for some v, k}.

Let @ be a set of polynomials in tlie variables X, ..., X,. We call x
adriissible for 'if for all py, p, € Q with jp, 3 p, we have g, (x) # p, (x)—j
By induction on the tree T one can show now, that for ie /' the values
Po,i(x} have the intended meaning if x is admissible for @r: = T U

Y -
v, i

We explain only the inductive step for the case (2.12). By induction
hypothesis p, , (x) is the address of the cell whose content is transferred
into the accumulator when control reaches node v. Suppoese a node w can
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be found on Lhe pathrom the root of Ttov such that & (w) equals << ! >>
~ Aand p, ;== p, ., and suppose w is the last such node. Again by induc-
tion hypothesis p,,. , (x} is the value which was written into register p,, ; (%)
= p,., (x) when control was at node w. We have to show that nothing was
written into register g, , (x} since control passed node w. Thus let w’ be a
nade belween w and w' and ¢ (w')equals <i> «— A or < <m > > A
In the first case i # p,,, (x) because I = Qr, the paolynomial p, , is not
consiant and x is admissible for @, In the second case by induction
hypothesis p,. . (x) is the address of the cell inte which the content of the
accumulator is writlen when control is at node w'. By definition of w we have
P m F Puo thus by the admissibility of x we can again conclude g, ,, (X)
# Pk (t)

i no node v as ahove can be found then one proves in the same way
that nothing was ever wrillen inlo register p, , (x) belore control reached
nade ».

If @ is finite then the polynomial

(2.14) Re:= I (m—p)

pi pjsd
ri#pg

is nen-zero and x is admissible for iff Ry (x) # 0.
IT R is a polynomial,

(2.15) R(X) = ) a X5t X0
- ] u]»l-...+u,‘=i

i
and a, # 0 lor some o with o, + .. + &, = n1, then mt is called the degree
of R, deg R = m,

Let n be a permutation of (I, .., n). x has erder type m if Xy < ..
< Xy The existence of inputs of any order type which are admissible for
@ lollows lrom

Lemma | If R is a polynomial in Xy, .. wdeg R=m and n isa
pernutation of (1, .., n), then there is x EN" of order type m .sua'.v’r that
R{x) 0 and (,\l, xyedl,. ,m+n}" !

1t suppices to prove the lemma for 7 the identical permutation. This is
done by induction on #. For nn = 1 the lemma holds because an m th-
degree polynomial in one variable has at most m zeros. For the induction
step let

X

(2.16) R = T Ry, Ko X
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Since R = 0 we may assume R, = 0. Let r = deg R,. Then r+ 5 <l
By induction hypothesis R, (xy, .., x,-;) #0 for some (xy, .., Xpot)
e{l,..rtn=1}""" with x <..<x,_,. Choose x,¢ {r+n, .,rts
+n} such that the s'th-degree polynomial

¥

Z Rf(xl! "'vxrr—l) Xli:l
i=0

is non zero in x,,. ]

Preaf of theorem 1 : Let P be a program that sorts » numbers, T the
associated tree, # a permutation of (I, ..., m), x an admissible input for Oy
of type m and v the leal which is reached if the decision tree T is used with
input x. Then p,, ; (x) = xyqy forallie {1,..,n}]. Because X, ..., X, € Qr
and x is admissible for @y this is only possible if py= Xy for all i
e -[ Iy vyl } Therelore T has at least i | leaves, hance its depth i4 not less
than n {log n—2}. ] . |

Proof of theorem Z: Let (x,¥) = (Xys ., Xp Fps oo ) € N?" and
7 a permutation of (I, .., ). We say (x, y) has neighbour (ype n il for
all iyje {tan) | xn= | <] x5 |.

In a way analogous to the proof of lemma 1 one easily shows that il R
is a polynomial in X\, ..., X,, ¥y, ..., ¥, and = is a permutation of (1, ..., n}
then there is (x, z)ENZ" of neighbour lype # such that R (x,y) # 0.
Theorem 2 follows. T

Proof of theorem 3 : 1If p (X, Y) is a polynomial with variables Xy, ..., &,
¥,, .., Y, and & a permutation of (1, ..., n) then let

Xy = pX, Xy qay oo X m)

Note that if p*(X) = for some fe N, then p(0,...,0) = [, hence f
is the constant term of p.

Now suppose Lhe polynomials p,,, (X, ¥) have been defined for a tree 77
corresponding to a program P that solves the symbol table.problem of
size # in space [ (n), but (2.12) has been replaced by

(2.12) If « (v) equals 4 « <<k >> and the constant term of g, ; is f

then :
Pu, f if i=0
pu.j = .
Pu g otherwise.
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Lct v be admissible lor the set of polyrominls

Q= v p,ulil, o d (M}

wion
We claim for all permulations
(2.17) If during the computation with mput (X, Xpgp s oo Xggy) DOdE

in T is reached then for all i e { ].....,f(n)} the values
Poi (X0 Xogg s ooy Xopy} Nave the intended meaning.

This is proven by induction on the tree and it is obviously true for the root.
Suppose it holds lor the father v of ».

It only remains to consider the case where o () equals 4 — <</ >=.
By the space bound and the induction hypothesis Max (X e {] f(n)'l
Becavse x is admissible for @ we conclude Mk (XY= [ for some
Je i, f(n)} Moreover, fis the constant term of p, .. {2.17) now follows
From lhe definitions of the polynomials p, ; and the induction hypothesis.

Now il = is a permutation and v the leal of 7" which is reached with
inpul (x, r,,tn‘ e Famy) Lhen py  {x) = n(:) Because x is admissible for @
this implies py =27 (/) which in turn implies that the constant term of
Po.i is (i) Thc existence of n ! leaves in T follows, O

3. UrrErR BOUNDS

Praof of theorem 4 : a) For sorting: Given integers ey, ..., &, in registers
Xy w0 Xy, find the maximum, say x,, of all &, Let / be the Iength of the
binary representation al x,,.

We shall compute the rank of every «; — i.e. compare each x, with all
i; and count how many are greater than it. Note that if we have

Aol 1o
8 ... OTCJO e

in regislers 4 and B, with r;, xpin matching positions, then, regardless
to the rest of register 4 and 8,.C = 4 — B will contain a | in the bit
pasitions nnmcclmtely to the left of the most significant bit of x; (where A
did have a 1Y il «; 5 s,
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So, (o sort, we obtain, in a single register, # copies of | 1, ey Fon L, ]
concalenated to each other, and (Ow,;0); (0xz0)" ... (0x,0)" in another with
the length of all the x; padded out to / with leading zeros. This can be done
with O (m) instructions. A single substraction yields all the comparisons.
An AND with the bit string (10°* 1) retrieves them, and O (log #) shift
and add moves compute the ranks at positions i {/+2m). The 1; can be
ordered in O (1) moves with this information, by retrieving the rank of
each w;, and putlting it in its proper position in a constant number of
maoves. 0

b) For the symbol table: We show that the x;'s can be processed in
linear time and that the p;’s can be processed in reaf time. We treat all the
x;'s as I-bit strings lor the same /. For i€ {1 n} bin (E) denotes the
binary representation of 7 of length | log n } + 1 Let k =1+ Llognl
+ 2. Suppose X, ..., X, have already been processed and X, ..., X, are
the distinct values of xy, ..., X, Suppose the {ollowing strings have been
built up.

(3.1} Z =70y
= Dx,j bin (i) .

where for each j

(3.2) M o= (10"~ H™,

We show how to process x,,4,: Multiply the mask A7 by x,,,, shilt /
bits right a boolean “=" with z gives 1' in positions k;_y, ..., &, iff
Xpsp = Shiﬂlng M 1 bits right and adding it gives [ in position &;
x4, = \, An AND with M shifted | to the lelt gives a string with at
most one | wh:ch is in position k; iff x,.., = x;,. Test for 0 in order to
decide if Z and M have to be up-dated. Updating can easily be done in
constant time.

The problem of processing a y, is almost identical with the problem of
PrOCESSING X,,4 . I the test for 0 above is negative one has to extract bin (i;}
from Z which is easy with the help of the string with the 1 in position ;.
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