
Temporal Fairness of a Microkernel Scheduler

Matthias Daum

Computer Science Dept., Saarland University
Saarbrücken, Germany
md11@wjpserver.cs.uni-saarland.de

1 Introduction

We report on the formal verification of a microkernel’s temporal property, namely that
its multi-priority process scheduler guarantees progress, i. e., strong fairness. This paper
summarizes parts of a journal article [2].

Our microkernel Vamos provides an infrastructure for a dynamically changing number
of processes, for memory virtualization, for inter-process communication (IPC), and for
user-level device-driver support. The kernel establishes process switches according to IPCs
and timer events. The process scheduling, however, follows a hierarchy of priorities, favoring,
e. g., system processes over application processes over maintenance processes. Processes may
control the kernel tasks and access kernel services via so-called kernel calls. A minimal access
control is built into the kernel to restrict the kernel calls according to a user-defined policy.

For space restrictions, we cannot present the microkernel or our formal foundation at
large. We refer the interested reader to a previous publication [1]. In this paper, we confine
ourselves to a short summary on the scheduler functionality as well as the formal kernel
model that serves as basis for our verification efforts. In Section 4, we reveal insights into
our fairness theorem. Finally, we conclude in Section 5.

2 Scheduler

The basic policy underlying the scheduler in Vamos is round-robin process selection. This
basic policy, however, can be adjusted by two regulators: priorities and timeslices.

Our scheduler supports three different priority levels. Only processes in the highest, non-
empty priority class will be scheduled. Processes in a lower class wait until no processes are
ready to compute in any higher priority class. This policy is also known as static-priority
scheduling though technically, priorities might be adjusted through kernel calls at any time
during run-time.

Within one priority class, the timeslice determines how long a certain process may
compute until it is preempted in favor of another process of the same priority class. Thus,
timeslices determine the relative weight of process run-times while priorities lead to the
preemption of lower process classes.

Inside the kernel, time measurements are based on a timer device, which periodically
raises its interrupt line. In particular, we measure the run-time of processes and the waiting
time for IPC in clock ticks. Note that the kernel implementation maintains a solely relative
notion of time.

3 Underlying Kernel Model

We base our temporal proof on an operational kernel model, or more precisely, the formal
specification of the kernel, which is used for the verification of functional implementation



correctness. This model is a state automaton. The state space contains the state of the
currently running processes as well as information about the scheduling internals, access
control rights, and pending device communication. A transition of the Vamos specification
depends on a device input and has up to three phases:

(a) At first, the current process is advanced. This operation is either process local or it
handles a kernel call. (b) If the device input indicates that the timer-interrupt line is raised,
the scheduler increases the consumed time of the current process and a global counter,
which measures the waiting time for IPC. Afterwards, the kernel wakes up all processes with
elapsed IPC timeouts. (c) Finally, Vamos delivers interrupts to waiting driver processes and
saves the remaining interrupts for later delivery.

4 Scheduler Fairness

According to the taxonomy of Francez [3], we formalize the temporal property of strong
fairness for our scheduler. In order to state this property in reasonable succinctness, we
establish several abstraction layers on top of the operational kernel model. At first, the
operational model only formalizes states and transitions. For temporal reasoning, however,
we need execution traces. We represent a trace by two functions states and inputs that map
the step number to the current state and to the device input for the next step, respectively.

Definition 1 (Trace). Two functions states and inputs describe a trace iff (a) The first
state is in the set of initial states and (b) for each step number, the transition relation holds
for the current state and input and the successor state.

Furthermore, we need an invariant invV over the state sequences for reasoning about the
behavior of a trace. This invariant is quite elaborate such that space restrictions prohibit
its presentation. We show that this predicate indeed is an invariant over the traces:

Lemma 1 (Invariant). Predicate invV is an invariant over traces.

Proof. We prove this statement by induction. At first, we establish invV for all initial states.
At second, we show that invV is maintained by the transition function. Finally, we derive
our claim by the definition of traces. Note that despite this short sketch, the formal proof
is quite elaborate because of the complexity of the kernel specification and the invariant.
Its verification took more than two person months. ut

With these prerequisites in place, we can formulate our scheduler’s fairness property.
Recall that the process scheduling follows a hierarchy of priorities. We describe this phe-
nomenon by the notion of prioritized fairness. In our system, the scheduler can only guar-
antee fairness under several assumptions:

1. Any temporal fairness statement certainly excludes terminating processes. Note that
processes might still terminate in our system, we can just not say that the scheduler
would treat terminating processes fairly.

2. Changing the priority class of a process contradicts the notion of static-priority schedul-
ing. The scheduler does not treat a process fair if its priority is changed infinitely often.

3. If a process chooses to wait infinitely long for an IPC operation, it might starve. This
problem is certainly not the fault of the scheduler but a programming or protocol error.

2



4. Our scheduler relies on a live timer device. At this time, the next process is selected
from the highest, non-empty priority class. In other words, a process is only scheduled
at all if it has the maximal priority when the timer is on.

With the current state of affairs, however, a formal statement requires explicit quantifi-
cation on step numbers over the states and inputs functions. We have proven the theorem
on this layer for methodical reasons: The larger context of this work is pervasive systems
verification and the long-term goal is a coherent theory in a single theorem prover. Con-
sequently, a specialized theorem prover for temporal logic is insufficient in this context.
Hence, we combined the best of both worlds and embedded future-time linear temporal
logic (LTL) with action Kripke structures into Isabelle/HOL [4]. Thus, we can integrate
our main theorem into the overall context while presenting it in LTL:

Theorem 1 (Prioritized Fairness). The Vamos scheduler is fair with respect to priority
classes, i. e., if a process pid (1) finally never terminates, (2) finally remains forever at the
same priority class, (3) does infinitely often not pend in an IPC operation with an infinite
timeout, and (4) has infinitely often the currently maximal priority when the timer interrupt
is raised, it will always eventually progress. Formally:

〈S0
V, ΣV, δV〉A � ♦�(λ(i, s, n) : process exists(s, pid)) =⇒

♦�(λ(i, s, n) : n.priority(pid) = s.priority(pid)) =⇒
�♦(λ(i, s, n) : ¬pending infinite ipc(s, pid)) =⇒
�♦(λ(i, s, n) : has maxprio(s, pid) ∧ is timer on(i) =⇒
�♦(λ(i, s, n) : progress(s.procs(pid), n.procs(pid)))

For lack of space, we can neither present the detailed formalization of the above theorem
nor a proof sketch. The formal proof based on the quantification over the trace functions
took about eight person months and is available at the public Verisoft repository.1 Though
the LTL layer permits a considerably more succinct statement, its formalization and the
abstraction of the original statement could be accomplished in just about a person week.

5 Conclusion

During verification, we found a bug in the temporal behavior of our implementation, which
cannot be found in a step-wise refinement proof. This finding demonstrates the immediate
practical usefulness of our proof. Furthermore, our proof can be integrated with a refinement
proof that links our underlying model to the C implementation. To our knowledge, this is
the first verification result that establishes a temporal property on a C implementation.

References

1. Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan. Model stack for the pervasive verification of
a microkernel-based operating system. In VERIFY Workshop, pages 56–70. CEUR-WS.org, 2008.

2. Matthias Daum, Jan Dörrenbächer, and Burkhart Wolff. Proving fairness and implementation correct-
ness of a microkernel scheduler. Journal of Automated Reasoning, Special Issue on Operating System
Verification, 42(2-4):349–388, 2009. DOI: 10.1007/s10817-009-9119-8.

3. Nissim Francez. Fairness. Springer, September 1986.
4. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. Springer, 2002.

1 The public Verisoft Repository is available at http://www.verisoft.de/VerisoftRepository.html.

3


