
Verification of TLB Virtualization
Implemented in C

Eyad Alkassar1, Ernie Cohen2, Mikhail Kovalev1, and Wolfgang J. Paul1

1 Saarland University, Saarbrücken, Germany ?

{eyad, kovalev, wjp}@wjpserver.cs.uni-saarland.de
2 European Microsoft Innovation Center (EMIC), Aachen, Germany

ecohen@microsoft.com

Abstract. Efficient TLB virtualization is a core component of modern
hypervisors. Verifying such code is challenging; the code races with TLB
virtualization code in other processors, with other guest threads, and
with the hardware TLBs, and implements an abstract TLB that races
with other abstract TLBs and guest threads. We give a general method-
ology for verifying virtual device implementations, and demonstrate the
verification of TLB virtualization code (using shadow page tables) in the
concurrent C verifier VCC. To our knowledge, this is the first verification
of any kind against a realistic model of a modern hardware MMU.

Keywords: Shadow Page Tables, TLB, Hardware/Software Interaction,
Automatic Verification, Virtualization

1 Introduction

A major challenge in the formal verification of low-level system software is deal-
ing with devices. Because devices run in parallel with software, they typically
necessitate concurrent program reasoning even for single-threaded software. Ex-
isting verifications of software that interacts with devices (e.g., [3]) rely on trans-
forming the software and hardware into a single transition system. Similarly, ver-
ifying correct device virtualization requires reasoning about simulation, which is
usually viewed as a relation between transition systems (rather than a property
of a single program), and so likewise depends on treating the entire program
as a big transition system, an approach sufficient for toy programs but hardly
appetizing for industrial-scale software verification.

In this paper, we show how software that interacts with and simulates devices
can be verified directly in VCC [4], a verifier for concurrent C. VCC provides
several features that are central to our methodology:

– it supports verification of programs with fine-grained concurrency, which is
generally needed for programs that deal with devices,

? Work partially funded by the German Federal Ministry of Education and Research
(BMBF) in the Verisoft XT project under grant 01 IS 07 008.

– it provides ghost state, which we use to represent the abstract state of a
virtual device,

– it provides two-state object invariants (i.e., invariants that constrain not only
the states of an object but its atomic state transitions also), which we use
to express the desired behavior of the virtual device,

– it provides ghost code, which we use to witness the existence of simulation-
preserving updates to the abstract state, allowing forward simulation to be
expressed using ordinary program reasoning.

We apply our methodology to verify the (partial) correctness of C code (the
hypervisor) that virtualizes the MMU of an x64-like processor3. The purpose
of such virtualization is to provide, to several virtual machines (VMs), each
running its own operating system, the illusion that every VM is running alone
on a physical machine, even though different machines might try to configure
their page tables to use the same physical addresses. To provide this illusion,
the algorithm provides an additional level of address translation beyond what is
provided by the hardware MMU. It does this by maintaining a separate set of
shadow page tables (SPTs) for each VM, each SPT shadowing a page table of
the guest (GPT). These SPTs are the tables actually used by the hardware for
address translation, but are kept invisible to the VMs.

The guest TLB-controlling instructions, such as TLB invalidation (INVLPG)
or modification of control registers (e.g., CR3 register), are intercepted by hard-
ware and virtualized by the hypervisor. When a memory access by the guest
results in a page fault (#PF) the hypervisor emulates the steps of the virtual
MMU by walking the GPTs, setting access (A) and dirty (D) bits in the GPTs,
and caching the translations in the SPTs. A correct SPT algorithm guaran-
tees that the virtual TLB (VTLB), provided to the VM by the hardware TLB
(HTLB) together with the intercept handlers, behaves accordingly to the hard-
ware specification and provides appropriate translations to the guest running in
the VM.

The verification target is interesting for several reasons. First, efficient MMU
virtualization is perhaps the trickiest part of building correct hypervisors for
modern processor architectures (particularly for machines without hardware
SLATs). Second, precise reasoning about MMU behavior is central to the cor-
rectness of efficient memory management software; because flushing part or all
of a TLB is expensive, memory managers often use clever tricks to avoid flushes
whenever possible by allowing the TLBs to drift out of synchronization with
the page tables (PTs), and using obscure properties of TLB behavior [5] (e.g.,
that the MMU will set an accessed bit in a nonterminal page table entry (PTE)
atomically with its read of that entry, rather than in a separate memory trans-
action) to deduce that certain translations are not in the TLB. Third, in spite
of the critical importance of MMU behavior, it has never been seriously treated
in OS kernel verification. For example, the Verisoft project [3] used a synthetic

3 While the proof involves specification of many additional functions and data struc-
tures, the top-level result depends only on the definitions of the hardware behavior
and the coupling relation between the virtual and concrete states (Section 4).

hardware model without TLBs, while the L4.verified project [6] explicitly as-
sumed that the TLBs were kept in sync with the page tables, essentially making
the TLBs transparent to software. The similar approach was chosen in the Nova
micro-hypervisor verification project [7], which used an abstract model of IA-32
hardware with MMU, but without the TLB.

In the rest of the paper we present an overview of the techniques we used for
modelling the concurrent hardware and for verifying the code in VCC, formulate
the VTLB correctness, and provide the annotated portions of the code crucial
for our verification methodology.

2 Verification Methodology

2.1 VCC Background

VCC is a (hopefully) sound, deductive verifier for concurrent C code. As in many
other modern, function-modular software verifiers, each function is specified
using preconditions, postconditions, and framing information (writes clauses);
when verifying the body of a function, the specifications of functions are used to
provide the meanings of function calls. VCC allows ghost data of various kinds
(locals, fields of data structures, and function parameters); ghost data is typi-
cally used to represent the abstract value of a data structure. Ghost data can
use mathematical types not provided by C (integers and maps of arbitrary size).

Where VCC most differs from other deductive verifiers is in its treatment of
data structures and concurrency. In each state, each object (i.e., each instance
of a C structured type) is classified as open or closed, and has a unique owner.
Only closed objects and threads can own other objects, and only threads can
own open objects. A thread can sequentially access only data in an open object
that the thread owns4; this guarantees that sequential operations in different
threads cannot interfere.

The volatile keyword has a special meaning in VCC, identifying the shared
data which may be changed in an atomic step without opening an object. VCC
allows each object type to be annotated with 2-state invariants specifying how
the system state may change (in a single atomic step). The invariant of an object
is only required to hold in transitions that begin or end with the object closed.
(Each type implicitly includes invariants stating that non-volatile fields of the
object do not change.) Unlike other verifiers, VCC object invariants can mention
arbitrary parts of the state, necessitating the following check: a transition is said
to be legal if it satisfies the invariants of all objects that it modifies; an object
invariant is said to be admissible iff it is guaranteed to be preserved by all legal
transitions that do not update the object. VCC requires all object invariants
to be admissible; this check is made on the basis of type definitions (without
looking at code).

4 It can also sequentially read data that it knows (by virtue of object invariants) not
to be changing.

A typical idiom is for an invariant of an observer object to assert a property
of a subject object, this invariant holding because it was true at the time the
observer was formed and it is maintained by the subject. Because the subject
cannot be relied on to maintain any invariant when it is open, the observer
invariant must also guarantee that the subject stays closed. For this invariant
to be admissible, the subject must include an invariant that once closed, it
remains closed until there are no closed observers observing it. This idiom is very
common and useful (particularly for ghost objects), so VCC provides syntactic
support for it: subjects supporting such observers are said to be claimable, and
the supported observers are called claims. Each claimable object maintains a
count of the number of outstanding claims on it; the object cannot be opened
when the claim count is nonzero. When forming a claim that claims a set of
subjects and a particular property of the state, VCC does the corresponding
admissibility check “inline” to avoid having to introduce a separate object type.

One way to make an observer invariant admissible is for the subject invari-
ant to explicitly require a check of the observer invariant whenever the subject
changes state in a way that might violate this invariant. We describe this invari-
ant by saying that the observer approves such state changes. Approval provides
a general technique for semantic subclassing of concurrency in VCC. A type with
an invariant that does not use approval corresponds to a “closed” class (w.r.t
concurrency), in the sense that clients cannot strengthen the invariant of an ob-
ject of the type. A type in which certain updates are approved by a client allow
the client to effectively strengthen the invariant of the type as needed (to the
extent allowed by his approval). This is the norm when implementing concurrent
abstract data types. Approval of a volatile field of an object by a thread that
owns the object has the effect of making the field sequential from the standpoint
of the owning thread (except that it must still update the field with atomic
actions).

2.2 Modelling Hardware

When verifying a multi-threaded program that operates on shared data, the
normal procedure is to choose invariants on the shared data that are suitably
strong to verify the particular program. To specify a multi-threaded system, such
as a multiprocessor, we do not know what particular program will be run, and
so have to choose a “generic” invariant for the shared data i.e., the strongest
invariant maintained by the system. To construct this invariant, we introduce
a ghost variable indicating which component of the system is executing at each
step, and require that changes of the shared state (in the current verification,
the shared memory) are approved by the currently executing component.

There are two natural ways to model hardware devices in VCC. One is to
model a device with a program that exhibits all possible behaviors of the device.
This is convenient for verifying a program designed to run in parallel with the
device; the verification of the device code guarantees that the invariants required
by the program are not so strong as to be potentially broken by actions of the
hardware.

The other way to model a device is by modelling the device as an object,
where the 2-state invariant of the object gives the allowed transitions of the
hardware. This model is convenient for showing correct simulation of the device:
we model the virtual device state with ghost data, and show that each update to
this data (along with updates to concrete data, like shared memory) satisfies the
2-state invariant of the hardware. (In addition, we normally maintain a 1-state
coupling invariant between the concrete state and the virtual state, which has
to be maintained by updates to either concrete or virtual state.) In principle,
an object model could be used in place of the hardware thread, but there are
technical difficulties in doing this that go beyond the scope of this paper, so the
current verification uses both models.

3 Specification

The type of n-bit strings {0, 1}n is denoted by Bn. We interpret a string a ∈ B64

either as a 64-bit string, a natural number, or a PTE. We consider a quad-
word (64 bits) addressable memory, 45-bit long (quad-word) virtual addresses
(VAs), and (quad-word) physical addresses (PAs) 49 bits long (which correspond
to architecturally defined byte addresses of 48 bits for virtual and 52 bits for
physical addresses). We call the top-most 36 bits (for the VAs) or 40 bits (for the
PAs) the page frame number (PFN). We use the operator =l:: B36 7→ B36 7→ B
to compare the bits [35 : 9 · l] of two virtual PFNs.

3.1 Host Hardware Model

We model an x64 multi-core/multi-processor machine in the AMD64 style [1]
with the record h :: x64conf . Shared memory of the system is denoted by h.mm ::
B49 7→ B64. The hardware configuration of a processor h.p[i] consists of a register
CR3 giving the address of the root PT, a (processor local) TLB tlb tagged with
address space identifiers (ASIDs), a register asid providing the tag of the current
address space running on the processor, and an uninterpreted variable state
encapsulating the rest of the processor state. In order to implement and specify
the TLB lazy flushing mechanism (which exploits TLB tags), we introduce the
function asidgen(p), returning the generation of the tags which are still valid in
the TLB.

A single PT occupies one memory page (4KB long) and consists of 512 PTEs,
each being a 64-bit long union containing the page frame number pfn at which the
entry is pointing (40-bits long), accessed (A) and dirty (D) bits a and d, a present
bit p, and the bits denoting access rights. To simplify reasoning, we introduce
the set of access rights r where e.g., pte.r[rw] denotes the write access bit pte.rw,
with operations of rights comparison and rights restriction (i.e., addition):

r1 ≤ r2
def
= ∀j : r1[j] ≤ r2[j] r1 + r2

def
= λi : r1[i] ∧ r2[i] .

We model the TLB state as a set of page table walks, each of which summarizes
a partial or complete traversal of the page tables for a given VA. Each walk is

given by a virtual PFN vpfn, a level l giving the number of page table levels
remaining to be walked5, the page frame number pfn of the next page table to
be used for translation, the tag asid of the address space where the walk was
performed and a set r of access rights giving all rights not denied by the walk
gathered thus far. A walk is complete if its level is 0, and partial otherwise.

For the transition system of the host TLB we use the non-deterministic TLB
model from [2] extended with ASIDs. We distinguish between autonomous MMU
steps, s.t. walk creation, extension, deletion and setting of A and D bits and
the TLB-dependent abstracted processor steps, s.t. address invalidation (INVLPG
and INVLPGA), writing of CR3 register and TLB flush. We use the predicate
valid step(h, h′) to denote that the hardware has performed a valid step of the
transition system from configuration h to h′.

We assume that the hypervisor is running untranslated and abstract the
TLB to have no walks in the zero ASID (in AMD64 the hypervisor code is
always executed with ASID equals zero).

3.2 Virtual Hardware Model

A hypervisor provides to each VM (and to the guest code executed in the VM)
the illusion of running on its own private hardware. In the paper we provide this
illusion for a single VM (this can be easily generalized to multiple VMs mapped
to disjoint host memory portions).

The specification model is an abstract (virtual) machine g :: x64conf , which
resembles a slightly restricted hardware with the virtual memory g.mm and vir-
tual processors (VPs) g.p[i], i ∈ [0 . . . Np]. The hardware virtualization features,
such as tagged TLB and virtualization instructions, are not available for the
VM.

3.3 Memory Virtualization

The memory of the VM is mapped to some region of the memory of the host
machine by means of the injective function gpa2hpa :: B40 7→ B40, translating
guest physical PFN into the host physical PFN. Translations of guest virtual
to guest physical addresses are defined by the GPTs, which are located in the
memory of the VM and can be modified by the guest without notifying the
hypervisor. When the VM is running runs, the hardware TLB does not have
access to the GPTs, but rather operates with SPTs allocated and maintained
by the hypervisor.

SPT j of VP i is identified by a pair (i, j) and is obtained from the hypervisor
memory by the function6 spt(i, j). The function i2a(i, j) returns the host PFN of

5 To simplify the presentation, we do not consider large pages and legacy addressing
modes here, so each complete walk goes through exactly four page tables. Also, we
do not consider global page translations.

6 We assume configuration C to be an implicit parameter in all functions dependent
on the memory state.

the SPT (i, j). We organize the SPTs for each VP as a tree of SPTs, and assign
to each SPT a level ranging from 4 (top-level) to 1 (terminal). The entries of non-
terminal SPTs point to other SPTs, while the entries of terminal SPTs point to
memory of the VM (under the gpa2hpa map). The predicate walks to(i, j, px, j′)
denotes that SPT (i, j) points to SPT (i, j′):

walks to(i, j, px, j′)
def
= (spt(i, j)[px].pfn = i2a(i, j′)) .

The index of the top most SPT of VP i is denoted by iwo(i). The predicate
used(i, j) checks whether SPT (i, j) is in use by its VP or is free otherwise, the
function l(i, j) returns the level of the SPT (i, j) if it is currently used by the VP.
The function vpfn(i, j) returns the prefix of the SPT (VA range for the addresses
of the walks that might go through to this SPT) and the function r(i, j) provides
the accumulated rights from the top-level SPT to the SPT (i, j). The ASID of
the VP i is obtained by the function asid(i) and the ASID generation by the
function asidgen(i). The predicate re(i, j) checks whether the SPT is reachable
from the root iwo(i).

Guest instructions and exceptions that operate on the TLBs are intercepted
by the hypervisor so that they can be virtualized in the SPTs.

3.4 Correctness of TLB Virtualization

The abstract VM g is implemented on a host machine h running the hypervi-
sor code. The VM abstraction and the implementation are linked by a coupling
invariant. Correctness of the hypervisor is established by proving the simula-
tion between the abstract VM and the VM implementation running atop of the
hypervisor. More detailed, we have to show that (i) the coupling invariant is
maintained and (ii) the host transitions can be abstracted to valid VM steps
(i.e. respecting the hardware transition relation). These properties are encoded
by the following invariant:

Invariant 1 Let h and h′ be states of the host hardware machine and the cou-
pling invariant holds between h and g. Then it follows

coupling(h, g)∧ valid step(h, h′) =⇒ ∃g′ : valid step(g, g′)∧ coupling(h′, g′) .

For correct TLB virtualization, we have to consider (i) those parts of the
coupling invariant related to the TLB and registers used for address translation
and (ii) MMU-related steps of the host.

A VTLB, being part of the virtual hardware g, has to correctly simulate every
address translation performed by the HTLB (as well as flushes and autonomous
TLB steps). Intuitively, this means that when the guest code is performing a
memory access to a guest physical address a (i.e., the VTLB of the VM returns
address a for this memory operation), the HTLB should return the translated
address gpa2hpa(a). To make this possible, we have to couple every complete
walk in the HTLB with the respective ones in the VTLB. We do this by linking
the VTLB to the two components of the implementation: the HTLB and the
SPTs.

Table 1: Main invariants of the SPT algorithm.

Invariant name Invariant property

htlb walks w ∈ h.p[i].tlb ∧ valid(h, i, w.asid) =⇒ w ∈ W [i]

vtlb walks w ∈ W [i] ∧ w.l = 0 ∧ w.asid = asid(j) =⇒ hw2gw(w) ∈ g.p[j].tlb

running asid h.p[i].asid 6= 0 =⇒ valid(h, i, h.p[i].asid)

distinct asids i 6= j ∧ vp2hp(i) = vp2hp(j) ∧ asid(i) = asid(j)
=⇒ asidgen(i) 6= asidgen(j)

partial walks w ∈ W [i] ∧ w.l 6= 0 ∧ asid(j) = w.asid =⇒ w ∈ rwalks(j)
∧w ∈ rwalks(j) =⇒ w ∈ W [vp2hp(j)]

reachability re(i, iwo(i)) ∧ (re(i, j) ∧ walks to(i, j, px, j′) =⇒ re(i, j′))

complete walks w ∈ cwalks(j) =⇒ w ∈ W [vp2hp(j)]

coupling gwo g.p[i].CR3 = gwo(i)

Formally, we want the coupling invariant to establish the following property
over the HTLB:

w ∈ h.p[i].tlb ∧ w.asid = h.p[i].asid ∧ w.l = 0 =⇒ hw2gw(w) ∈ g.p[j].tlb ,
(1)

where j is the ID of the currently running VP and the function hw2gw(w)
transforms a host walk to the respective walk of the VTLB by applying the
inverse of the function gpa2hpa to w.pfn.

However, to make (1) inductive we have to argue about HTLB walks not
only in the currently running ASID, but in all ASIDs which could possibly be
scheduled to run without a preceding TLB flush. If an ASID a could be scheduled
to run on a host processor (HP) i without a flush, we call it valid and we define
the set of valid ASIDs in the following way

valid(h, i, a)
def
= ∃j : vp2hp(j) = i ∧ a = asid(j) ∧ asidgen(h.p[i]) = asidgen(j) ,

where the function vp2hp(i) identifies the HP on which VP i is scheduled to run.
For a better partitioning of the invariants in data structures (Sec. 4), we

introduce the superset W [i], holding all walks possibly residing in the HTLB of
HP i. The desired property (1) is now obtained by the invariants htlb walks,
vtlb walks, and running asid (Tab. 1) with the help of distinct asids, which
ensures the uniqueness of a VP with a given valid ASID.

To maintain htlb walks when the HTLB is extending a walk, we have to
define the content of W [i] and argue about all SPTs, which could be walked by
the HTLB in a given configuration.

Our algorithm ensures that the HTLB only accesses reachable SPTs i.e.,
those linked in the SPT tree. The set of all partial walks of VP i sitting on
reachable SPTs is defined as

rwalks(i)
def
= {w |re(i, j) ∧ w.r ≤ r(i, j) ∧ w.pfn = i2a(i, j) ∧ w.l = l(i, j)

∧ w.vpfn =w.l vpfn(i, j) ∧ w.asid = asid(i)} .

Invariant partial walks (Tab. 1) relates partial walks from W [i] with the walks
over the reachable SPTs. Invariant reachability helps to maintain partial walks
when the HTLB extends a walk (going from one reachable SPT to another).

A straightforward way to identify the complete walks in W [i] is to argue
about all terminal shadow PTEs (SPTEs) that could have possibly been walked
by the HTLB since the last flush [2]. The task however is cumbersome: a single
SPT could be reused for shadowing different GPTs without a complete flush of
the HTLB. In this case the HTLB could have walked some SPTE twice - before
and after it was reused for a new shadowing. In our approach we only keep track
of the terminal SPTEs belonging to reachable SPTs, which is enough to justify
the new walks added to the HTLB w.r.t the VTLB. Additionally, we make sure
that the VTLB (and the set W [i]) drops only the walks which are no longer
present in the HTLB.

For a walk through a (terminal) SPT (i, j) let spte = spt(i, j)[w.vpfn[8 : 0]].
Then the set of complete reachable walks of VP i is defined as

cwalks(i)
def
= {w | re(i, j)∧ l(i, j) = 1∧w.r ≤ r(i, j) + spte.r ∧w.l = 0∧ spte.p
∧ w.vpfn =1 vpfn(i, j) ∧ w.asid = asid(i) ∧ w.pfn = spte.pfn} .

Invariant complete walks (Tab. 1) relates the complete walks over the reachable
SPTs with the complete walks in W [i].

Finally, invariant coupling gwo couples the CR3 register of the VM with the
guest walk origin, which is necessary for creating a new walk in the VTLB.

4 Implementation and Verification in VCC

We use ghost data to maintain both the state of the virtual hardware and the
state of the host hardware other than the memory (Fig. 1). The hardware transi-
tion relation is formulated as a 2-state invariant of the hardware data structure.
We use the same data types for modeling the host hardware and for the specifi-
cation of the abstract VM.

The autonomous part of the host hardware state (e.g., HTLB) is modelled
with volatile data and is allowed to change non-deterministically. We locate the
host hardware state in the ghost memory, but we do allow limited information
flow between some of its fields (e.g., registers and TLB) and the concrete pro-
gram7. We do not restrict the memory updates of the host hardware in the
transition relation, since that would require approval of the whole VCC memory
by the hardware data structure, making memory changes in the code through
regular variable assignments impossible. Instead, we allow VCC software invari-
ants to specify memory transitions on C level. As a result, the autonomous
hardware is verified as a C thread with the same annotations on type definitions
as the main program.

7 This is done for lack of a dedicated hybrid type capturing implementation state other
then the main memory

TLB

HP

TLB

HP

ghost

SPT

a d

SPT

a d

SPT

a d

Hypervisor

Guest pages

C memory

HW tran

Host hardware Hypervisor VM hardware

struct Vp

struct Guest

HW interface

VTLB

VP

VTLB

VP

ghost

Fig. 1: Approval scenario for the SPT algorithm.

The state of the virtual hardware (excluding the memory) is also located
in the ghost memory. In contrast to the host hardware, we do specify memory
framing for the hardware transitions of the VM. The memory of the VM is
abstracted from the portions of the C memory allocated to the machine w.r.t
the function gpa2hpa. To ensure that every update of the virtual memory is
justified by the transition relation of the VM, we model the memory of the VM
as volatile data approved by the virtual hardware.

The updates of the virtual hardware, simulating the steps of the VM, are
performed by the ghost code in atomic statements, guaranteeing that the tran-
sition relation and coupling invariant are maintained by every update. When
the step of the virtual hardware involves accessing the implementation memory
(e.g., fetching of a GPTE by the #PF handler), the update to the virtual con-
figuration is done in the same atomic block as the memory access. This allows
to simulate a step of the VM on the virtual memory abstracted from the C
implementation memory.

The correctness (coupling) invariants from Tab. 1 are specified as 1-state
invariants over the data structures of the hypervisor and over the simulated vir-
tual hardware. More precisely, the invariants specific to a single virtual processor
are included in the invariant of the implementation data structure of type Vp

(Fig. 1) and the invariants establishing properties over the VPs altogether (s.t.
the invariant distinct asids) are specified in the data structure of type Guest.
With each VP we associate a set of ghost fields used for maintaining correctness
of the SPT algorithm (e.g., maps of allocated and reachable SPTs for this VP).

The properties of the overall system which have to be maintained by software
and hardware steps are specified in the so called hardware interface. For instance,
it specifies for each HP a map W [i] (Sec. 3.4), which contains all walks possibly

residing in the HTLB of that processor, and states the invariant htlb walks (Tab.
1). The hardware interface is purely ghost, since it is only used for specification
rather than to implement concrete data structures or hardware components.
To check that the invariants of the hardware interface are maintained by all
possible hardware transitions, we have to explicitly invoke each of them in the
MMU thread.

4.1 Specification

The processor state8 is modeled using the struct type Processor.

spec(typedef struct Processor {
Procx i; // Processor id
bool v; // flag for virtual
volatile Asid asid; // processor ASID
volatile Tlb tlb; // TLB (a map of walks)
Hardware ∗h; // pointer to hardware container
Hwinterface ∗hwi; // pointer to HW interface
inv(approves(h, tlb, asid)) // approval by hardware
inv(!v ==> approves(hwi, tlb, asid)) // approval by HWI
inv(approves(owner(this), asid)) // thread approval
inv(v ==> approves(owner(this), tlb)) //thread approval

} Processor;)

Fields of the processor which may change only by instruction execution (as
e.g. registers) are approved by the running thread. (We mark these sequential
fields volatile to allow them being controlled by the 2-state transition invariant of
the hardware.) The flag v is used to distinguish between the host and the virtual
hardware. For the virtual hardware the TLB of the processor is also approved by
the running thread (the steps of the VTLB are always explicitly performed by
intercept handlers). For the host hardware, the TLB and the current ASID reg-
ister are approved by the hardware interface, where we state software dependent
properties on these fields (see Fig. 1 for dependencies between data structures
used for hardware modeling and implementation of the algorithm).

The data structure Hardware encapsulates all processors and defines via 2-
state invariants all valid hardware transitions. To ensure that the processor re-
spects this transition relation, it has to approve all processor fields.

spec(typedef struct Hardware {
Processor ∗p; // array of processors
bool v; // flag for virtual
claim t cm[Ppfn], cp[Procx]; //claims on processors and memory
Ppfn gpa2hpa[Ppfn]; // memory translation (for VM)
volatile Procx i; // index of acting processor
volatile Action act; // type of action
volatile Walk w; // TLB walk for the action
inv(forall(Procx i; claims obj(cp[i], &p[i]))) // Claims on processors
// Claims on memory (for VM)
inv(forall(Ppfn a; gpa2hpa[a] ==> claims obj(cm[a], page(gpa2hpa, a))))
inv(p unch(p) && (!v || m unch(abs m(gpa2hpa))) ||

act == TLB SET AD && tlb setad(p, i, w, old(read pte(w,gpa2hpa,v)))
&& (!v || m upd(abs m(gpa2hpa), w)) ||

act == CORE INVLPGA && core invlpga(p, i, v)
&& (!v || m unch(abs m(gpa2hpa))) || ...) // Transition relation

} Hardware;)

8 We expose only the most crucial parts of the data structures necessary to understand
our methodology, omitting e.g., valid ASIDs and CR3 registers here.

typedef struct Spt {
volatile Pte e[512];
spec(volatile Pte ge[uint];)
inv(approves(owner(this), ge))
inv(sptes eq except a and d(e, ge))

} Spt;

typedef struct vcc(claimable) Gpt {
volatile Pte e[512];
spec(Hardware ∗h;)
inv(approves(h, e))

} Gpt;

Listing 1: SPTs and GPTs.

The current hardware transition is specified by variables i, act, and w, where
i identifies the acting processor, act the action type and w the walk targeted by
the action in case of a TLB transition. When we prove simulation for the VMs,
we use these variables to choose a certain step we want to simulate. In case of
the host hardware these variables allow us to explicitly go over all possible TLB
steps in the MMU thread, showing that none of them violate the VCC software
invariants.

In the hardware transition system we make a distinction between the steps of
the host hardware and the steps of the virtual hardware, having memory framing
only if the v bit is set. For the virtual hardware we also require that it claims all
memory pages allocated the the VM. We obtain those pages by the map gpa2hpa
translating guest physical addresses to host physical addresses (constructed dur-
ing VM initialization and maintained during memory allocation). An arbitrary
memory page of the VM is modeled as a GPT (Listing 1) consisting of guest
PTEs (GPTEs) which are approved by Hardware.

4.2 Implementation

A SPT (Listing 1) contains an array of SPTEs. Since the A/D bits of a SPTE
may be accessed concurrently by hardware, we have to mark the complete entry
as volatile. All other bits may only be accessed by the software currently running
on the processor. Since thread approval can not be stated bit-wise we have to
introduce an approved ghost copy of each SPTE (identical to the original one
except for A/D bits).

The SPT algorithm itself consists of a number of intercept handlers. The
most crucial ones are considered below.

#PF intercept. When a #PF is intercepted, the hypervisor walks the GPTs
to obtain a set of GPTEs used for the translation of the faulty VA. Every access
to a GPT is performed inside an atomic block. During the walk we simulate the
respective VTLB steps (initializing a walk, setting A/D bits, extending a walk),
which makes the GPT walker the core part of the #PF handler. If the walk ex-
tension is unsuccessful (rights violation or present bit not set), we simulate the
#PF -signalling step of the VP, inject #PF to the VM and return. After success-
ful walking of GPTs the handler walks the SPTs and finds the first SPTE which
is not in-sync with the associated GPTE. The subtree pointed by this SPTE
is freed and new subtree (being in-sync with the fetched GPTEs) is allocated

and attached to the SPTE. The set of walks W [i] is updated to hold the newly
attached walks and to drop the detached ones. Non-dirty terminal SPTEs are
marked write protected to propagate a D bit to the VM when it is being set by
the HTLB. In case of detaching a subtree we perform a hardware INVLPGA to
ensure that the HTLB is not sitting on the freed SPTs.

Flush intercept. When the TLB flush is intercepted, the handler frees all the
SPTs of the VP, allocates a fresh top-level SPT (which has all its entries set
to non-present), assigns an unused ASID for the VP and simulates the VTLB
flush step. If all the ASIDs are already in use, the handler flushes the HTLB
and increments the ASID generation of the HP. (Currently we explicitly assume
that the ASID generation doesn’t overflow.) At this point, all ASIDs which were
previously assigned to VPs running on this HP become invalid. The handler
then gives the first ASID to the intercepted VP and makes it valid by setting
the ASID generation of the VP to the current one of the HP. Set W [i] in the
hardware interface is updated to hold only walks sitting on the fresh top-level
SPT.

Every time when some VP is scheduled to run we check whether the ASID
generation of the VP is equal to the ASID generation of the HP. If this is not
the case (i.e., some other VP has increased the ASID generation of the HP), we
allocate an unused ASID for the VP and proceed in the same way as in the case
of a flush intercept.

INVLPG intercept. In case of the INVLPG intercept the handler walks down the
SPTs for the invalidated address and marks a terminal SPTE non-present. Then
it performs a hardware INVLPGA on the faulty VA in the ASID of the intercepted
VP. The complete walk through the modified terminal SPTE is removed from
the set W and the INVLPG step of the virtual VP is simulated.

4.3 Verification

We consider verification examples of the code of the #PF handler simulating
the step of the VTLB and, of a single HTLB transition performed in the MMU
thread.

VTLB Steps Simulation. The VTLB operates on the shared (volatile) mem-
ory of the VM and races with other VTLBs and with the running VPs. Hence,
the memory of the VM may change arbitrarily in between atomic accesses to it.
To simulate a VTLB step corresponding to the operation on the memory of the
VM, we have to perform the simulation in the same atomic block where the han-
dler reads/writes GPTs. We also need to have access to the state of the virtual
processor and to the transition relation of the virtual hardware. The VP and
everything in its ownership domain is thread local, while an instance of Guest
is shared between all the VPs and is claimed to be closed by a claim gc (i.e., we
can not update sequential data of the guest, but can assert its invariant).

As an example of a VLTB step we consider the setting of A/D bits for a
top-level walk (performed in a GPT walker before we fetch a top-level GPTE
for walk extension):

pfn = gpa2hpa(vp−>gwo, guest);
if (pfn == 0) return 0; // non−allocated guest address
gpt = (Gpt ∗)(pfn << 12);
px = compute idx(vpfn, 4);
while (!cmp result)

writes(vp)
inv(thread local(vp) && claims(gc, guest) && ...)
{

atomic(gpt){old pte = gpt−>e[px];} //fetching GPTE
unwrap(vp); // opening thread−local object
atomic(...){ // setting A and D bits

if (old pte.p) { // modifying and writing GPTE
cmp result = (old pte == (rw && old pte.rw)

? asm cmpxchg(&gpt−>e[px], old pte, SET AD(old pte))
: asm cmpxchg(&gpt−>e[px], old pte, SET A(old pte)));

spec(if (cmp result) { // fixing step parameters
guest−>g.i = vp−>i;
guest−>g.act = TLB SET AD;
guest−>g.w = top level walk(vp−>gwo, vpfn);

})
} else // don’t do update if the entry is not present

cmp result = 1;
}
wrap(vp); // closing thread−local object

}

Since the x64 architecture does not provide an instruction performing an atomic
read-modify-write operation we use a loop in which we fetch an entry, modify it,
and then write it back if the entry has not been changed in between. Writing to
a GPTE is done by an interlocked compare-exchange operation. To specify the
behaviour of compare-exchange we define a C function asm cmpxchg reflecting
the effect of the interlocked operation on the C memory. If the compare-exchange
is successful, we simulate the setting of A/D bits by the VTLB.

The invariants of the virtual hardware are checked automatically at the end of
the atomic block, ensuring that a selected TLB step is performed accordingly to
the transition relation. Since we operate only with one VP, VCC doesn’t need to
check the invariants of other VPs. The invariants of the hardware interface also
are untouched here, because the set of the reachable walks remains unchanged.

MMU Thread. For soundness of the approach we have to emulate the be-
haviour of a hardware MMU in a C thread. There are two reasons why the
two-state invariant of Hardware describing the MMU behaviour alone is not
enough. First, the only place where VCC checks that the invariant of the con-
current object being modified holds is the atomic block where the writing to the
object is done. Moreover, to check this VCC first has to ensure that the address
being written belongs to a typed object. In the MMU thread we guarantee that
all MMU writes are done to the SPTs of a running VP and these writes do not
violate the invariants of SPTs.

The second reason why we need a software MMU thread is the presence of
the observer: the invariants of the hardware interface should not restrict the
hardware transition system in any sense. Since the transition invariant contains

a disjunction of steps, we have to ensure that the invariant of the hardware
interface holds for every step from the disjunction. Note, that the invariant of
the hardware interface has to be checked not only for MMU steps, but for other
hardware steps as well. This check is done in the intercept handlers every time
we execute a certain TLB-dependent processor step (e.g., INVLPGA).

The MMU thread consists of a number of atomic actions each performing a
single MMU step. As an example, we again consider the setting of A/D bits by
the TLB of the hardware processor hp.

atomic(...) {
spt = (Spt ∗)(w.pfn << 12);
px = compute idx(w.vpfn, w.l);
assume(hp−>tlb[w] && w.l != 0 && w.asid == hp−>asid

&& hp−>asid > 0 && spt−>e[px].p); // assuming guard
vp = guest−>hp2vp[hp−>i][hp−>asid]; // get the running VP
assert(inv(vp)); // asserting invariant of running VP
begin update(); // start of update in the block
spt−>e[px] = (w.l == 1 && w.r[rw] && spt−>e[px].rw)

? SET AD(spt−>e[px])
: SET A(spt−>e[px]); // performing a write

guest−>h.i = hp−>i; // fixing step parameters
guest−>h.act = TLB SET AD;
guest−>h.w = w;

}

With the help of the invariant of the running VP (obtained from the current
ASID of the HP), VCC derives that the memory write is done to the SPT
owned by that VP and the system invariants are maintained. Note, that the
only invariants which might get broken by the HTLB step are the invariant of
the hardware interface (if the HTLB adds a walk which is not present in W [i])
and the invariant of the SPT itself (if the HTLB modifies other bits than A/D).

5 Conclusion and Future Work

We have demonstrated the verification of a concurrent program dealing with
devices using an automatic C code verifier. We have given a general methodology
for verification of virtual device implementations, specified TLB virtualization
with SPTs and formally verified a SPT algorithm.

The implementation of the SPT algorithm contains ca. 700 lines of C code
(including initialization of data structures) and ca. 4K lines of the annotations
which include function contracts, loop invariants, data invariants, ghost code,
and (proof) assertions. Roughly a third of annotations comprise function and
block contracts and another third is ghost code for maintaining ghost fields,
showing simulation, and running MMU thread (which is purely ghost). The
overall proof time is ca. 18 hours on one core of 2GHz Intel Core 2 Duo machine.
The estimated person effort is 1.5 person-years, including VCC learning period.

There are two possible directions of future work. The first one is to integrate
the proof and the specification to a prototypical hypervisor being developed and
verified at the Saarland University. In particular, this requires adapting the proof
to be done on top of the kernel layer of the hypervisor, rather than on top of the
real hardware (the support for this scenario is already included in our models).

The second direction is to verify a more sophisticated version of the algorithm,
which uses write-protection of GPTs and sharing of SPTs.

References

1. Advanced Micro Devices: AMD64 Architecture Programmer’s Manual Volume 2:
System Programming, 3.14 edn. (Sep 2007)

2. Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.: Verifying shadow
page table algorithms. In: Formal Methods in Computer Aided Design (FMCAD)
2010. pp. 267–270. IEEE, Lugano, Switzerland (2010)

3. Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive verification of an OS
microkernel: Inline assembly, memory consumption, concurrent devices. In: Third
International Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE’10). LNCS, vol. 6217, pp. 71–85. Springer, Edinburgh (2010)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher
Order Logics (TPHOLs 2009). Lecture Notes in Computer Science, vol. 5674, pp.
23–42. Springer, Munich, Germany (2009)

5. Intel Corporation: TLBs, Paging-Structure Caches, and Their Invalidation (April
2007)

6. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
sel4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. pp. 207–220. SOSP ’09, ACM, New
York, NY, USA (2009)

7. Tews, H., Weber, T., Völp, M., Poll, E., Eekelen, M.v., Rossum, P.v.: Nova micro–
hypervisor verification. Tech. Rep. ICIS–R08012, Radboud University Nijmegen
(May 2008)

