Verification of clock synchronization algorithm

(Original Welch-Lynch algorithm and adaptation to TTA)

Christian Müller

cm@wjpsserver.cs.uni-sb.de

Saarland University

7. October 2005
Overview

- Clock synchronization in general
- Original Welch-Lynch algorithm
- Verification
- Adaptation to TTA (Flexray)
Clock synchronization

• Typical problems
 - hardware clocks are not synchronous
 - hardware clocks drift with different frequency
 - message delivery delay varies
 - software processes, which access the hardware clocks, could be faulty itself
 - messages could be discrepant (in the worst case: *dual faced clocks*)
Clock synchronization

- Introduction to Welch-Lynch algorithm
 - a fault tolerant algorithm for clock synchronization in a distributed system
 - intended for a fully connected network of n processes
 - will be executed periodically at the same local time for all nodes
 - requires at least n^2 messages between two synchronization intervals
Welch-Lynch algorithm

Step 1: exchange clock values

Step 2: determine adjustment

Step 3: adjust the local time

Step 4: when time, apply it
Welch-Lynch algorithm

Given: \(n \) := number of all nodes
\(f \) := maximum number of faulty clocks with condition \(n > 3f \)

(1) sort the clocks \((c_1..c_n)\) from smallest to largest
(2) exclude \(f \) smallest and \(f \) largest clocks
(3) compute the average of the \(f+1 \)'st and \(n-f \)'th clocks

\[
\text{cfn}([C_1, \ldots, C_n]) = \frac{(C_{f+1} + C_{n-f})}{2}
\]
Welch-Lynch algorithm

• Assumptions
 - the drift from the real time of all clock is bounded by a constant $0 < \rho << 1$:
 $$1 - \rho \leq \frac{d(H_i(t))}{dt} \leq 1 + \rho$$
 - there are maximal $f < n/3$ faulty clocks
 - in the beginning all nonfaulty clocks are synchronized within some β
 - message delivery delay is $[\delta - \varepsilon, \delta + \varepsilon]$ where $\delta > \varepsilon \geq 0$
Welch-Lynch algorithm

• Notation
 - PC_p is the physical clock of a node p
 - $CORR_p$ is the computed correction of PC_p
 - VC_p is the (virtual) local clock of a node p
 - $VC_p(t) = PC_p(t) + CORR_p(t)$

• clock names are always capitalized and map real time to local time:
 - $VC_p(t)$ returns the local time T of node p at the real time t.
Welch-Lynch algorithm

- **Correctness properties**
 - **Agreement**: all the non-faulty processes \(p \) and \(q \) at each time \(t \) are synchronized to within \(\gamma \):
 \[
 \left| VC_p(t) - VC_q(t) \right| \leq \gamma
 \]
 - **Validity**: the clocks of non-faulty processes are within a linear envelope of real-time.
Welch-Lynch algorithm

Linear envelope of real time:

- slope = 1
- slope = 1+p
- slope = 1-p
Welch-Lynch algorithm

\[T := T_0; \]
repeat forever
 wait until \(VC_p = T \);
 broadcast \(SYNC \);
 wait for \(\Delta \) time units;
 \(ADJ_p := T + \delta - cfn(ARR_p) \);
 \(CORR_p := CORR_p + ADJ_p \);
 \(T := T + P \);
end of loop.

on reception of \(SYNC \) message from \(q \) do \(ARR_p[q] := VC_p \).
Welch-Lynch algorithm

• For a correct execution of the algorithm, P and Δ have to satisfy several conditions
 - the last SYNC message in the current round can arrive the node p at the time t with:
 \[t \leq t_p + \beta + \delta + \epsilon \]
 where:
 \[t_p := \text{is th real time when the round starts} \]
 \[\beta := \text{maximal clock drift in real time} \]
 \[\delta + \epsilon := \text{maximal message delay} \]
Welch-Lynch algorithm

- For a correct execution of the algorithm, P and Δ have to satisfy several conditions
 - the last SYNC message in the current round can arrive the node p at the time
 \[
 t \leq t_p + \beta + \delta + \epsilon
 \]
 - $\text{VC}(t_p + \beta + \delta + \epsilon) \leq T + (1 + \rho)(\beta + \delta + \epsilon)$

\[
\Delta \geq (1 + \rho)(\beta + \delta + \epsilon)
\]
Welch-Lynch algorithm

• For a correct execution of the algorithm, \(P \) and \(\Delta \) have to satisfy several conditions
 – for \(p \) not to miss the next round, \(T+P \) must be larger than the new clock at the time of the correction!

\[P \geq \Delta + \text{ADJ}_{\text{max}} \]

where

\[\text{ADJ}_{\text{max}} = (\beta + \varepsilon) + \rho \cdot |\beta - \delta + \varepsilon| \]

(can be easily derived)
Evolution of VC_p and VC_q
Verification

- Abstract idea
 - although the algorithm is fairly simple, its analysis is surprisingly complicated and requires a long series of lemmas
 - to make the proof presentable, we abstract from several details and concentrate on its main idea
 - for simplicity we assume that broadcasting a message, computing the adjustment, storing arrival time are instantaneous operations
Verification

• Idea
 - To examine two non-faulty clocks before a synchronization round, where the clock drift is maximal

• Consider two clocks before the same synchronization round
 - $C_p(t) = cfn(ARR_p)$
 - $C_q(t)$ (analogous)
Verification

- **Assumption**
 \[|C_p(t_{sync}) - C_q(t_{sync})| \leq \gamma \]
 for all non-faulty \(p,q\) at \(t_{sync}\):

- **Proof**
 \[|cfn(ARR_p) - cfn(ARR_q)| = ? \]

- **what returns a cfn-function?**
Verification

ARRp:

\[
A_1 \ldots A_{f+1} \ldots A_{n-f} \ldots A_n
\]

mARRp:

\[
M_1 \ldots M_m
\]

• What do we now about this arrays?
 - they are sorted from smallest to largest
 - mARRp is a subset of ARRp
 - mARRp contains all the non-faulty clocks and is equal for all nodes at each synchronization interval
 - \(\text{length}(\text{mARRp}) \geq 2f + 1\)
Verification

ARRp:

\[
\begin{array}{cccccc}
A_1 & \ldots & A_{f+1} & \ldots & A_{n-f} & \ldots & A_n
\end{array}
\]

mARRp:

\[
\begin{array}{cccc}
M_1 & \ldots & M_m
\end{array}
\]

- \(M_1 = A_i \) for some \(i \)
 - \(i \leq f+1 \Rightarrow A_{f+1} \leq M_{f+1} \)
 - analogous for \(M_1 \leq A_{f+1} \)
 - \(M_1 \leq A_{f+1} \leq M_{f+1} \) \hspace{1cm} (I)
 - analogous for \(M_{m-f} \leq A_{n-f} \leq M_m \) \hspace{1cm} (II)
Verification

ARRp:

| A_1 | ... | A_{f+1} | ... | A_{n-f} | ... | A_n |

mARRp:

| M_1 | ... | M_m |

- Let be \(k \) any index between \(f+1 \) and \(m-f \).
 - since \(m \geq 2f+1 \), such a \(k \) exists.
- Because of (I) and (II) holds:

\[
M_1 \leq A_{f+1} \leq M_k \leq A_{n-f} \leq M_m
\]
Verification

\[M_1 \leq A_{f+1} \leq M_k \leq A_{n-f} \leq M_m \]

\[\frac{(M_1 + M_k)}{2} \leq \frac{(A_{f+1} + A_{n-f})}{2} \leq \frac{(M_k + M_m)}{2} \]

\[(M_1 + M_k)/2 \leq \text{cfn}(\text{ARR}_p) \leq (M_k + M_m)/2 \]

\[(M_1 + M_k)/2 \leq \text{cfn}(\text{ARR}_q) \leq (M_k + M_m)/2 \]

\[\text{the cfn-function returns a result depending only on non-faulty nodes } \Rightarrow \text{ fault-tolerance} \]
Verification

- Proof:

\[|C_p(t_{sync}) - C_q(t_{sync})| = |cfn(ARRp) - cfn(ARRq)| \leq |(M_1 + M_k)/2 - (M_k + M_m)/2| = |(M_1 + M_m)/2| = (\gamma + \lambda)/2 \]

for \(\gamma \geq \lambda \) holds:

\((\gamma + \lambda)/2 \leq \gamma \)
Verification

Proof of validity

Local time

Real time

slope = 1
slope = 1+p
slope = 1-p
faulty clock 1
faulty clock 2
Verification

• Since VC(t) is a linear function, holds:

\[VC(a + b) = A + VC(b) \]

• Consider the local time difference of some node between two synchronization intervals:

\[VC(t_{i+1}) - VC(t_i) = \]
\[VC(t_i + (t_{i+1}-t_i) - VC(t_i) = T + VC(t_{i+1}-t_i) - T = VC(t_{i+1}-t_i) \]
\[(1+\rho)(t_{i+1}-t_i) \leq T_{i+1}-T_i \leq (1-\rho)(t_{i+1}-t_i) \]
Verification

• But!
 - our model is very abstract and not practical
 - we neglected message delivery delays and the run time of all procedures

• Normally we have to bound each possible delay to a constant and then choose appropriate values for it
Adaptation to TTA (Flexray)

- TTA version is basically WLA, but:
 - $k = 1$ with $k > 3f$
 - some changes in the fault assumptions
 - TTA doesn't consider all accurate clocks, when choosing second smallest and second largest, but just 4 of them!
 - this accurate clocks are choosen by the membership algorithm
 - so have all non-faulty nodes the same members at all times
Adaptation to TTA (Flexray)

- Fault assumptions
 - in TTA bus topology and in a Flexray system there is no dual faced clock effects
 - each node always receive the same time from a faulty node (there is only one channel)
 - no LWA needed?
 - No. Because the messages can lost!
Adaptation to TTA (Flexray)

- Further changes:
 - each node maintains a push-down stack of depth 4 for clock readings
 - is a SYF-message arrive and it is valid (it should be from the one of members)
 - clock difference reading will be computed and pushed on the stack
 - when time, synchronize the local clock using the stack values
Adaptation to TTA (Flexray)

Membership

-3
2
1
3

Node I

SYF-message

Node II

- Computing the clock difference: $5 - 8 = -3$
- Push -3 on the stack now
- The oldest value get discarded

e.g. this SYF-message was expected at time 5
but sended at time 8
Adaptation to TTA (Flexray)

- How a node computes the difference?
 - communication in TTA is time-triggered according to global schedules
 - each node knows beforehand at which time a certain message will be sent
 - difference between the expected time and actual arrival time can be used to calculate the deviation between the sender's and receiver's clock
Adaptation to TTA (Flexray)

• Further changes
 - in Flexray and TTA each node starts a synchronization round at different time
 ▶ the duration of one round P have to be changed according to this
Thanks for attention!